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Effective action for finite temperature lattice gauge theories with dynamical fermions
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Dynamical fermions induce via the fermion determinant a gauge-invariant efFective action. In
principle, this e8'ective action can be added to the usual gauge action in simulations, reproducing
the effects of closed fermion loops. Using lattice perturbation theory at finite temperature, we
compute for staggered fermions the one-loop fermionic corrections to the spatial and temporal pla-
quette couplings as well as the leading Z~ symmetry-breaking coupling. Hasenfratz and DeGrand
have shown that P for dynamical staggered fermions can be accurately estimated by the formula

P, = P~"" —AP& where AP& is the shift induced by the fermions at zero temperature. Numeri-
cal and analytical results indicate that the finite temperature corrections to the zero-temperature
calculation of Hasenfratz and DeGrand are small for small values of m = 1/2m', but become signif-
icant for intermediate values of v. The efFect of these finite temperature corrections is to ruin the
agreement of the Hasenfratz-DeGrand calculation with Monte Carlo data. We argue, however, that
the finite temperature corrections are suppressed nonperturbatively at low temperatures, resolving
this apparent disagreement. The Z~ symmetry-breaking coupling is small; we argue that it changes
the order of the transition while having little effect on the critical value of P.

PACS number(s): 12.38.Gc, 11.10.Wx, 12.38.Mh

I. INTRODUCTION is given by

It has been known for some time that the efFects of
heavy dynamical fermions can be included in Monte
Carlo simulations by a hopping parameter expansion of
the fermion determinant. This is reminiscent of the Euler-
Heisenberg Lagrangian of perturbative @ED, in which
the eH'ects of electron loops are included in a gauge-
invariant effective Lagrangian. Recently Hasen&atz and
DeGrand [1,2] have performed a zero-temperature calcu-
lation of the shift in the lattice gauge coupling constant P,
defined as P = 2N, /g, induced by staggered dynamical
fermions and applied the result to the finite temperature
phase transition in @CD. Their result for the shift in the
critical coupling, in the form P, = Pi'""—AP~, was found
to hold rather well down to small values of the fermion
mass. It is convenient to work with a hopping parame-
ter ~ defined by v = 1/2m~, where m~ is the ferinion
mass. As shown in Fig. 1, the Hasen&atz-Decrand re-
sults for Nq ——4 are in excellent agreement out to at
least K = 2, and in reasonable agreement at e = 5; this
is particularly surprising since AP~ is calculated using
lattice perturbation theory at zero temperature. In or-
der to understand the efFects of finite temperature, we
have calculated the one-loop fermionic corrections to the
spatial and temporal plaquette couplings, as well as the
leading Z~ symmetry-breaking coupling.

S,tr = —g ) Tr, A„(p)A„(p)
PO

)& [Dlo) (p) + D(i) (p) D(2)]

where
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(2.1)

II. RENORMALIZATION OF P AT FINITE
TEMPERATURE

A. Perturbation theory for AP

The O(Az) term in the gauge field lattice action includ-
ing the one-loop finite temperature fermionic correction

2 3 4

FIG. 1. Predicted values (circles) of AP/fermion at zero
temperature versus m compared with finite temperature sim-
ulation results (squares).
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q,p

S '(k) R(j„/2+ k /2) Q(j„/2+ k„/2)
FIG. 3. One-loop diagrams contributing to the fermionic

renormalization of AP.

FIG. 2. Lattice Feynman rules to O(A ). The q vertex is
not present in the continuum limit.
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second diagram, corresponding to D( ), involves B and
S only and survives in the continuum limit; note that B is
the lattice analogue of the continuum gluon vertex. The
third diagram, corresponding to D( ), is a lattice tadpole
diagram, and involves the vertex function Q, which is a
feature only of the lattice theory. At zero temperature,
this tadpole contribution is cancelled by D(i) (0) after in-
tegration by parts [3]. Finite temperature enters into the
calculation only through the replacement of the integra-
tion over the k0 variable appropriate for zero temperature
by the sum over Matsubara frequencies

xR k„+ —" S-' k+z (2.3) 2"n
0 —

T )

where n is integer valued and T is the temperature.

(2.8)

13„s„=—ks ) f Trs(q(ks)8 '(k)) (2.4)
0

with the vertex functions given by

B(k„)= ip„cos(k„) (2.5)

and

q(k„) = ip„sin(k„)— (2 6)

1
S(k) = —+ip„sin(k„).

2K
(2.7)

with no sum over p. The inverse ferrnion propagator is

sin J—D(2) + —D(x) (2.9)

still holds at finite temperature, even though the four-
dimensional hypercubic symmetry is broken. To show
this, we first note the two identities

S(k + p) —S(k) = 2 sin (
—")B (k„+ —") (2.10)

and

B. Ward identity at Bnite temperature

At finite temperature, the D(2) term in Eq. (2.1) is
necessary in order to show that the lattice form of the
Ward identity,

This formula is a straightforward consequence of the lat-
tice Feynman rules, which are given in Fig. 2. The di-
agrams contributing to the fermionic renormalization of
b,P are shown in Fig. 3. The first diagram, correspond-
ing to D( ), is the &ee lattice gluon propagator. The

I

R k + + —B k ——" =2sin

Use of the first identity gives

(2.11)

D() p D()

+ B k„+ —" S k„+p„—B k„+ —" S k„ (2.12)

and after a simple shift of variables, use of the second
identity yields the desired cancellation.

C. Finite temperature decomposition of the
propagators

At finite temperature there are two independent sym-
metric tensors of order p which are four-dimensionally

I

transverse [4]. In what follows, all expressions will be in
the thermal rest kame. The first of the corresponding
lattice tensors is specified by

(2.13)

(2.14)
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and the second is 2"d Image

(2.i5) 2N,

where

The lattice quantities p are defined by

pp =2 sin

(2.16)

(2.17)

N, —

Zero Temperature

I" Image

(2.is)

(2.19)

0

FIG. 5. Typical diagrams from the expansion of b,P in im-

ages.

The existence of these two independent tensors leads
to separate renormalizations of the spatial and temporal
gauge couplings at finite temperature. The first tensor
P~~„~(p) is associated with the magnetic, or spatial, part
of the action, while the second tensor P„(p) —P„„(p)
is associated with the electric, or temporal, part of the
action.

We find that

where

and

4(k; p„v) = 32B (k) cos (k„)cos (k )
—4096B (k) sin (k„)cos (k„)
x sin (k„)cos (k„) (2.22)

1 d3k
bP, = —N, ) 4(k;1, 2)

2m' s
0

(2.20) B(k) = —+ 4 ) sin (k ). (2.23)

1 d k
APg —— N, ) — 4(k; 0, 1),2' s

0

(2.2i)

As the temperature is taken to zero, the two expres-
sions smoothly approach each other to give the zero-
temperature result.

D. Numerical results for AP
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The integrals (2.20) and (2.21) were evaluated numer-
ically by calculating mode sums for large values of N,
and various values of Nt. Figure 4 compares b,P/fermion
(spatial and temporal) versus rc for Nq ——4 and Nq ——6
with the zero-temperature result of Hasen&atz and De-
Grand [1]. The fxxnte temperature values approach the
zero-temperature result from below as a consequence of
the antiperiodic boundary conditions; as Nq increases,
the sum includes more terms in the region near p = 0,
which dominates for small m~. As might be expected,
the temporal shift in P is more sensitive to the effect of
finite temperature than the spatial shift. For small val-
ues of e, corresponding to large values of the fermion
mass, the e8'ects of finite temperature are small. This
is easily understood, since ~ is much smaller than 1'.
However, for intermediate values of K, finite tempera-
ture corrections ruin the excellent agreement between the
zero-temperature calculation and the Monte Carlo results
discussed in Sec. I.

OO
O E. Image expansion

FIG. 4. Spatial and temporal values of AP/fermion versus
rc, for N~ ——4, 6, and oo.

The connection between the zero and finite tempera-
ture result can be understood more physically by trans-
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forming the sum over Matsubara &equencies into a sum
over images using the Poisson summation formula for an-
tiperiodic boundary conditions,

).N +(») =).(—1)
2

+(»)e '"', (2.24)
t 2'

po n

so that, for example, the shift in the spatial coupling is
given by

d4A:
bP, = N — 4(k;1, 2)

d4I
2N, )— (—1)" 4(k; 1, 2) cos(nNtko)2' 4

n=1

III. Z~ SYMMETRY'-BREAKING IN THE
EFFECTIVE ACTION

There is another set of terms induced by the fermion
determinant only at finite temperature. As is well known,
the Z~ symmetry of the pure gauge theory is explicitly
broken by dynamical fermions. To lowest order in the
hopping parameter expansion, a path of Nq hops around
the lattice in the temporal direction produces an effective
coupling to the Polyakov loop, explicitly breaking the
Z~ symmetry. Evaluating the fermion determinant in a
constant Ao background field and applying the Poisson
summation formula [Eq. (2.24)] once again, we find an
additional contribution to the effective action:

(2.25) S,tr = ) ) (—1) + h (l~,)2Re[TrP" (x)], (3.1)

with a sixnilar result for ZPt. This forxn has a simple
physical interpretation: The first integral is the zero-
temperature shift, and the integer n in the second term
labels the net number of times the fermion wraps around
the lattice in the temporal direction. The finite tem-
perature corrections result from the O(Az) expansion of
image diagrams such as those depicted in Fig. 5. Numer-
ically, the dominant corrections to the zero-temperature
result come &om the first few values of n, with the n = 1
and n = 2 terms accounting for more than 90%%uo of the
finite temperature correction for K & 2.0.

Although not apparent in our perturbative calcula-
tions, in order to maintain gauge invariance, the vertical
segments of the image diagrams must be accompanied by
powers of Polyakov loops. It is an observed feature of sim-
ulations with dynamical fermions that the Z~ symme-
try is approximately maintained in the low-temperature
phase. This suggests that the image contributions may
be negligible below P, . Thus, the zero-temperature cor-
rections to P are suppressed nonperturbatively in the
confined regime. In particular, just below P the zero-
temperature result will hold for AP. Figure 6 illustrates
an idealized behavior for Kpf„; „as a function of pb „.

Zero Temperature

ral

Spatial

bare

FIG. 6. Idealized behavior of APr„; as a function of
bare ~

where P(z) denotes a Polyakov loop and the couplings
h are given by

n' d4
h„(K) = —2' ln + ) sin'(q„)

2vr 4 4K2
P

x cos(nNt qo). (3.2)

This result can also be obtained by using a contour in-
tegral to evaluate the sum over Matsubara &equencies.
The leading term in this effective action has been dis-
cussed for the case Nt ——2 [5].

A. Numerical results for h

The maximum values of the h„are obtained when
mp ——0. For Ng ——4 we find hq

" ——0.107, h2
0.00445, and increasingly smaller magnitudes for higher
order couplings. Because hq favors Z~ breaking, it acts
to lower the critical value of P. Unlike the Diil(p) term
considered in Sec. II, this effect cannot be directly in-
cluded as a finite shift in P. The most direct way to
determine the shift in P due to hi term is to perform a
Monte Carlo simulation of the pure gauge theory with
an hq term added to the action. The numerical simula-
tion results presented in this section were obtained &om
runs of 40000 sweeps (after thermalization) on a 10 x 4
lattice using a variety of work stations.

We have observed that this additional source of b,P is
small compared to the renormalization of the plaquette
couplings discussed in the preceding section, regardless of
m~. For example, even hq ——0.1 at Nq ——4 leads to a shift
in P per fermion of 0.003 25. This value of hi corresponds
to m~ ——0.17 which yields a zero-temperature predicted
shift in P per fermion of 0.104. Although the effect of the
hi term in the efFective action on the critical value of P is
quite small, hq has a profound effect on the character of
the transition. Figure 7 shows the &equency distribution
for the spatial expectation value of the Polyakov loop as
a function of hi at the appropriate P, (hi) on a 10 x 4
lattice. As hq increases, the peaks associated with the
two phases move closer together until they merge at what
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tional to the expectation value of a plaquette plus a term
proportional to the expectation value of the Polyakov
loop. However, the use of a perturbative evaluation of
the fermion determinant obviously fails to include the ef-
fects of chiral symmetry breaking, which is the dominant
factor in determining (v)@) for light quarks. Presumably
this accounts for the failure of the efFective theory for
light quark masses.
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