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In this work we present lattice calculations of the masses of P-wave mesons using Monte Carlo
simulations. Our valence fermions are defined by the Wilson action. Our gauge fields are generated
with both dynamical staggered fermions at a lattice coupling P = 6/9 = 5.6 for sea quark masses
of am~ = 0.010 and 0.025 and in the quenched approximation at P = 6.0. We present results for
charm and charmonium spectroscopy and use them to compute the strong coupling constant 0,
We compare our results to those of other recent lattice calculations and experiments.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

This paper presents results of P-wave meson masses
using Wilson quarks on both quenched gauge confi. gura-
tions and configurations which include light dynamical
quarks. Here we focus on systems containing one or two
heavy quarks.

Lattice calculations of P-wave systems go back only
a few years. Simulations with staggered fermions regu-
larly measure the masses of states which are odd-parity
partners of the ordinary ground state mesons. The ear-
liest, calculations with Wilson fermions of which we are
aware were done by the APE Collaboration [1] and then
in lgg2 one of us [2] presented incomplete calculations
of the whole P-wave multiplet, which hinted at the exis-
tence of fine structure splitting in charmonium in quali-
tative agreement with experiment. Also in 1992 the Fer-
milab group performed P-wave spectroscopy for heavy
quark systems with Wilson fermions and with improved
Wilson fermions [3]. Since then very precise calculations
in heavy quark systems have been done using simulations
with nonrelativistic quarks by [4—6], with much higher ac-
curacy than what Wilson fermions permit, for the same
amount of computer time. Indeed, the calculations we
present do not show statistically significant fine structure
splitting at our heaviest quark masses.

Why are more calculations with Wilson fermions be-
ing presented? There are several reasons. First of all,
the spectroscopy of states with light quarks demands a
lattice implementation of relativistic quarks, so in D me-
son spectroscopy (for example) at least one of the quarks
must be relativistic. The heavy quark may be treated
on the lattice as static, or nonrelativistic, or relativistic
but heavy. Each prescription has its own set of system-
atic errors, and so it is important to do the calculation
in all three ways on the lattice to understand them. The
calculations done in this paper for charm spectroscopy
complement ones using the same gauge configurations in
a companion work [6] using nonrelativistic heavy quarks.

Second, even without particularly accurate P-wave

mass measurements, we can address a topical physics
problem: the extraction of the strong coupling constant
from lattice QCD. The Fermilab group [3] was the first
to use the S —P mass splitting of heavy mesons to set
the scale, which allows one to run the coupling calculated
from the plaquette to any scale. However, since their cal-
culation was in the quenched approximation, they had to
correct for the presence of dynamical fermions. Our sim-
ulations are done in the presence of dynamical staggered
fermions, so we avoid this extrapolation. Similar calcu-
lations have been done in two-flavor QCD [7] and using
nonrelativistic quarks [4]. Further details regarding the
simulations are given in Sec. II.

We use interpolating fields which are generalizations
of local currents to couple to the two S-wave states and
to one of the P wave states -(the Pi). However, in or-
der to create all of the P-wave states, we employ several
represent;ations of the lattice cubic group. Both of these
procedures are described in Sec. III.

In Sec. IV we describe in detail our methods for ex-
tracting the strong coupling from measurements of the
plaquette, for using zero-flavor and two-flavor calcula-
tions of o., to extrapolate to t,hree flavors, for changing
&om our lattice definition of o., to the modified minimal
subtraction definition, and for perturbatively running the
coupling to any momentum scale. Particular attention is
given to possible sources of systematic errors in our cal-
culation.

Finally, in Sec. V we present lattice calculations of the
masses of charmed mesons. Our computations confirm
that the Wilson action does not generate the hyperfine
structure correctly.

II. THE SIMULATIONS

Our dynamical fermion simulations were carried out on
the Connection Machine CM-2 at the Supercomputing
Computations Research Institute at Florida State Uni-
versity, and our quenched simulations on the Paragons
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at the San Diego Supercomputer Center and at Indiana
University.

For the dynamical simulation we used the ensemble of
configurations generated by the HEMCGC Collaboration
with two flavors of dynamical staggered quarks [8]. The
configurations were generated using the hybrid molecular
dynamics (HMD) algorithm [9]. The size of the lattices is
16s x 32, the lattice coupling is P = 5.6, and the dynam-
ical quark masses are am~ = 0.010 and 0.025. Periodic
boundary conditions were used in all four directions of
the lattice. The total simulation length was 2000 simu-
lation time units (with the normalization of Ref. [10]) at
each quark mass value. We analyzed lattices spaced by
20 HMD time units, for a total of 100 lattices at each
mass value.

The spectroscopy was computed with six. values of the
Wilson quark hopping parameter: v = 0.1600, 0.1585,
0.1565, 0.1525, 0.1410, and 0.1320. The first three values
are rather light quarks (the pseudoscalar mass in lattice
units ranges from about 0.25 to 0.45), and the other three
values correspond to heavy quarks (pseudoscalar mass
from 0.65 to 1.5). Our inversion technique is conjugate
gradient with preconditioning via incomplete lower-upper
(ILU) decomposition by checkerboards [11].For more de-
tails about the dynamical staggered fermion simulations
see Refs. [8,12]. Since we use sources for the propaga-
tors which are extended in space, we fix gauge to lattice
Coulomb gauge using an overrelaxation method [13].

The quenched configurations were generated using an
updating algorithm which treats each link to a combi-
nation of four microcanonical overrelaxed hits on each
of three SU(2) subgroups, followed by one Kennedy-
Pendleton [14] quasi-heat-bath update. The lattices are
16s x 48 at a lattice coupling P = 6.0. Lattices were
recorded for analysis every 200 sweeps, and we acquired
a total of 79 lattices. Here, the spectroscopy was com-
puted with five values of the Wilson hopping parameter:

= 0.1550, 0.1540, 0.1520, 0.1450, and 0.1300. Our
boundary conditions, gauge fixing, and inversion tech-
nique are identical to those mentioned above.
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I"IG. 1. EfFective masses for the Pq state using A,
for amq = 0.010 at rq = rq = 0.1320,

0.1410,0.1525, 0.1565.

and axial-vector currents given, respectively, by

(3)
(4)
(5)

These currents have respective quantum numbers J as
follows: 0 +, 1,and 1++. In spectroscopic notation,

+ L J, which we shall use hereafter, these states are the
So, Sq, and Pq, respectively.

For the present work we consider correlators which
have "shell" sources and "point" sinks. That is, we mea-
sure the source of the correlator over a spatial volume
with a Gaussian distribution centered at a point, and the
sink at a single point. We also have data with "shell"
sinks, from which the masses are consistent with, but

III. P-WAVE SPECTROSCOPY

We extract masses from correlation functions of some
operator 0:

|-"(t) = (0IO(t)O(0)lo) (1)

which for large t reduces to a single decaying exponential

I I I I I I I I I I I I
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where m is the mass of the lightest particle that couples
to O. We employ two types of operators to couple to
the P-wave states: operators whose spatial dependence is
symmetric and which couple to the desired state through
the quarks' spins ("current" operators), and operators
which form specific representations of the cubic group.
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A. "Current" eperatars
The first class of operators we use are the analogues of

currents. In this work we use the pseudoscalar, vector,

FIG. 2. ER'ective masses for the P~ state using A,
for amq = 0.025 at rq —— Kq = 0.1320,

0.1410,0.1525, 0.1565.
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TABLE I. Best range fits to M( Pi) for amp = 0.010 using
the axial-vector current.

TABLE III. Best range fits to M( Pi)
using the cubic group state Tq

for Gmq 0.010

i j (r, + r~)/2
1 1 0.1320
2 1 0 1365
2 2 0.1410
3 1 0.1422
3 2 0.1467
3 3 0 1525
4 1 0 1442
4 2 0 1487
4 3 0 1545
4 4 0.1565
5 1 0 1452
5 2 0.1497
5 3 0.1555
5 4 0 1575
5 5 0 1585
6 1 0 1460
6 2 0 1505
6 3 0 1562
6 4 0.1583
6 5 0.1593
6 6 0.1600

aM( Pi)
1.724
1.562
1.398
1.360
1.191
0.976
1.292
1.122
0.900
0.820
1.259
1.086
0.861
0.778
0.736
1.238
1.060
0.834
0.753
0.749
0.708

Error
0.008
0.008
0.007
0.008
0.008
0.010
0.009
0.009
0.010
0.012
0.010
0.010
0.011
0.013
0.015
0.014
0.013
0.014
0.016
0.010
0.013

y /Nop
3.60/4
3.38/4
3.41/4
4.22/4
4.72/4
5.12/4
3.66/4
4.75/4
5.14/4
5.32/4
1.97/4
3.87/4
4.89/4
4.19/4
2.50/4
2.52/4
5.23/4
5.07/4
2.57/4
5.70/6
2.52/6

Conf. lvl.
0.462
0.497
0.491
0.377
0.317
0.275
0.454
0.314
0.274
0.256
0.742
0.424
0.299
0.381
0.644
0.642
0.264
0.280
0.632
0.458
0.866

~i tf
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
3 10
3 10

i j (r., + r., )/2
1 1 0.1320
2 1 0.1365
2 2 0 1410
3 1 0.1422
3 2 0.1467
3 3 0.1525
4 1 0.1442
4 2 0.1487
4 3 0.1545
4 4 0 1565
5 1 0.1452
5 2 0.1497
5 3 0.1555
5 4 0 1575
5 5 0 1585
6 1 0.1460
6 2 0 1505
6 3 0.1562
6 4 0 1583
6 5 0 1593
6 6 0 1600

aM('Pi)
1.709
1.538
1.384
1.336
1.178
0.980
1.297
1.111
0.911
0.850
1.279
1.119
0.878
0.812
0.781
1.281
1.052
0.846
0.769
0.712
0.659

Error
0.012
0.014
0.014
0.017
0.016
0.018
0.027
0.019
0.021
0.025
0.036
0.035
0.026
0.032
0.040
0.057
0.036
0.038
0.044
0.054
0.077

y'/NoF
0.99/4
0.56/4
0.61/4
1.86/4
1.46/4
o.66/4
0.87/3
3.86/4
3.79/4
4.91/4
1.O3/3
1.71/3
6.35/4
8.28/4
9.77/4
1.21/3
5.41/4
7.67/4
9.27/4
9.O2/4
5.90/4

Conf. lvl
0.912
0.967
0.962
0.762
0.833
0.956
0.832
0.426
0.435
0.296
0.795
0.635
0.174
0.082
0.044
0.751
0.248
0.104
0.055
0.061
0.207

5
5
5
5
5
5
6
5
5
5
6
6
5
5
5
6
5
5
5
5
5

Ef
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

noisier than, the point sink data. In either case the sink
state is projected onto A: = 0.

One can examine the quality of the signal by calcu-
lating "effective" masses: fits to the correlator over just
two neighboring points. If the assumption that the cur-
rent is coupling to just one particle state is correct, then
we should see a plateau in the effective mass. Once we
establish an approximate range over which to fit, we fi.t

every possible range therein and select the best one, in
our case the one which maximizes the confidence level
times the number of degrees of freedom divided by the
statistical error of the mass. (This selection criterion has
been used in our previous studies [8,12].)

Effective mass plots and best fits to the dynamical
staggered fermion data for the S-wave states have been
published in a previous work [8]. In Figs. 1 and 2 we

TABLE II. Best range
using the cubic group stat

Bts to
eE.

M( P2) for amp = 0 010 TABLE IV. Best range fits to M( Pp)
using the cubic group state Aq.

for amq 0.010

j (r., + ~, )/2
1 1 0.1320
2 1 0.1365
2 2 0.1410
3 1 0.1422
3 2 0 1467
3 3 0 1525
4 1 0 ~ 1442
4 2 0 1487
4 3 0 1545
4 4 0.1565
5 1 0 1452
5 2 0 1497
5 3 0 1555
5 4 0 15?5
5 5 0.1585
6 1 0 1460
6 2 0 1505
6 3 0.1562
6 4 0.1583
6 5 0.1593
6 6 0 1600

aM( P2)
1.706
1.537
1.380
1.348
1.189
0.988
1.295
1.141
0.956
0.897
1.267
1.124
0.966
0.975
0.871
1.224
1.093
1.031
1.008
1.003
0.973

Error
0.013
0.015
0.015
0.019
0.020
0.025
0.023
0.024
0.031
0.038
0.029
0.030
0.037
0.038
0.055
0.038
0.040
0.043
0.050
0.062
0.082

y /NnF
1.14/4
0.25/4
0.61/4
o.66/4
0.45/4
0.14/4
3.63/4
3.39/4
2.25/4
1.08/4
6.60/4
7.30/4
6.9O/4
7.32/5
4.27/4
6.99/4
9.69/4
14.88/5
14.20/5
15.39/5
15.61/5

Conf. lvl. ti
0.888 5 10
0 993 5 10
0.962 5 10
0 956 5 10
0 979 5 10
0.998 5 10
0458 5 10
0 495 5 10
0 691 5 10
0.898 5 10
0 159 5 10
0.121 5 10
0 142 5 10
0 198 4 10
0 371 5 10
0.136 5 10
0.046 5 10
0 011 4 10
0 014 4 10
0 009 4 10
0.008 4 10

i j (r., + r., )/2
1 1 0 1320
2 1 0.1365
2 2 0 1410
3 1 0.1422
3 2 0.1467
3 3 0.1525
4 1 0.1442
4 2 0.1487
4 3 0 1545
4 4 0 1565
5 1 0.1452
5 2 0.1497
5 3 01555
5 4 0.1575
5 5 0 1585
6 1 0.1460
6 2 01505
6 3 0.1562
6 4 0 1583
6 5 0 1593
6 6 0.1600

aM( Pp)
1.712
1.541
1.387
1.335
1.175
0.973
1.267
1.104
0.897
0.834
1.237
1.072
0.859
0.793
0.876
1.208
1.044
0.844
0.836
0.728
0.826

Error
0.013
0.014
0.014
0.017
0.017
0.020
0.021
0.020
0.023
0.027
0.025
0.023
0.026
0.032
0.087
0.035
0.032
0.048
0.038
0.063
0.062

/ND F
2.31/4
1.21/4
1.54/4
1.65/4
1.52/4
1.19/4
2.62/4
2.21/4
1.36/4
1.11/4
3.16/4
2.69/4
1.79/4
1.63/4
0.07/2
2.39/4
3.10/4
4.76/3
10.82/5
2.50/3
4.45/4

Conf. lvl.
0.679
0.876
0.820
0.800
0.824
0.880
0.624
0.696
0.852
0.892
0.532
0.611
0.7?4
0.803
0.967
0.665
0.541
0.191
0.055
0.475
0.349

ti
5
5
G

5
5
5
5
5

5
5
5
5
5
5
7
5
5
6
4
6
5

ff
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
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Gts to
1g

TABLE V. Best range
using the cubic group state

i j (K + ~~)/2 aM('Pi)
1 1 0 1320 1 713
2 1 0 1365 1 543
2 2 0.1410 1.389
3 1 0.1422 1.346
3 2 0 1467 1 189
3 3 0.1525 0.993
4 1 0.1442 1.282
4 2 0.1487 1.124
4 3 0.1545 0.926
4 4 0.1565 0.865
5 1 0.1452 l.251
5 2 0.1497 1.095
5 3 0 1555 0 894
5 4 0.1575 0.831
5 5 0.1585 0.806
6 1 0.1460 1.233
6 2 0 1505 1 077
6 3 0.1562 0 872
6 4 0.1583 0.804
6 5 0.1593 0.777
6 6 0 1600 0 778

Error
0.012
0.013
0.013
0.015
0.014
0.016
0.017
0.016
0.017
0.020
0.020
0.019
0.019
0.022
0.027
0.026
0.024
0.025
0.031
0.039
0.059

y'/NDF
1.81/4
0.77/4
1.20/4
O.59/4
0.41/4
0.87/4
1.41/4
0.99/4
O.47/4
0.68/4
2.52/4
2.40/4
1.77/4
1.90/4
2.65/4
3.83/4
4.53/4
4.91/4
4.o6/4
3.2O/4
2.35/4

Conf. lvl.
0.770
0.942
0.878
0.964
0.982
0.929
0.843
0.911
0.976
0.953
0.641
0.662
0.778
0.753
0.618
0.430
0.339
0.297
0.398
0.525
0.672

Cf

5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10
5 10

M( Pi) for am~ = 0.010

i j (K +r)/2
1 1 0 1320
2 1 0.1365
2 2 0.1410
3 1 0 1422
3 2 0.1467
3 3 0 1525
4 1 0.1442
4 2 0.1487
4 3 0 1545
4 4 0.1565
5 1 0.1452
5 2 0.1497
5 3 0.1555
5 4 0 1575
5 5 0.1585
6 1 0.1460
6 2 0 1505
6 3 0.1562
6 4 0.1583
6 5 0 1593
6 6 0.1600

aM( P2)
1.710
1.557
1.392
1.388
1.219
1.018
1.363
1.124
1.035
7.799
1.344
1.242
0.938
0.879
0.866
1.085
0.888
0.908
0.849
0.837
0.863

Error
0.026
0.029
0.029
0.033
0.034
0.045
0.063
0.084
0.070
0.000
0.092
0.033
0.02?
0.034
0.042
0.114
0.077
0.035
0.042
0.050
0.063

y /NDF
1.97/3
3.68/3
4.09/3
8.51/4
7.83/4
7.31/4
9.44/3
2.79/2
8.04/4

22.25/2
2.64/2
3.89/2
8.95/5
11.12/5
11.74/5
0.53/2
0.81/3
4.35/5
5.53/5
6.20/5
5.80/5

TABLE VII. Best range fits to M( Pz)
using the cubic group E state.

for amq

Conf. lvl
0.579
0.298
0.252
0.075
0.098
0.120
0.024
0.248
0.090
0.000
0.267
0.143
0.111
0.049
0.038
0.768
0.847
0.500
0.354
0.287
0.327

0.025

8 12
8 12
8 12
7 12
7 12
7 12
8 12
9 12
7 12
9 12
9 12
9 12
4 10
4 10
4 10
9 12
8 12
4 10
4 10
4 10
4 10

show effective masses for the Pq state for amq ——0.010
and 0.025. Note that, unlike the S-wave states, we can
only fit out to distances t 10 since we lose the signal
in noise. The best range its are listed in Tables I—V and
VI—X.

Results from the quenched simulations are presented
here as follows: effective mass plots for the pseudoscalar,
vector, and axial-vector currents are shown in Figs. 3—5,
and our best range Gts are presented in Tables XI—XIII.

B. Cubic group representations

On the lattice, instead of the angular momentum
group, the cubic group is the symmetry group accord-
ing to which states form irreducible representations. The
"current" operators previously discussed have "orbital
cubic group" representation Aq, corresponding to "or-
bital angular momentum" representation I = 0. The
"spin cubic group" representations are Aq for the pseu-

TABLE VI. Best range fits to M( Pi)
using an axial-vector current.

for Gmq 0.025 TABLE VIII. Best range fits to M( Pi)
using the cubic group T~ state.

for amq 0.025

i j (~, + r., )/2
1 1 0 1320
2 1 0.1365
2 2 0.1410
3 1 0 1422
3 2 0.1467
3 3 0 1525
4 1 0.1442
4 2 0 1487
4 3 0 1545
4 4 0 1565
5 1 0 1452
5 2 0.1497
5 3 0.1555
5 4 0 1575
5 5 0 1585
6 1 0 1460
6 2 0.1505
6 3 0 1562
6 4 0 1583
6 5 0 1593
6 6 0 1600

aM( Pi)
1.695
1.543
1.430
1.337
1.223
1.000
1.317
1.145
0.911
0.816
1.275
1.099
0.861
0.762
0.782
1.236
1.061
0.822
0.720
0.772
0.797

Error
0.016
0.016
0.012
0.021
0.014
0.018
0.017
0.015
0.021
0.026
0.020
0.018
0.024
0.029
0.027
0.025
0.023
0.029
0.036
0.081
0.148

y /NDF
15.91/2
13.63/2
1.47/4

21.97/2
1.38/4
1.82/4

20.52/4
2.06/4
2.13/4
2.01/4
12.19/4
2.59/4
2.50/4
2.39/4
8.76/5
5.82/4
4.26/4
3.21/4
3.14/4
0.54/3
0.13/3

Conf. lvl
0.000
0.001
0.832
0.000
0.847
0.768
0.000
0.725
0.712
0.734
0.016
0.629
0.645
0.665
0.119
0.213
0.372
0.524
0.534
0.910
0.988

9 12
9 12
7 12
9 12
7 12
7 12
7 12
7 12
7 12
7 12
7 12
7 12
7 12
7 12
6 12
7 12
7 12
7 12
7 12
8 12
8 12

i j (r., + ~, )/2
1 1 0 1320
2 1 0 1365
2 2 0.1410
3 1 0 1422
3 2 0 1467
3 3 0 1525
4 1 0 1442
4 2 0 1487
4 3 0 1545
4 4 0 1565
5 1 0.1452
5 2 0.1497
5 3 0 1555
5 4 0 1575
5 5 0 1585
6 1 0 1460
6 2 0.1505
6 3 0.1562
6 4 0.1583
6 5 0.1593
6 6 0.1600

aM( Pi)
1.714
1.563
1.398
1.370
1.208
0.994
1.303
1.152
1.077
0.956
1.284
1.260
0.985
0.921
0.894
1.433
1.331
0.951
0.889
0.861
0.837

Error
0.028
0.031
0.031
0.038
0.039
0.050
0.046
0.054
0.073
0.041
0.067
0.063
0.020
0.023
0.027
0 ~ 112
0.113
0.025
0.029
0.035
0.044

y /NDF
0.82/3
1.60/3
1.69/3
3.28/3
3.36/3
2.51/3
4.18/3
3.99/3
4.36/4
2.41/2
4.29/3
6.21/4
7.10/5
8.47/5
9.67/5
5.90/4
5.95/4
10.12/5
12.36/5
14.33/5
14.27/5

Conf. lvl.
0.846
0.660
0.639
0.351
0.339
0.473
0.242
0.263
0.360
0.300
0.232
0.184
0.213
0.132
0.085
0.207
0.203
0.0?2
0.030
0.014
0.014

Cf

8 12
8 12
8 12
8 12
8 12
8 12
8 12
8 12
7 12
9 12
8 12
7 12
4 10
4 10
4 10
7 12
7 12
4 10
4 10
4 10
4 10
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TABLE IX.
using the cubic

i j (~ + r, )/
1 1 0 1320
2 1 0.1365
2 2 0.1410
3 1 0.1422
3 2 0.1467
3 3 0.1525
4 1 0.1442
4 2 0 1487
4 3 0 1545
4 4 0.1565
5 1 0 1452
5 2 0 1497
5 3 0.1555
5 4 0.1575
5 5 0 1585
6 1 0.1460
6 2 0 1505
6 3 0 1562
6 4 0 1583
6 5 0 1593
6 6 0 1600

fits to M( Po) for am, = 0.025
ate.

Best range
group Aq st

2 aM( Po)
1.708
1.550
1.375
1.338
1.154
0.876
1.242
1.057
0.776
0.715
1.186
1.051
1.168
0.935
0.853
1.138
1.005
0.925
0.856
0.824
0.806

x'/NoF
0.28/3
0.19/3
0.07/3
1.65/3
1.63/3
1.03/3
4.98/3
5.35/3
3.43/3
1.83/2
8.09/3
9.20/3
14.69/5
14.56/6
16.93/5
8.63/3
9.84/3
18.35/5
18.97/5
17.19/5
12.93/5

Conf. lvl.
0.964
0.979
0.996
0.649
0.654
0.794
0.173
0.148
0.330
0.401
0.044
0.027
0.012
0.024
0.005
0.035
0.020
0.003
0.002
0.004
0.024

Error
0.030
0.033
0.034
0.041
0.039
0.040
0.049
0.046
0.047
0.077
0.062
0.218
0.025
0.032
0.032
0.071
0.048
0.029
0.033
0.036
0.045

t, ty
8 12
8 12
8 12
8 12
8 12
8 12
8 12
8 12
8 12
9 12
8 12
8 12
10 16
9 16
4 10
8 12
8 12
4 10
4 10
4 10
4 10

TABLE X. Best range fits to M( Pi) for am~ = 0.025
using the cubic group Pq state.

doscalar and Ti for vector and axial vector currents.
We can also build the equivalent of "orbital angular

momentum" I = 1, i.e. , P wave, states on the lattice.
They are in the cubic group representation Ti and have
wave functions xf (r), y f(r), and zf (r) with f (r) a func-
tion depending only on the radius. In our case f (r) is
taken as a Gaussian. Equivalently, the wave functions
can be taken as (x + iy) f (r), (x —iy) f (r), and zf(r)
On a finite lattice, in order to satisfy periodic boundary
conditions in the spatial directions, we use sin(2irxI, /Ly)

1.5—H
HH I:IHHHHHEIHHHHHHHHH

2
1.0—X

0

X
XX xxxxxxxxxxxxxxx

0.5—B 0

0 WI /
/ I%

B

0 0 0 0 0 0 0 0 0 0 0 0 OOOO

B B
LI/ \5/ 'Li/ iI/

~ I I/ w

OOBOOOOOO
I/ wI/ Kl/ %I/ wI/

/IX /I% /lb /IW /I% /lhBBBBBOi

0 0
0

I I I I I I I I I I I I I I I I I

10 15 20

FIG. 3. EA'ective masses for the So state using
P = vPpsg for the quenched data at ~~ = K~ = 0 1300., 0.1450,
0.1520, 0.1540, 0.1550.

instead of xk in the wave functions.
This "orbital cubic group" representation can be com-

bined with the two diferent "spin cubic group" represen-
tations to get

Tg (3 A.i ——Ti,
T, (IT, = A, +T, +E+T,.

(6)
(7)

The first line corresponds to a continuum Pi state and
the second to continuum Po, Pi, and P2 states. The
lattice E and T2 states combine in the continuum limit
to become the P2 states.

In the numerical measurements we use one "orbital
P wave" (cubic-group Ti) source, the x + iy one. We
use all spin combinations at the source and sink and all
"orbital cubic group Ti" wave functions at the sink. With
this we can build seven of the nine possible correlation

i j (r., + K, )/2
1 1 0.1320
2 1 0.1365
2 2 0.1410
3 1 0 1422
3 2 0.1467
3 3 0.1525
4 1 0.1442
4 2 0.1487
4 3 0.1545
4 4 0 1565
5 1 0 1452
5 2 0 1497
5 3 0 1555
5 4 0 1575
5 5 0 1585
6 1 0.1460
6 2 0.1505
6 3 0 1562
6 4 0.1583
6 5 0.1593
6 6 0.1600

aM('Pi)
1.715
1.564
1.401
1.371
1.207
0.964
1.296
1.139
0.898
0.804
1.321
1.164
0.855
0.872
0.867
1.163
1.125
0.909
0.851
0.893
0.815

Error
0.025
0.027
0.026
0.029
0.029
0.031
0.034
0.036
0.043
0.052
0.021
0.019
0.051
0.037
0.025
0.049
0.024
0.044
0.052
0.121
0.039

/NoF
0.75/3
1.75/3
1.99/3
3.95/3
4.15/3
2.24/3
4.02/3
3.94/3
2.22/3
1.41/3

12.44/11
11.61/11

7'.31/7
12.22/9
15.33/5
5.19/7
9.36/5
3.48/3
3.51/3
3.68/2
13.27/5

Conf. lvl. t, t y

0 860 8 12
0 627 8 12
0 574 8 12
0 267 8 12
0 246 8 12
0.525 8 12
0 260 8 12
0 268 8 12
0 528 8 12
0 703 8 12
0.331 4 16
0 394 4 16
0.398 8 16
0.201 6 16
0 009 4 10
0 637 8 16
0 096 4 10
0.324 6 10
0.320 6 10
0 159 7 10
0.021 4 10

2.0 I I I I I I I I I I I I I I I I I I I
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FIG. 4. E8'ective masses for the Sq state using
V, = Qp, @ for the quenched data at r~ = r~ = 0.1300,0.1450,
0.1520, 0.1540, 0.1550.
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I I I I I I I I I I I I TABLE XII. Best range fits to M( Si) for the quenched
data using the vector current.

Qi
Oi

&m@Z CF
ALlJ "

()I:j—

o
0 5 10 15

t
20

FIG. 5. EfFective masses for the P~ state using
for the quenched data at r~ = r~ = 0.1300,

0.1450, 0.1520, 0.1540. The signal for the e = 0.1550 state
is noisy and not shown here.

functions of the P states. One Ti and one T2 state is
inaccessible with our single x + iy source. In addition
one can insert extra po's at either sink and/or source.
We implemented only the variant with po's at both source
and sink. However, the result turned out to be somewhat
noisier than without these po factors in the operators and
thus we will ignore them in the rest of the paper.

Again, we compare efFective mass fits and fits to a
range of points. In this case we have several operators
for each combination of spin and parity. Generally one
or two operators provide a superior signal compared to
the other ones.

We will restrict our presentation of tabular masses
to the following states: for the P2 state we use one
of the two E states, which we will refer to as E:
~(O++ + 0 ). Here the first subscript refers to the
"spin" content with + standing for p~ and 0 for p3,

i j (r, + +i)/2
0 0 0.1300
1 0 0.1375
1 1 0.1450
2 0 0.1410
2 1 0.1485
2 2 0.1520
3 0 0 1420

0.1495
3 2 01530

0.1540
4 0 0.1425
4 1 0.1500
4 2 0 1535
4 3 0 1545
4 4 0.1550

aM( Si)
1.425
1.137
0.836
1.003
0.?00
0.551
0.971
0.660
0.5O5

0.460
0.953
0.639
0.483
0.435
0.406

Error
0.002
0.002
0.002
0.003
0.003
0.004
0.003
0.004
0.005
0.007
0.004
0.004
0.007
0.009
0.009

y /NDF
3.76/6
7.47/9
6.02/8
6.19/9
4.78/7
4.41/7
6.95/9
2.94/7
3.85/7
4.68/8
3.50/9
3.43/8
4.82/8
4.47/8
7.96/10

0 1

TABLE XIII. Best range fits to M( Pi)
data using the axial-vector current.

i j (r, + ri)/2 aM( Pi) Error y /NoF
0 0 0.1300 1.650 0.019 9.42/13
1 0 0.1375 1.376 G.025 6.80/13
1 1 0.1450 1.093 0.038 8.27/13
2 0 0.1410 1.237 0.035 6.63/13
2 1 0.1485 1.072 0.024 13.49/16
2 2 0.1520 0.975 0.037 6.43/10
3 0 0.1420 1.317 0.021 13.91/16
3 1 0.1495 1.065 0.029 14.36/14
3 2 0.1530 0.972 0.046 6.59/10
3 3 0.1540 0.967 0.057 8.39/10
4 G 0.1425 1.315 0.023 11.37/16
4 1 0.1500 1.059 0.032 7.83/9
4 2 0.1535 0.986 0.052 8.31/10
4 3 0.1545 0.974 0.062 10.85/10
4 4 0.1550 0.956 0.070 4.35/6

Conf. lvl.
0.439
0.381
0.421
0.518
0.444
0.492
0.434
0.709
0.571
0.585
0.835
0.754
0.568
0.614
0.437

tj
12 17
14 22
15 22
14 22
11 17
11 17
11 19
11 17
12 18
12 19
11 19
11 18
12 19
12 19
12 21

Conf. lvl.
0.583
0.815
0.689
0.828
0.489
0.599
0.456
0.278
0.582
0.396
0.657
0.348
0.404
0.210
0.360

ty
10 22
10 22
10 22
10 22
7 22
7 16
7 22
7 20
7 16
7 16
7 22
7 15
7 16
7 16
7 12

for the quenched

fits to M('Sp)
current.

y /NDF
0.88/5
1.52/6
2.06/6
0.58/6
5.34/8
4.30/8
1.36/6

7.73/10
10.57/14
11.31/14
2.55/6

8.23/12
8.61/14
8.96/14
10.68/15

Error
0.002
0.002
0.002
0.003
0.002
0.002
0.003
0.002
0.002
0.003
0.004
0.002
0.002
0.002
0.003

TABLE XI. Best range
data using the pseudoscalar

i j (K,, + r., )/2 aM('So)
0 0 0 1300 1 411
1 0 0.1375 1.119
1 1 0.1450 0.804
2 0 0 1410 0 978
2 1 0.1485 0.650
2 2 01520 0479
3 0 0 1420 0937
3 1 0.1495 0.607
3 2 0.1530 0.421
3 3 0.1540 0.364
4 0 0 1425 0 917
4 1 0.1500 0.586
4 2 0.1535 0.393
4 3 0 1545 0 331
4 4 01550 0298

Conf. lvl.
0.829
0.822
0.724
0.965
0.5O1
0.636
0.852
0.460
0.566
0.503
0.637
0.606
0.736
0.707
0.638

ty
17 21
17 22
17 22
17 22
15 22
10 17
17 22
12 21
9 22
9 22
17 22
10 21
9 22
9 22
8 22

for the quenched

0.0 +
2

)(

0.13 0.14 0.15 0.16

FIG. 6. Mass difFerence between two difFerent representa-
tions of the cubic group corresponding to the P2 meson, from
the am, q

——0.010 data set as a function of the average quark
hopping parameter at a = (e~ + r.~)/2
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FIG. 7. P2- P~ meson mass difference from the
amq ——0.010 data set as a function of the average quark
hopping paraineter at ~ = (K~ + e~)/2.

while the second subscript refers to the orbital angu-
lar momentum content with + standing for x + iy and
0 for z, up to normalization factors. For Pq we use
the Ti~ state, ~(Op+ —O~p), for Pp the Ai state,

~(O+ + 0 ~ + Opp), and for Pi we use the cubic

group Pq state, 05+, where the 5 refers, of course, to
Note, again, that all the states used couple to the

orbital x+iy source. The lattice masses for best Gts for
each difFerent spin-parity combination are listed in Ta-
bles II—V for the amq ——0.010 data and in Tables VII—X
for the amq ——0.025 data.

We found that the different representations of the cu-
bic group corresponding to the same angular momen-
tum states are degenerate: the lattice does not break
rotational symmetry so badly that we can observe it
in spectroscopy. Figure 6 illustrates this point: it is a

I I I I I I I I I I I I I—0 1

0.13 0.14 0.15 0.16

FIG. 9. P~- P~ meson mass difference from the
amq ——0.010 data set as a function of the average quark
hopping parameter at ~ = (~~ + ~~)/2.

correlated fit to the mass difI'erence of the E and T2

[~(Op+ +0+p)] states, both of which correspond to sP2
continuum states.

All lattice data are correlated, and so to look for fine
structure by simply subtracting the two masses overes-
timate uncertainties. Instead, we perform a correlated
fit of the two propagators to two masses and extract
an uncertainty from the error matrix. We present pic-
tures of these difFerences in Figs. 7—9 (for the P2 — Pi,
Pi — Pp, and Pi — Pi mass difFerences, respectively).

For the heaviest quark masses we are unable to see any
fine structure splitting within our statistical uncertainty.

IV. THE STRONG COUPLING CONSTANT

The lattice allows a determination of the strong cou-
pling constant through the measurement of two physi-
cal and nonperturbative quantities. The mass splitting
between two states, computed on the lattice, gives a
length scale a, the lattice spacing. The plaquette (or
any other short distance quantity) gives a coupling con-
stant at a momentum scale inversely proportional to the
lattice spacing. Our calculation follows earlier ones of
Refs. [3,4].

The method uses a definition of the strong coupling
constant in terms of a physical observable [15]: that is,
we define nv(q) through the potential

), )(

)(

-Di I

0.13 0. 14 0.15 0.16

Cy4vrnv (q)V q
g

Here Cy = 4/3 is a group theory factor, and q is the
gluon momentum. With this definition, the perturbative
expression for the logarithm of the trace of the plaquette
is [12,15]

1 4'—ln —Tr Upi'~ = —nv(3. 41/a)

FIG. 8. P~- Po meson mass difference from the
cmq ——0.010 data set as a function of the average quark
hopping parameter at m = (r~ + r~)/2

x 1 —(1.19 + 0.07ng) nv + O(nv)

(9)
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Once the lattice spacing and the coupling constant are
fixed one may convert the coupling constant to other
schemes and run it to other desired scales.

Of course, this calculation is incomplete. It depends on
the empirical observation that the coupling constant de-
Bned through the potential provides a good perturbative
expansion parameter from fairly large lattice spacing on
down. A completely nonperturbative alternative is the
calculation of the strong coupling constant by Luscher,
Weisz, WolfF, and collaborators [16]. Here the coupling
constant is defined via the response of a lattice system to
an external color electric Beld, and a wide range of physi-
cal scales can be covered by a series of steps each of which
involves only a small change of physical scale. From a
phenomenological point of view the two methods pro-
duce equivalent results for nMs(Mz) from quenched sim-
ulations, where MS denotes the modiBed minimal sub-
traction scheme. This program has not been carried out
for full @CD yet [17].

A. Fixing the lattice spacing

To set the scale we use the mass difference between
P-wave states (L = 1) and S-wave states (L = 0) in the
charmonium sector. We choose this physical quantity,
rather than the mass of the p meson for example, for two
reasons. First, the S —P splitting is fairly insensitive to
the quark masses. Second, in the laboratory the widths
of the charmonium states are much narrower than those
of the light mesons. Therefore, it is realistic to think
that the S —P mass splitting is less sensitive to lattice
artifacts than are light hadron masses.

Using currents to couple to the pseudoscalar, vector,
and axial vector mesons, we can compute the mass dif-
ference

DM(sPi —S)—:M( Pi) ——M( So) + 3M( Si) .
4

(10)

We perform a six-parameter correlated Bt to the three
propagators in order to calculate this mass difFerence [18]
using a Bt function for each propagator of

y(t) = x (e-"+e-'~~ '~)

Since we are going to Bx our measured lattice splitting
to the mass splitting in charmonium, we need to have a
rough idea of K,h, . In previous work on these conBgu-
rations [8], the lattice spacing was determined by fixing
the p to its physical value, yielding 1/a = 2140 and 2000
MeV for sea quark masses 0.010 and 0.025, respectively.
To Bnd the approximate value for ~,g, we use these lat-
tice spacings to find the approximate v for which the J/@
mass is at its physical value, i.e. , M~a 3.1/2. 0 = 1.55.
Also, since the charm quark mass is of the same order
as the inverse lattice spacing (m g a ), the dispersion
relation for Wilson fermions is distorted:

k2
E(k) =m, + + .

,
2m2

with mi g m2. To account for this we must shift our
lattice mass [19,20] p, using

Mga = p —2mga + 2m2a, (13)

where, with K = v/(8K„;),.),

('1 —6r. )
m, a = in(

2K )' (14)

and

m2Q
exp(mia) sinh(mia)

1 + sinh(mia)

K„;q is estimated from [8] to be 0.161 for both values of
sea quarks, and 0.157 for the quenched data. This gives
us the estimate that for the dynamical fermion data set
v.,h~,~ is between 0.1320 and 0.1410, the values of our two
heaviest fIavors of valence Wilson quarks, and just below
0.1300 for the quenched data set. Of course, this was
done with a rough guess for the lattice spacing, which
is indeed the quantity we are attempting to calculate.
However, since we argue that the S —P splittings are
insensitive to the quark mass in the heavy systems, we
need only a rough idea of the value of K,h,

Therefore, for a given pair of K values, we Bt the cor-
relators using pseudoscalar, vector, and axial vector cur-
reiits to (11). When calculating the mass difference we
Bt the three propagators together in order to compen-
sate for correlations due to using the same configurations
for all three quantities. The results for the quarkonium
(rz ——r~) pairs are listed in Table XIV for dynamical
staggered fermion mass = 0.010, Table XV for fermion
mass = 0.025, and in Table XVII for the quenched ap-
proximation.

Since we cannot know a priori the value of K,h, , and
since we assume LM to be insensitive to K for heavy
mesons, we average AM for the two heaviest quarko-
nium pairs and set them equal to the physical value
My —(M@ + 3M„)/4 = 442 MeV [21] to find the lattice
spacing. Again, one should refer to Tables XIV, XV, and
XVII for results.

Instead of using an interpolating Beld to couple to the
Pi state, we can couple to the full P-wave system by

using the corresponding lattice multiplet. Thus, we can
also compute the mass differences

AM(P —S)—:—5M( P2) +3M( Pi) + M( Po)12

+3M( Pi) —— M( Ss) + 3M( Si) .
4

(17)

To do this, we take the best operator corresponding to
each J value and in the case of (16) perform a three-
propagator correlated fit, or in the case of (17) a jackknife

~M('P, —S) =—M('P, ) ——M('S, ) + 3M('S,),4

(16)
and the true "spin-averaged S —P mass splitting"
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TABLE XIV. Mass splittings and inverse lattice spacings for the amq: 0 010 configurations.

Mass difference
Using A

AM (MeV) a&M a (MeV)

a&M( Pi —S)

Using cubic group

a&M( Pi —S)

aAM('Pi —S)

a&M(P —S)
Overall estimate of a

442

442

458

457

0.1320
0.1410

0.1320
0.1410
0.1320
0.1410
0.1320
0.1410

0.238(9)
0.248(9)

1810(50)

1800(100)

1900(90)

1900(30)

0.235(16)
0.248(20)
0.234(16)
0.250(18)
0.234(6)
0.247(7)

1900 + 50 (stat) +100 (syst) MeV

fit. So far this has been done for the dynamical fermion
simulations only. The lattice mass di8'erences are pre-
sented in Tables XIV and XV.

B. Lattice spacings

Tables XIV and XV give a summary of the inverse
lattice spacings obtained from the S —P mass split-
tings. Each mass splitting gives a lattice spacing, thus
we must decide which value to use to set the scale. For
the amq = 0.010 data set, we note two things: the lat-
tice values for the P —S difFerence are the same, which
implies that the Pq and Pq states are degenerate us-
ing Wilson quarks. However, this is not the case in the
physical world; i.e., using the Pz state to fix the scale
rather than the Pq state changes our determination of
the lattice spacing. Thus we must assign a value to the
systematic uncertainty to a of about 100 MeV which
we add in quadrature to a statistical error of about 50
MeV to Gnd

—1a 1900 + 110 MeV for amq ——0.010.

Similarly, we quote

a = 1660 + 150 MeV for amq: 0 025.

One puzzling feature of the calculation is the very dif-
ferent lattice spacings found here using heavy Wilson
quarks and the lattice spacing of the nonrelativistic @CD
(NRgCD) group [4]. The numbers are shown in Table

XVI, along with all other lattice spacings extracted &om
this data set of which we are aware: in the table S and W
label staggered and Wilson valence quarks, the "force" is
from the string tension [22], and the zero quark mass line
is from an extrapolation when it is available.

Presently we have calculated only the Pi —S mass dif-
ference on our quenched configurations (see Table XVII).
The lattice spacing given by that measurement is

a = 1800 + 180 MeV for amq ——oo. (20)

C. The lattice calculation of cx,

The expectation value of the plaquette determines the
coupling on the lattice at momentum scale 3.41/a. How-
ever, the fact that we do not know the coefBcient in front
of the O(o.s&) is a source of systematic uncertainty. Thus
we invert (9) neglecting higher order terms and estimate
our systematic error to be (1.19+0 07ng) n&.

Using the procedure outlined above, we find that, for
our dynamical fermion simulations where (Tr U~i ~)/3 =
0.5650 and 0.5644 for amq ——0.010 and 0.025, respec-
tively,

We should point out that for this mass difference, it was
necessary to Gt the axial-vector propagator to a different
range than the pseudoscalar and vector propagators. The
latter two take a longer time to "saturate" the signal, and
the axial-vector propagator becomes noise dominated af-
ter some time. The ranges used are those indicated in
Tables XI—XIII.

TABLE XV. Mass splittings and inverse lattice spacings for the amq = 0.025 configurations.

Mass difference
Using @p,ps&

AM (MeV) a ' (MeV)

a&M( Pi —S)

Using cubic group

a&M( Pi —S)

aAM('Pi —S)

ab.M(P —S)
Overall estimate of a

442

442

458

457

0.1320
0.1410

0.1320
0.1410
0.1320
0.1410
0.1320
0.1410

0.257(10)
0.274(ll) 1660(40)

1580(120)

1720(100)

1660(110)

0.256(21)
0.302(36)
0.249(17)
0.284(25)
0.258(26)
0.293(26)

1660 + 110 (stat) +100 (syst) MeV
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TABLE XVI. Inverse lattice spacings (in MeV) using other
quantities.

Gmq

0.025
0.010
0.0

"Force" m~(W) m, „(W) m~(S) m~(S) NRQCD
1935 2000 1685
2055 2140 1800 — — 2400
2135 2230 1875 1800 1660

(nq=2)
)

0.179 + 0.010 for am~ = 0 01.0,
0.179 + 0.010 for amq ——0.025,

(21)

cr(q) = rri(q) + o.ii(q) + O(~ ), (22)

where

~(qo)
ni(q) =

1+ ~(qo)Po&'
(23)

where the errors quoted are systematic. We do not quote
an uncertainty for the trace of the plaquette because it
is much smaller than our other errors.

Since we are using the mass splitting in the charmo-
nium sector, three flavors of sea quarks contribute to the
theory. There are two methods we know of to convert
o.~ from nf ——2 to nf ——3. In the erst we run o.~ down
to some low momentum scale ( 500 —1000 MeV) with
two flavors using the two-loop P function,

We need only one value for o.&, so for the time(n f —2)

being we shall use the lattice spacing from the amq ——

0.010 staggered fermion data. Thus we have the strong
coupling measured with either zero or two flavors of sea
quar ks:

(6.14 GeV) = 0.152 + 0.004 6 0.004,

(6.48 GeV) = 0.179 + P.PP4 y P.PIP, (26)

where the erst errors quoted are propagated from the un-
certainty in the lattice spacing, and the second errors are
our estimations of the systematic uncertainties resulting
from the perturbative calculations. We choose to run the
zero flavor coupling to 6.48 GeV, giving

0.150+ 0.006 for nf = 0,
0.179 + 0.011 for nf ——2. (27)

Here the statistical and systematic uncertainties have
been combined in quadrature. If we had chosen to per-
form the extrapolation to three flavors at 6.14 GeV in-
stead, there would be no change in our determination of
o.~ at any scale.

We may linearly extrapolate either I/n or n from
zero to three flavors. (In first order I/n de-
pends linearly on nf .) Extrapolating in I/n gives

nv (6.48 GeV) = 0.198 + 0.020. However, linear
extrapolation in o. has smaller errors,

o.ii(q) = —[ni(q)j b, lnI
&~(qo) 'l

(rri q

with the definitions

o.v
~ (6.48 GeV) = 0.194 + 0.017,

and we will use it below.

(28)

1 (q'l
»g

I

—
2 I Po = 11 — nf, —

47l ( q( j 3
38 Pi

Pi ——102 — nf, and bi =—
3 4vrPo

(25)

However, this method is inadequate because we do not
know the scale of the strange quark threshold, and be-
cause our perturbative expression (22) fails as nv be-
comes large.

The second method is to use our quenched data to give
us the strong coupling for nf = 0. Prom (Tr Up& ~)/3 =
0.59367 we find that nv ~ (3.41/a) = 0.152(4). Since
the inverse coupling is nearly linear in nf, we can extrap-
olate to nf ——3. However, since the lattice spacings are
different for the dynamical fermion simulations and the
quenched simulation, we must run one of the couplings to
the scale at which the other is known using the two-loop
P function (22).

D. Lattice prescription to minimal subtraction
schemes

In order to compare our result with other determina-
tions of the strong coupling constant, we convert from
our lattice definition of nv (28) to the coupling defined
in the modifie minimal subtraction scheme o.Ms. The
two couplings are related perturbatively by

~Ms(q) = crv(qe ) I
1 + + O(crv)

I 2Clv 2

vr
(29)

Inserting (28) into the above expression gives

n (2.82 GeV) = 0.218 + 0.021 + 0.007, (3o)

where the erst error is propagated from the error i.n n~,
and the second is a systematic error of o.& assumed from

TABLE XVII. Mass splittings and inverse lattice spacings for the quenched (am~ = oo) config-
urations.

Mass di8'erence

a&M( Pi —S)

AM (MeV)

442

Overall estimate of a

0.1300
0.1450

a ' (MeV)

1800(150)

a&M
0.23(3)
0.26(3)

1800 + 150 (stat) +100 (syst) MeV
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the perturbative expression (29).
Once we have converted to the MS subtraction scheme,

we can include the three-loop term in the P function (22),
(see [23]):

(31)

where

1 f 5033 325
p2 —— —

~

2857 — nf + nf
2 9 27 )

I I I I

0.10
n Ms(Mz)

I I I

!This work
KEK meth. 1

-KEK meth. 2
NRQCD
Fprmilab
Z ev. shape

(resummed)
Z ev. sPape

o cx, )
Z —) adrons
pp —) %+jets
pq —)bbX
e e, shapes
e e, phd
4', T decay

H, LEP

0.05 0.15

(32)

n ~ (2.82 GeV) = 0.218 + 0.022, (33)

we run down to the charm quark mass with three flavors,
and change to four. Then we can run to the bottom quark
mass and change from four flavors to five. Finally, we can
run the coupling up to the Z mass with five Havors. The
results are

n '
(q = 1.5 GeV m, ) = 0.287(38),

n ~ '
(q = 4.5 GeV m&) = 0.195(17),

n (q = 91.2 GeV = Mz) = 0.111(6).

(34)

(35)

(36)

We now compare our number to other lattice determi-
nations of the strong coupling constant and to conven-
tional perturbative results. It has become conventional to
make these comparisons at the Z pole. Figure 10 shows
a compilation of recent results, from Ref. [24].

It is interesting that, although the lattice spacings
using Wilson quarks are signi6. cantly lower than those
found on the same configurations using nonrelativistic
quarks, the determinations of the strong coupling are in
good agreement [4].

The world average [25] for the strong coupling at the
Z boson mass is nMs(Mz) = 0.117(5). Our number (36)
is in agreement with this average.

Running to the Z mass somewhat artificially com-
presses all the uncertainties of a low-Q calculation (the
g = 0 fixed point is at infinite Q), and it might be more
revealing to compare the lattice prediction to a conven-
tional perturbative result at a low energy scale. The
CLEO Collaboration [26] gives the strong coupling at
the w lepton mass as nMs(M ) = 0.309(24). By running
the MS coupling with nf ——3 down to this scale we Gnd
a lattice prediction of

Thus our error from running the coupling with this P
function should be of order o. , which is always smaller
than the present errors.

Rodrigo and Santamaria [23] show that the heavy
quark thresholds in MS prescription are at the mass of
the quark. When we cross the threshold, we increment
nf by one. Starting with

FIG. 10. Recent measurements of the strong coupling con-
stant at the Z mass. The square marks our result. Diamonds
represent other lattice calculations, and crosses are conven-
tional perturbative results.

n ~ (M = 1.777 GeV) = 0.265(32), (37)

which is in loose agreement with CLEO.
Following the same procedure using the data with sea

quarks of mass amq ——0.025 rather than 0.010 gives the
numbers

n("' (M ) = 0.245(29), (38)

(Mz) = 0 107(5).

Since the data seem to be less noisy for the amq
0.010 data than the amq ——0.025 data, we will use the
former in quoting our final results, (36) and (37).

(39)

V. CHARM SPECTROSCOPY

TABLE XVIII. Lattice and experimental determina-
tions of the masses of the charmed heavy-light mesons
(am = 0.010).

Meson
Do
D'
Dg

Lattice (MeV)
1700(100)
1750(100)
2250(130)

Expt. (MeV)
1864
2010
2423

Although already there is evidence that Wilson quarks
do not calculate the hyperfine structure correctly and it is
known that heavy Wilson fermions have an anomalously
small lattice artifact magnetic moment [27], we attempt
to calculate the masses of the L = 0 and L = 1 D-meson
states.

In Sec. IV A we estimated the hopping parameter of the
charm quark v,h,~, in order to calculate the S—P mass
splitting of charmonium. We could only guess roughly at

since we did not know the lattice spacing. How-
ever, the S—P splitting is very weakly dependent on the
quark mass, so we could determine it without knowing

. On the other hand, while the mass splitting is in-
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Meson
Do
D*
Dg

Lattice (MeV)
1690(110)
1730(110)
2090(140)

Expt. (MeV)
1864
2010
2423

TABLE XIX. Lattice and experimental determinations of
the masses of the charmed heavy-light mesons (am~ = 0.025).

Mass difFerence
M (D*) —M(D')
M(D, ) —[M(D') + 3M(D")]i4

Lattice (MeV) Expt. (MeV)
50(3) 146

560(30) 450

TABLE XXI. Lat tice and experimental determinations
of the mass difFerences of the charmed heavy-light mesons
(am, = 0.010).

M~a = p —mrna + m2a, (40)

with the identities (14) and (15). The results are summa-
rized in Tables XVIII—XX. Our results are consistently
lower than those from experiment [21,28]. Using the cu-

dependent of quark mass, the masses of the charm states
are not. Thus having found the lattice spacing, we can
End x,h, accurately and compute the mass spectrum
of the charmed meson system.

As we mentioned in Sec. IV A we must shift the lattice
meson mass using Eq. (13). In what follows we perform
a jackknife analysis, dividing our 100 configurations into
10 sets of 90 sequential lattices for the dynamical fermion
simulations and dividing our 79 quenched lattices into 7
sets of 68. We find the best Gts to the vector meson at our
three lowest values of the hopping parameter and correct
the heavy quark mass using Eqs. (13)—(15). Then we in-
terpolate linearly between these lattice masses to And the
hopping parameter for which aMy = a(3.1 GeV). The
error in the lattice spacing gives us a range for v,h,

For the amq: 0 010 dynamical fermion data set, we
find v,h~, ~ ——0.134 + 0.002, while for amq: 0 025 we
find K,h, ——0.129 + 0.003, and for the quenched data
set r,h, ——0.128 + 0.003.

We can compute the masses of the D mesons by look-
ing at our heavy-light meson states, extrapolating the
light quark mass to zero, i.e., Kilght M Kzzlp, and in-
terpolating the heavy quark mass to the charm mass,
Khe~~y ~ v,h~,~. For the n'f ——2 data we divide our
six flavors of valence quarks into heavy and light as fol-
lows: rg, a~~ E (rq, r2, K3) —(0.1320, 0.1410, 0.1525)
and rhggt F (K4, Ks, Ks) = (0.1565, 0.1585, 0.1600).
The quenched data set has two heavy K's and three
light ones: rh, ~ E (ro, Kq) = (0.1300, 0.1450) and
K]jggf 'C (K2) K3) K4) —(0.1520, 0.1540, 0.1550). Us-
ing the jackknife procedure mentioned above, for each

y separately, we use the best fit ranges to the three
mesons with diferent light quarks and extrapolate to
+]lght —Kzzlp ~ Having done this for the values of r hery
we can interpolate to rh y K

We must shift the meson mass as with the J/g, but
since the D mesons have only one heavy quark we replace
Eq. (13) by

M(D*) —M(D ) (41)

M(Di) ——M(D ) + 3M(D*) (42)

for the amq: 0 010 dynamical fermion and the quenched
data sets. The other dynamical fermion data set yielded
consistent results, but with much larger errors. See Ta-
bles XXI and XXII for results.

VI. CONCLUSIONS

This simulation had a number of inadequacies. First,
our P-wave data are much noisier than S-wave spec-
troscopy. Lattice simulations with light fermions need
better interpolating fields for P-wave states. It is much
easier to explore large classes of trial wave functions and
to find optimal ones when one has one or more heavy
or static quarks (cf. Refs. [29] and [30]), and so heavy
Wilson simulations are presently just not competitive
with simulations with one static or nonrelativistic quark
from the point of view of statistical uncertainties. Sec-
ond, heavy Wilson fermions exhibit known lattice ar-
tifacts which should be corrected in future simulations
through the use of improved actions. NRQCD remains
the method of choice for heavy quark systems. However,
the large scaling violations between relativistic fermion
simulations and NRQCD need to be understood. Nev-
ertheless, it is possible to make a determination of the
strong coupling constant with an uncertainty compara-
ble with other recent measurements, and which does not
have the associated uncertainty induced. by the absence
of sea quarks.

The final result for the strong coupling constant
from this work is n (Mz) = O. 111(6), or

ni",'- '(M. ) = 0.265(32).

bic group representations we found complete degeneracy
among the P-wave states, in disagreement with experi-
ment.

We also calculate the mass differences

Meson
Do

Di

Lattice (MeV)
1670(140)
1740(140)
2050(170)

Expt. (MeV)
1864
2010
2423

TABLE XX. Lattice and experimental determinations of
the masses of the charmed heavy-light mesons (am~ = oo).

Mass difFerence
M(D ) —M(D )
M(Dg) —[M(D ) + 3M(D")]/4

Lattice (MeV) Expt. (MeV)
as(a) 146

670(60) 450

TABLE XXII. Lattice and experimental determinations
of the mass difFerences of the charmed heavy-light mesons
(am, = oo).
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