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A lattice QCD calculation of s-wave hadron scattering lengths in the channels 7r-m, 7r N, K N-, -

K N, and -N Nis ca-rried out in the quenched approximation at P = 6/g = 5.7. A variant of
the method of wall source is developed for this purpose, which reduces the computer time by a
factor L on an L x T lattice compared to the conventional point source method and avoids the
Fierz mixing problem. A version of the method in which gauge configurations are not fixed to
any gauge can be extended to calculate disconnected quark loop contributions in hadron two- and
three-point functions. An analytical estimate of statistical errors for this method is worked out,
and the magnitude of errors without and with gauge fixing is compared for the case of m-7r four-
point functions calculated with the Kogut-Susskind quark action. For vr-m scattering both I = 0
and 2 scattering lengths are evaluated using the Kogut-Susskind and Wilson quark actions on a
12 x 20 lattice. For the same size lattice, vr-N, K-N, and K-N scattering lengths are calculated
with the Wilson quark action. For the 7r-7r and x-N cases simulation results are consistent with
the predictions of current algebra and PCAC within 1—2 standard deviations up to quite heavy
quark masses corresponding to m /m~ —0.74, while for the K Nand K N-cases the-agreement
is within a factor of 2. For N-N scattering a phenomenological study with one-boson exchange
potentials indicate that the deuteron becomes unbound if the quark mass is increased beyond 30—
40 Jo of the physical value. Simulations with the Wilson action on a 20 lattice with heavy quarks
with m /m~ 0.74—0.95 show that the nucleon-nucleon force is attractive for both spin triplet and
singlet channels, and that the scattering lengths are substantially larger compared to those for the
vr-vr and vr-N cases even for such heavy quarks. The problem of statistical errors, which has to be
overcome toward a more realistic calculation of hadron scattering lengths, is discussed.

PACS number(s): 12.38.Gc, 11.40.Ha, 13.75.Cs

I. INTRODUCTION

Calculation of scattering lengths of hadrons presents
a variety of problems of physical interest in the lattice
QCD approach to strong interactions. For the case of
m-m and 7r-N scattering, the experimental 8-wave scat-
tering lengths are of order 0.1 —0.4 fm which are quite
small compared to the sizes of the pion and nucleon (see
Table I for experimental values). It is well known that
the small values can be understood as a result of soft pion
theorems [2] that follow Rom the approximate chiral sym-
metry of up and down quarks realized in a spontaneously
broken mode; scattering amplitudes involving pions van-
ish at threshold for zero pion mass, and the 8-wave scat-
tering lengths predicted for the experimental pion mass
are in reasonable agreement with experiment as recapitu-
lated in the last column of Table I. Whether a dynamical
calculation directly based on the QCD Lagrangian suc-

TABLE I. Experimental s-wave scattering lengths [1j and
current algebra predictions in units of fm.

I=o
I=2
I =1/2
I = 3/2

Sg
1S

Experiment
+0.37(7)
—0.040(17)
+0.245(4)
—0.143(6)
—5.432(5)
+20.1(4)

Current algebra
+0.222
—0.0635
+0.221
—0.111

K-N I =0
I=1
I=0
I=1

—0.0075
—0.225
—1.16 + i0.49
+0.17 + i0.41

0
—0.399
+0.598
+0.199

cessfully explains experiment therefore provides a useful
testing ground of our theoretical understanding of chiral
symmetry based on lattice QCD.

The situation is quite diBerent for nucleon-nucleon
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scattering. Experimentally the scattering lengths are
very large, being of the order of 10 fm (see Table I).
Since chiral symmetry places no constraint on the low
energy behavior, the large scattering lengths are purely
dynamical phenomena. So far theoretical approach to the
low energy nucleon-nucleon scattering has remained at a
phenomenological level in which meson exchange models
with tunable coupling constants are utilized to reproduce
the low energy phase shifts [3]. Deriving the large scat-
tering lengths from flrst principles of QCD represents an
important challenge to lattice QCD.

Calculation of scattering lengths poses several prob-
lems from the technical point of view. One of the
problems is that Euclidean hadron Green's functions
amenable to Monte Carlo evaluation methods of lattice
QCD are generally only indirectly connected to real time
scattering amplitudes. An elegant solution to this prob-
lem is the formula [4,5] relating scattering phase shifts,
and hence also scattering lengths, to the energy of two
hadron states on a finite spatial lattice which can be ex-
tracted &om the exponential decay of Euclidean hadron
four-point functions in time [6].

Another problem, which is computationally quite trou-
blesome, is the calculation of hadron four-point functions
itself. For hadrons in a definite momentum state, such
a calculation generally requires quark propagators con-
necting two arbitrary space-time sites. With the con-
ventional method. of point source the necessary number
of quark matrix inversions equals the space-time lattice
volume, which would require a prohibitively large amount
of computer time. This is a novel situation quite difFer-
ent from a calculation of connected three-point functions
of hadrons, which can be reduced to that of connected
two-point functions through source methods [7]. We note
that a similar diFiculty arises even for two- or three-point
functions when one attempts to calculate contributions
involving disconnected quark loops. Typical examples
are the two-quark loop amplitude for the flavor singlet
g' propagator and Havor singlet nucleon matrix elements
such as the vr-N cr term.

We found that a variant of the wall source tech-
nique [8,9] allows to overcome the problem with a modest
cost of computing power [10—16]. Particularly interest-
ing is a modified version of the original proposal [8) which
does not fix gauge configurations to any gauge. This ver-
sion can be applied to calculate disconnected quark loop
contributions in two- and three-point functions as well as
hadron four-paint functions. Our chief findings obtained
with the method for the vr-vr, vr-N, and N-N scattering
lengths have been briefly reported in Refs. [10—12]. In
this paper we present the full details of the method and
analyses of our calculation of hadron scattering lengths.
We also report additional results for K-N and K-N scat-
tering. For applications of the method to calculate dis-
connected quark loop contributions in hadron two- and
three-point functions, we refer to our work on the g' me-
son mass [13], the 7r Nrr term [14,15], a-nd the axial vec-
tor matrix elements of the proton [15,16].

Historically the erst attempt toward a lattice calcu-
lation of hadron scattering lengths was made by Guag-
nelli, Marinari, and Parisi [17] for the vr-7r and m-N cases

using the Kogut-Susskind and Wilson quark actions in
quenched QCD. They found a finite volume shift of the
energy of two-hadron states and examined the volume de-
pendence. However, they calculated only gluon exchange
diagrams, and thus the results cannot be compared with
physical scattering lengths. Gupta, Kilcup, Patel, and
Sharpe [18,19] developed an analysis of the physical 7r-vr

scattering length for the I = 2 channel which can be cal-
culated with the conventional wall source method. Their
studies were made in quenched QCD using the Kogut-
Susskind [18] and Wilson [19] quark actions, and lattice
results for scattering lengths were found. to be consistent
with the predictions of current algebra and PCAC (par-
tial conservation of axial vector current) for the I = 2
channel up to quite large quark masses.

The focus of this paper consists in an extension of the
previous I = 2 results for the m-vr scattering length to
the I = 0 channel and also to the 7r-N (I = 1/2, 3/2),
K Nand -K N(I =-0, 1) scattering. These extensions
require the modified version of the wall source method
developed here. We also carry out an exploratory study
of the nucleon-nucleon scattering lengths. Our simula-
tions have been made within quenched QCD at P = 5.7
on a 12 x 20 lattice for the ~-vr, m-N, K-N, and
K-N cases and on a 20 lattice for the N-N case. For a-
m scattering we employed both the Kogut-Susskind and
the Wilson quark action, while other scattering lengths
are studied with the Wilson quark action.

This paper is organized as follows. In Sec. II we de-
scribe the formalism for calculation of hadron scatter-
ing lengths including the Liischer's formula [5] and our
calculational technique of modified wall sources for con-
struction of hadron four-point functions. In Sec. III we
summarize our data sets. The results for vr-m scatter-
ing lengths are presented in Sec. IV, where we also com-
pare Kogut-Susskind results with and without gauge fix-
ing, and discuss the question of infrared. singularities in
quenched QCD associated with the degeneracy of g' and
vr. Results for 7t-N, K-N, and K-N scattering lengths are
given in Sec. V, while those for N-N scattering lengths
are presented in Sec. VI. In Sec. VII we discuss the issue
of statistical errors in relation to a fully realistic lattice
QCD calculation of hadron scattering lengths in the fu-
ture. Our conclusions are summarized in Sec. VIII.

Throughout this paper we employ lattice units for ex-
pressing physical quantities and suppress the lattice spac-
ing a unless necessary.

II. FORMAI ISM AND METHOD OF
MEASUREMENT

A. Scattering length from two-particle energy in a
Anite box

The basic formula for a calculation of scattering
lengths was derived by Liischer [5] who related the s-wave
scattering length ao between the two hadrons h~ and h2
to the energy shift of the two hadron state at zero rela-
tive momentum confined in a finite periodic spatial box
of a size L . The formula is given by
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Eh, h, —(mh, + mh, )
27r(mh, + mh, )ao ao ao1+cd—+c2

mh, mh, I I.
+O(L ')—

with cq ———2.837 297, c2 ——6.375 183.
The energy Eh, h, is extracted f'rom the large time be-

havior of the hadron four-point function with the hadrons
in the zero momentum state de6ned by

Ch h (24, 23, 22, 21): ) Oh (34, 24) ) Oh (33, 23) ) Oh (x2, 22) ) Ol (xl, 21))
K4 &3 K2 &1

(2)

In order to avoid Fierz rearrangement of quark lines to be
discussed in Sec. IID, we choose t4 ——t+1, t3 —t t2 —1,
and tq ——0. In this case the large time behavior reads

Ch, h2(t + 12 t2 12 0) = Zhghg epx( Eh, h2t) + ' ', (3)

where the ellipsis denotes contributions of higher excited
states.

The hadron masses mh, and mh, needed to obtain the
energy shift bE = Eh, h, —(mh, + mh, ) are calculated in
the usual manner &om the two-point functions

C,, (t, o) = ) 0„,(x„t))-0„(x„O)
Z3 &1

= Zh, exp( —mh, t) + .

Cy„(t+ 1, 1) = ) Oh, (x4, t+ 1)) Oh (x221)
X4 K2

= Zh, exp( —mh, t) + (5)

We extract the energy shift bE &om the ratio

R(t) = C..., (t+ I, t, 1, O)

Ch, (t, o)Ch, (t + 1, 1)
+h1h2

exp( —bEt) +

We should note that the Liischer's formula (1) allows
a reliable extraction of scattering lengths only if the ex-
pansion parameter ao/L is small. Since the magnitude of
ao is a priori not known, this point has to be examined
with results for ao themselves, which we shall make with
our data. A full analysis to con6rm the size dependence
of the energy shift employing a set of sizes, however, is
beyond the scope of this paper since this will require a
substantial amount of computing resources.

Another point to note is that formula (1) cannot be
applied to the lowest two-hadron state if it is a bound
state. In such a case the lowest scattering state orthog-
onal to the bound state has to be constructed to apply
(1). This is pertinent for N-N scattering lengths since
the spin triplet channel has the deuteron bound state.
We shall discuss this point further in Sec. VI.

struct the two-pion operators for these isospin eigenchan-
nels as

0 =o() =
( -+()0--( + ) -0- ()0- ( + )3

+0 -(t)0 (t+1)l
01=.(t) = 0.+(t)0.+(t+1),

(7)
(8)

with the pion operators defined by

0.+ (t) = —) d(x, t)»u(x, t), (9)

0 (t) = ) G(x, t)»d(x, t), (1O)

).[ (*" t)» (* t) —d(* t)& d(* t)l (11)0 o(t) =

R, ,(t) = RD(t) + -', R~(t) —3R"(t) + -', R~(t),

R (t) = R~(t) —R~(t).

(12)

(13)

For ~-N scattering the I =
~ and 2 operators may be

taken as

Or=i/2(t) = 0 +(t+1)0„(t)
1 0 o(t+ 1)Op(t),
3

t4 %/%J

In Fig. 1 we display quark line diagrams contributing
to the vr-vr four-point functions, denoting them as direct
(D), crossed (C), rectangular (R), and vacuum (V) di-
agrams (meaning of circles and bars will be explained
in Sec. IIC). The ratio R(t) for isospin eigenchannels
can be expressed in terms of the four amplitudes in the
combination

B. Hadron four-point functions (a) D (c) R
J

(d) V

Consider 8-wave m-m scattering, for which isospin 0 and
2 channels are allowed due to Bose symmetry. We con-

FIG. 1. Diagrams contributing to m-7t. four-point functions.
Short bars represent wall sources. Open circles are sinks for
local pion operator.
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O;,&, (t) = O.+(t+ 1)O„(t). (15)

For the pion operators we use (9)—(11). Relativistic op-

I

erators for the proton (p) and neutron (n) are defined
with the charge conjugation matrix C = p4p2 taking ac-
count of the symmetries for isospin and nonrelativistic
spin representations:

Op(t) = ) s s, ( 'u (x, t)C lsd (x, t) u'(x, t) — 'd (x, t)C 'psu (x, t) u'(z, t)), (i6)

O„(t) = ) s s, ( 'u (x, t)C 'p, ds(x, t) d'(x, t) — 'd (x, t)C 'p u (x, t) d'(x, t)).

In terms of 01 we construct the vr-N four-point func-
tion according to

OI(+ (t) = ) s(x, t)psu(z, t),

OI(p (t) = ) s(x, t)lsd(x, t),

(23)

(24)

O, ",() = [O +( + )O.() —O ( +1)O ()]
2

(i9)
(2O)Or~="i(t) = O~+ (t + 1)O.«)

(O —.(t + i)n„(t) —O —(t + i)O„(t)),
2

OR%(t) O (t + 1)O (t)

(2i)
(22)

where the nucleon operators Oz and O are given in (16)
and (17) and the K meson operators are de6ned by

where trace refers to Dirac components.
Topologically four types of diagrams contribute to m-N

four-point functions, direct (D), crossed (C), rectangular
(B), and crossed rectangular (CB), as shown in Fig. 2.
In contrast to the vr-m case, these diagrams have 6, l8, 18,
and 36 members having the same quark line topology but
different quark contractions. All four types of diagrams
contribute to both isospin eigenchannels. Weights of the
members are listed in the Appendix.

For I = 0 and 1 operators for K-N and K-N scatteri. ng
we take

(25)

OI( (t) = ) u(x, t)q, s(x, t). (26)

In contrast to the 7t-N case, K-N scattering receives con-
tributions only from direct (D) and crossed (C) type di-
agrams and K-N scattering only from direct and rectan-
gular (R) ones. Weights of various quark contractions to
isospin eigen amplitudes are given in the Appendix.

In 8-wave N-N scattering spin triplet Sq and singlet
Sp states choose isospin 0 and 1, respectively, due to

Fermi statistics. For these eigenchannels we use the op-
erators

O('S, )(t) = [O„(t)O„(t+1)—O„(t)O„(t+1)],

(27)

O('~. )(t) = O.(t)O.(t+1) (28)

where the upper two Dirac components of the nucleon
operators Oz and O as defined in (16) and (17) are
combined to form the respective spin states. N-N four-
point functions require only two types of diagrams shown
in Fig. 3. The direct (D) diagram has 36 members with
difFerent quark contractions. For the crossed (C) dia-

]kl(
]K]4]K

( ]4](
%KM/ w J4

(a) D (b) C (c) R (d) CR ](]4]IK]4](]4

FEG. 2. Diagrams contributing to m'-N four-point func-
tions. Short bars represent wall sources. Open circles are
sinks for local pion or nucleon operator. Solid circle for the
CR diagram means use of source method for calculating the
product of quark propagators connected by it.

FIG. 3. Diagrams contributing to N-N four-point func-
tions. Short bars represent wall sources. Open circles are
sinks for local nucleon operator.
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gram, which has 324 members, diagrams with a single
quark-antiquark exchange and a double quark-antiquark
exchange are equivalent because the two nucleon opera-
tors are summed over all spatial sites for 8-wave states.
Since quark contractions for N-N four-point functions
are very complicated and tedious, we employed symbolic
manipulations on computers to work out the weights of
amplitudes.

case of rectangular and vacuum diagrams which require
additional quark propagators connecting the time slices
ts and t4. The same diKculty also exists in the vr-N,
K-N, and K-N cases for the rectangular and crossed-
rectangular types of diagrams.

We handle this problem by calculating T quark prop-
agators on an L x T lattice, each propagator corre-
sponding to a wall source placed at the time slice t =
0, . . . , T —1, which are defined by

C. Wall source method without gauge Axing ) D„,„G,(n") = ) b„., (.-,,),

Let us consider the numerical procedure for a calcula-
tion of hadron four-point functions. For vr-vr scattering
shown in Fig. 1 the direct and crossed diagrams can be
easily calculated because we need only two quark prop-
agators with wall sources placed at the fixed time slices
ti and t2 [18,19] in order to construct the corresponding
four-point amplitudes for arbitrary values of t3 and t4
(the N %case -is similar). This does not apply to the

0(t (T —1, (29)

where D denotes the quark matrix for the Wilson or the
Kogut-Susskind quark action. The combination of Gq(n)
that we employ for hadron four-point functions is dis-
played in Figs. 1—3, where short bars represent the posi-
tion of wall source and circles the sink. For example, the
m-vr rectangular diagram in Fig. 1(c) corresponds to

(&4 ts t»ti) = ).(«Tr[GC, (*»t2)G~. (*2 &2)Gt. (*»~s)G~. (*s ts)1)
&2)&3

(30)

where daggers mean conjugation by p5 for the Wilson
quark action and by the even-odd parity (—1) for the
Kogut-Susskind quark action.

Using the relation Gq(n") = g-D „~ l, we see
that this prescription yields four-point amplitudes cor-
responding to nonlocal and nongauge invariant hadron
operators at the time slices where two wall sources or one
wall and one sink are placed [e.g. , at the time slices ti and
t4 in (30)]. These terms create gauge-variant noise. One
way to suppress the noise is to fix gauge configurations
to some gauge as is done in all recent work using wall
sources [9]. A potential drawback is that gauge nonin-
variant states may contaminate the four-point function.

Alternatively one can choose not to fix gauge config-
urations to any gauge since gauge dependent fluctua-
tions should cancel out in the ensemble average. This
is the wall source version of the original proposal of ex-
tended sources [8]. One might worry if signal stands
out among noise. For example, if two wall sources are
placed at the same time slice, there are O((L ) ) gauge-
dependent nonlocal terms relative to O(L ) local gauge
invariant ones, and hence naively the magnitude of the
noise O(g(L )2) would be comparable to that of the
signal. However, a generalization [20] of the well-known
argument [21] can be used to show that the noise is in fact
smaller than the signal by a factor L ~ for suKciently
large L.

Let us illustrate this point with a simpler example of a
two-point function Cr(t) for the meson operator ql'q for
the Wilson quark action. We evaluate this quantity as

(31)

where the factor 1/Ls is inserted to ensure a finite limit
as L -+ oo and the trace is taken over Dirac indices and
color indices. Substituting the expression

G (* ') =).G[(* t) ( o)] (32)

where

Gr(i ") = L, ):G[(»0) ( &)]I'G[( &) ( 0)l.

The dispersion of the two-point function Cr(t) is given
by

for the wall-source quark propagator Go(n) in terms of
the point-to-point quark propagator G(n, m), we can
rewrite (31) as
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2 2

(7 = ) Tr [Gr(y, z)I'] — ) Tr [Gr(y, z)I']
yiz y, z

) Tr]Gr(g, Z)I'] ) Tr]Gr(z', y')&] — ) ~]Gr(g, r)&] ) ~]r r(&' g')&]),
y, z z', y' yiz z~l g I

(35)

where we have used the relation Gt(n, m) = psG(m, n)ps and assumed that psFps ——+F. We recognize the first term
on the right-hand side to be the expression for the four-point function with a quark operator placed at z and y" and
an antiquark operator at y and z' of the time slice t = 0. Since gauge configurations are not Axed to any gauge,
nonvanishing results are obtained only if z = y and y' = z' or z = z' and. y' = y. We thus Gnd that

2 2 20 = OD+ 0~, (36)

with

O.D ——) (Tr [Gr(y, y)F] Tr [Gr(z, z)I']) —) (Tr [Gr(y, y)F])(Tr [Gr(Z, Z)F]),
y)Z y, z

crc, = ) (Tr [Gr (y, z) I'] Tr [Gr (z, y)I'])
yiz

) ) (Tr [Gr(y, z)FF*Gr(z, y)I'I', ]),
i=S,V,T,A, P y, z

(37)

(38)

where for 0.& we used the Fierz transformation for Dirac and color indices to combine the two traces into a single trace
and ignored color nonsinglet combinations. Substituting (34) it is easy to see that (TL) equals the direct amplitude
for the meson-meson scattering in the channel I + I' + I'+ I' with all meson at rest, multiplied by a factor 1/Ls
Similarly (7&2 equals the crossed amplitude for the channel I'F; + I'I', -+ I'+ F multiplied by 1/L . We thus find that
the statistical error for the two-point function evaluated with N, nf independent gauge configurations is given by

bCr(t) =
~conf

L3 r+r r+r( ) 12 )
conf =S,V,T,A, P

Crr;+rr, r+r(t)C

8Cr (t)
Cr (t)

1
s exp[(mr —m )t].

N, „f13 (4o)

It is straightforward to generalize the argument to
hadron four-point functions Ch, ,h, . The relative error
is given by

This formula immediately shows that the statistical er-
ror decreases as I ~ relative to the signal. The direct
amplitude decreases as exp( —2mrt) up to polynomials in
t with mz the mass of the meson in the channel I'. For the
crossed amplitude we expect the dominant term in the
sum over i to come &om the channel sr+~ —+ I'+I' having
the lightest energy. For a sufFiciently large spatial size L
the crossed amplitude in this channel may be approxi-
mately calculated by a convolution of &ee propagation of
two pions from the time slice t = 0 to t'(0 ( t' ( t), a
local mm'I'I coupling at t = t' and free propagation of two
mesons in the channel I' from t = t' to t. As an estimate
of the relative error we then 6nd

1
oc exp([m)„+ mg, —(n)„+ nh, , )m ]t),

conf

(41)

where nh = 1 for rnesons and 3/2 for baryons.
We should note that the magnitude of the proportion-

ality constant in (40) and (41) is not known, and hence
the magnitude of errors may vary depending on the chan-
nel. With a practically manageable statistics of a few
hundred configurations, we found that statistical errors
are small for pion two- and four-point functions, whereas
the signal deteriorates for the p and nucleon. For the
nucleon, in particular, errors are significant even for the
propagator. We, therefore, use the Coulomb gauge Ax-

ing for the nucleon source for calculation of scattering
lengths involving nucleon.
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D. Avoidance of Fierz contaminations

Our method of calculating quark propagators for all
possible temporal positions of wall sources has another
advantage. Suppose that we only have the quark prop-
agator corresponding to a single wall source placed at
the time slice t. Calculation of meson four-point func-
tions in this case necessarily involve two meson operators

q(x, t) I'q(y, t) and P-, -, &q(x', t) I"q(y', t)
placed at the same time slice t. ft is easy to see that
there are two contributions, one in which each of the pairs
(q(x, t), q(y, t) ) and (q(x ', t) ~, q(y ', t) s) form color sin-
glets, and the other in which the Fierz-rearranged pairs
(q(x, t), q(y ', t) s) and (q(x ', t) s, q(y, t) ) form color sin-
glets. Such a rearrangement causes a mixing of diagrams
having different quark line topologies. In general it also
switches the spin parity of the two hadrons in the ini-
tial state. This leads to quite a complication of analy-
ses, especially for the Kogut-Susskind quark action, as
was discussed in detail in Ref. [18]. Disentangling the
two contributions is possible in principle, but difficult in
practice. This, in fact, is the reason why the work of
Ref. [18] could not determine the direct and crossed am-
plitudes separately for the vr-m four-point function for the
Kogut-Susskind quark action.

The problem can be trivially solved in our method
since we calculate quark propagators for all possible tem-
poral positions of wall source, and therefore hadron op-
erators can be placed at difFerent time slices. In practice
we separate hadron operators by a unit time slice both
for the initial and final pairs of hadrons.

III. DATA SETS

In Table II we list the parameters of our simulation.
All of our calculations are made in the quenched approx-
imation at P = 5.7. The inverse lattice spacing deter-
mined &om the p meson mass in the chiral limit equals

a ~ = 1.44(2) GeV for the Wilson quark action and
a ~ = 0.98(11) GeV for the Kogut-Susskind quark ac-
tion. We mostly employed a 12 x 20 lattice for 7t.-vr,

m-N, K-N, and K-% scattering and a 20 lattice for
N-N scattering, anticipating large scattering lengths for
the latter. The lattice size must be large enough so that
we can employ as weak a coupling as possible to avoid
finite lattice spacing effects, yet it should not be too large
so as not to spoil a detection of a small energy shift of
Q(I s) predicted by the Liischer's relation (1); our pa-
rameters are a reasonable compromise with the present
computing resources. Gauge configurations are gener-
ated with a 5-hit pseudo heat bath algorithm, discarding
1000 configurations for thermalization, and employing
every 1000th configuration for hadron four-point func-
tion analyses.

For the vr-vr four-point function we made bulk of our
calculations employing wall sources without gauge fix-
ing. A calculation with Coulomb gauge fixing was also
carried out for a subset of configurations with the Kogut-
Susskind quark action in order to compare the two meth-
ods (see Sec. IVA2). In the case of m Nscatte-ring the
pion source is treated with the wall source method with-
out gauge fixing, while for the nucleon source placed at
t = 0 we fixed the t = 0 time slice of gauge configu-
rations to Coulomb gauge in order to enhance signal to
noise ratio. The K-N and K-N four-point functions are
calculated in the same way. We used the same quark
mass for strange and up-down quarks for this case. For
calculations of the N-N four-point functions gauge con-
figurations are fixed to Coulomb gauge over the entire
space-time lattice as this leads to better signals.

Quark propagators are calculated with the Dirichlet
boundary condition in the temporal direction in order to
avoid contamination Rom hadrons propagating backward
in time. The periodic boundary condition is used in the
spatial directions. For the Kogut-Susskind quark action
the standard conjugate gradient algorithm is employed
for inverting the quark matrix, and for Wilson quark ac-
tion the incomplete LU decomposition conjugate residual

TABLE II. Parameters of simulation. All runs are made at P = 5.7 in quenched QCD.

Action Quark mass Lattice size No. conf. Gauge 6xing

KS
KS
KS

Wilson

m = 0.01
m, =0.01
m, =0.01
K = 0.164

8 x20
12 x 20
12 x 20
12 x 20

400
160
60
70

None
None

Coulomb
None

Wilson
Wilson

K = 0.164
K = 0.1665

12 x 20
12 x 20

60
30

t = 0 Coulomb
t = 0 Coulomb

K-N
K-N

Wilson
Wilson

K = 0.164
K = 0.164

12 x 20
12 x 20

60
60

t = 0 Coulomb
t = 0 Coulomb

Wilson
Wilson
Wilson

K = 0.150
K = 0.160
K = 0.164

20 x 20
20 x 20
20 x 20

20
30
20

Coulomb
Coulomb
Coulomb
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TABLE III. Hadron masses and pion decay constant at P = 5.7 in quenched QCD. Also listed
for comparison are results on a larger lattice from Refs. [23,24]. For the Wilson result of Ref. [24]
a linear interpolation in I/JC is made when necessary (marked by an asterisk).

Action Quark mass Lattice size mp

mq = 0.01 12 x 20 0.290(3)
24 x 32 [23] 0.2876(7) 0.883(58) 1.454(26)

0.132(3)

Wilson K = 0.150 12 x 20
20 x 20

1.0758(51) 1.1302(66)
1.788(11)

0.1900(12)

K = 0.160

K = 0.164

K = 0.1665

0.8053(39)

0.8062(18)

0.6865(53)12 x 20
20 x 20
24 x 32 [24]

12 x 20
24' x 32 [24]

0.5027(13)' 0.6886(28)'

0.6086(75)
0.6165(45)'

0.3663(44)
0.3656(17)'

12 x 20 0.6876(31)
20 x 20
24 x 32 [24] 0.6887(11)

0.5080(37)

1.2957(79)
1.302(13)
1.3068(51)

1.080(10)
1.0S3 (20)
1.0869(64)'

0.926(13)
0.927(12)"

0.1268(14)

0.1249 (10)

0.1009(7)

0.1000(10)'

0.0832 (14)
0.0848(16)"

IV. m-m SCATTEKINC LENCTHS

A. Kogut-Susskind quark action

1. No gauge fixing

Current algebra and PCAC predict [2] that the s-wave
a-m scattering lengths, to leading order in m, take the
values

I=o
ao

I=2
ao

7 m
32~ fz '

2 m
32vr fz

(42)

(ILUCR) method [22]. The stopping condition is chosen
to ensure a O. 1%% accuracy in hadron four-point functions
for each configuration.

In Table III we summarize a, p, and nucleon (N)
masses in lattice units obtained on our ensemble of con-
figurations through standard single exponential fits of
hadron propagators over the time interval 6 & t & 12—14.
Also listed are the values for the pion decay constant
obtained with the tadpole-improved renormalization fac-
tor [25] using nMs(1/a) = 0.2207 for the coupling con-
stant, where MS denotes the modified minimal subtrac-
tion scheme. The values listed are in agreement with the
results obtained on larger lattices [23,24], which are also
given in Table III. A necessary condition for the applica-
bility of formula (1) is that the lattice size L is sufficiently
large so that finite-size effects for hadron masses are neg-
ligible. The agreement provides a check, albeit indirect,
on this point.

We estimate errors by the single elimination jackknife
procedure for all quantities including hadron masses, en-
ergy shifts, and. scattering lengths obtained by fits of two-
and four-point functions.

It has been shown in Ref. [18] that these results can also
be derived for the Kogut-Susskind quark action at a finite
lattice spacing using Ward identities for U(l) chiral sym-
metry under some continuity assumptions on the pion
four-point function in external momenta. Whether nu-
merical simulations yield results in agreement with (42)
and (43) therefore provides a valuable check of the lattice
method for hadron four-point functions.

The use of Kogut-Susskind action has a subtle prob-
lem concerning the interpretation of the four quark Ha-

vors corresponding to each Kogut-Susskind field. Fol-
lowing Ref. [18] we introduce a Kogut-Susskind field for
each continuum Havor, regarding the four fIavors of the
Kogut-Susskind action as a fourfold duplication of each
continuum fiavor. In this view the expression (12),(13)
for the vr-vr four-point function in isospin eigenchannels
needs to be modified to

R, ,(t) = RD(t) + ~ R~(t) —3N&R" (t) + —Rv(t),

(44)

(45)

where the factors Ny ——4 compensate a different number
of Kogut-Susskind fIavor traces in the four types of dia-
grams. For the pion operator it is most natural to take
the one in the Nambu-Goldstone channel corresponding
to U(1) chiral symmetry. This is the choice for which the
current algebra result (42) and (43) can be derived.

We have carried out simulations on an 8 x 20 lattice
and a 12s x 20 lattice, both at P = 5.7 and mz ——0.01
in quenched @CD, employing the method of wall source
without; gauge fixing. The results on a 12 x 20 lattice
have been briefly reported in Refs. [10,11]. In Fig. 4 we
recapitulate the individual ratios Rx (t) (4 = D, C, R,
and V) on a 12s x 20 lattice plotted as functions of t.
Good signals observed up to t 12 for the rectangular
amplitude and up to t = 8 for the vacuum amplitude
demonstrate the practical applicability of the method
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FIG. 5. RI(t) (I = 0 and 2) for vr @four-po-int function
calculated without gauge fixing for the Kogut-Susskind quark
action on a 12 x 20 lattice at P = 5.7 and m~ = 0.01. Solid
lines are linear fits for 4 & t & 9.

FIG. 4. Individual ratios R (t) (X = D, C, R, and V) for
vr-m four-point function calculated with the method of wall
source without gauge fixing for Kogut-Susskind quark action
on a 12 x 20 lattice at P = 5.7 and m~ = 0.01.

of wall source without gauge Gxing. For the direct and
crossed amplitudes previous results [18] employed a sin-
gle wall source at t = 0, and could not resolve the Fierz-
rearranged mixing between the two amplitudes. As we
discussed in Sec. IID separate calculation of these dia-
grams is possible in our case since the two pion sources
are placed at a unit lattice spacing apart in the time di-
rection.

Physically the interesting features in Fig. 4 are (1) a
very flat behavior of the direct amplitude showing that
the interaction is weak in this channel; (2) an almost
linear t dependence of the crossed and rectangular am-
plitudes with a slope of similar magnitude but oppo-
site sign; and (3) a small value of the vacuum ampli-
tude. These characteristics are in agreement with expec-
tations &om chiral perturbation theory and the empirical
Okubo-Zweig-Iizuka (OZI) rule. We also note that the
crossed and rectangular amplitudes have the same value
at t = 0 as expected &om the fact that their analytic
expressions are identical at this value of t.

In Fig. 5 we plot the ratio BI(t) projected onto the
I = 0 and 2 isospin channels for a 12 x 20 lattice. A
decrease of the ratio for the I = 2 channel corresponds to
a positive energy shift and hence to a repulsive interac-
tion in this channel, while an increase of BI o(t) means
attraction for the I = 0 channel. A dip observed at t = 2
for the I = 0 channel becomes more pronounced on ao
8 x 20 lattice as shown in Fig. 6 (note the change of
vertical scale &om Fig. 5). The physical origin of the dip
and its size dependence is not clear to us.

Extraction of the energy shift bEz &om BI(t) and
thence the 8-wave scattering length require some care.
Since our calculations are made in quenched QCD,
rescattering efFects that require sea quark loops are not
properly taken into account. This effect starts with terms
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FIG. 6. Rq(t) (I = 0 and 2) for vr-vr four-point function
calculated without gauge fixing for the Kogut-Susskind quark
action on an 8 x 20 lattice at P = 5.7 and m~ = 0.01. Solid
lines are linear fits for 4 & t & 9.

of O(t ) in BI(t). For the Kogut-Susskind quark ac-
tion there are further complications arising from the non-
degeneracy of pions in the Nambu-Goldstone and other
channels at a Gnite lattice spacing. Briefly stating, the
contribution of non-Nambu-Goldstone pions in the in-
termediate states is exponentially suppressed for large
times due to their heavier masses compared to that of the
Nambu-Goldstone pion, instead of yielding terms grow-
ing with powers of t for the degenerate case. This affects
both the relation between the ratio BI(t) and the energy
shift bEI and that between bEI and scattering lengths
(1). A detailed analysis [18] shows that the O(L s) terms
in the relation (1) are invalidated by the effect, and that
O(t ) terms in BI(t) are not correct even in full QCD.
Thus, a proper extraction of scattering lengths for the
present case requires the spatial lattice size to be large
enough so that the O(1 ) terms are small; hEI should
also be small so that there is a range of t over which BI(t)
exhibits a linear behavior.

Based on the considerations above we fit BI(t) with a
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TABLE IV. vr-m scattering lengths in lattice units for the Kogut-Susskind quark action at
mq ——0.01. Numbers in square brackets are current algebra predictions evaluated with the measured
values of m and f listed in Table III.

Size
Gauge
fixing ao Zl ao

I=2
bEI ZI

8 x20
12 x 20

None
None

Coulomb

4.89(53)
1.57(25)
1.73(27)
[1.16(5)]

—0.69(21) 0.160(40)
—0.0291(37) 0.807(15)
—G.0316(40) 0.800(17)

—0.374(14) 0.0367(16) 0.897(12)
—0.301(28) G.00813(82) 0.955(5)
—0.326(35) 0.0089(10) 0.948(7)

[—0.33i(i5)]

linear form Zl(1 —bEIt) with the fitting range chosen to
be 4 & t & 9, ignoring higher order terms. The fitted
values of bEI and the results for the 8-wave scattering
length ao in lattice units obtained using (1) are summa-
rized in Table IV. Here we used pion mass given in Ta-
ble III. The errors quoted for ao are statistical only. For
a 12 x 20 lattice the O(I, ) term contributes 10% in the
I =- 0 channel, although it is negligibly small (( 1%) for
I = 2. The O(t2) terms in Bl(t), neglected in the above
procedure, contribute a few percent in both isospin eigen-
channels. These uncertainties are within the statistical
errors of 16% for I = 0 and 9% for I = 2.

On an 8 x 20 lattice, the Z factor for the I = 0 channel
deviate severely from unity due to a dip of BI—o(t) for
small t, rendering the value of the extracted scattering
length questionable. For the I = 2 channel, the value for
ao is consistent with that &om a 12 x 20 lattice.

In Table IV we also list in square brackets the values
predicted by current algebra and PCAC (42), (43) sub-
stituting the value of m and the pion decay constant
J' in Table III. We observe that the simulation results
are consistent with (42) and (43) within 1 —1.5 stan-
dard deviations, which we And quite reasonable in view
of the systematic uncertainties discussed above. Results
for ao(I = 2) in agreement with (43) was previously ob-
tained [18] vrith the assumption that the contribution of
the direct diagram is negligible.

2. Coulomb gauge +ming

We have repeated the calculation of the vr-vr four-point
function, Gxing gauge configurations to the Coulomb
gauge for all time slices for a 12 x 20 lattice. In this
case the wall source and sink for pion propagators in the
denominator of Bx(t) have to be chosen in the same
combination as for the four-point amplitude in the nu-
merator for each type of diagrams X = D, C, B, and
V. Without this matching the Z factors for the ratio
B (t) would be difFerent between the diagrams, and the
combination (44) and (45) would no longer project out
isospin eigenchannels. This problem is absent for wall
sources without gauge fixing because nonlocal terms in
the wall source operator cancel out after averaging over
gauge configurations.

In Fig. 7 we compare the ratio BI(t) calculated in
Coulomb gauge (open symbols) and without gauge fix-
ing (solid symbols) for the same set of 60 configurations

on a 12 x 20 lattice. We suspect that a wiggle seen up
to t —4 for the I = 0 channel in the Coulomb gauge cal-
culation is due to a contribution of nonlocal p that can
be emitted from the gauge fixed wall source. A slight
discrepancy in the intercept for the I = 2 channel is
ascribed to the difFerence of Z factors between the two
calculations. Except for these points the two data sets
are consistent. Results for scattering lengths extracted
with the same procedure as for the case without gauge
Axing agree with those for the case of no gauge fixing
within one standard deviation (see Table IV).

An interesting question is to what extent gauge non-
invariant errors are controlled in the method of wall
source without gauge Axing compared to the gauge fixed
case. To examine this point we plot in Fig. 8 the single-
elimination jackknife errors of BI(t) for the two calcula-
tion on the same set of 60 configurations on a 12 x 20
lattice. Although the magnitude of errors is larger for
the nongauge fixed case (solid symbols), the amount of
increase of errors is contained at the level of a factor of
1.5 —2 times those for the Coulomb gauge fixing (open
symbols), showing that gauge variant noise does not give
rise to a serious problem for calculation of vr-vr four-point
functions.
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FIG. 7. Comparison of Rr(t) (I = 0 and 2) for vr-vr

four-point function calculated in Coulomb gauge (open sym-
bols) and without gauge fixing (solid symbols) for the
Kogut-Susskind quark action for the same set of 60 config-
urations on a 12 x 20 lattice at P = 5.7 and m~ = 0.01.
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We have also applied the wall source method without
gauge fixing to the Wilson quark action at the hopping
parameter K = 0.164, employing 70 configurations on a
12 x 20 lattice.

In Fig. 9 we show the ratios B~(t) for X = D, C, B,
and V. The direct and crossed amplitudes were previ-
ously calculated in Ref. [19) through gauge fixed wall
sources placed at the same time slice. We observe in
Fig. 9 that the slope for the rectangular amplitude B (t)
is quite small compared to that for the crossed ampli-

FIG. 10. BI(t) (I = 0 and 2) for s'-m four-point function
calculated without gauge fixing for the Wilson quark action
on a 12 x 20 lattice at P = 5.7 and K = 0.164. Solid lines
are linear 6ts for 4 ( t ( 9.

tude B (t). This is difFerent from the Kogut-Susskind
case for which both amplitudes exhibit a similar slope
(see Fig. 4). We consider that this is due to the heavy
quark mass (m /m~ = 0.74) for the present calculation
with the Wilson quark action compared to the small value
(m /rnid ——0.33) for the Kogut-Susskind case. Another
difference between the Wilson and Kogut-Susskind re-
sults is a positive curvature for the direct amplitude seen
in Fig. 9 for the Wilson case, whose origin is not clear
to us. Also the errors for the vacuum diagram blows up
much more rapidly (compare Fig. 9 with Fig. 4). This,
however, may be ascribed to a heavier pion mass for the
Wilson simulation as will be discussed in Sec. VII below.

The ratios BI(t) for the isospin eigenchannels I = 0
and 2 are plotted in Fig. 10. To extract the energy
shift hEI for each channel, we again employ a linear form
ZI(1 bElt) with t—he fitting range chosen to be 4 ( t ( 9.
The values of the scattering lengths are listed in Table V,
together with those predicted by current algebra (42) and
(43) but evaluated with the measured values of m and
f in Table III. We quoted only the statistical errors for
the scattering lengths ao. Simulation results are consis-
tent with current algebra and PCAC within 1—2 standard
deviations. For the I = 2 channel a similar agreement
was previously found in Ref. [19].

-0.3 R C. Question of quenched chiral divergences

0.3
II

QQ l~f

03 V
I

0 4
I

8 12 16 20

FIG. 9. Individual ratios B (t) (X = D, C, B, and V)
for m-m four-point function calclulated without gauge 6xing
for Wilson quark action on a 12 x 20 lattice at p = 5.7 and
K = 0.164.

All of our results are obtained in quenched QCD. A
problem with quenched calculations is the uncertainty in
O(t2) term of the ratio BI(t) due to lack of dynamical
quark loops. We have bypassed this problem by looking
only at the region of t where the ratio BI(t) shows a linear
behavior. Also our data do not extend to the region of
large t, where a curvature due to O(t2) terms can be
established, because of increase of errors.

Another potential problem is that the vr-m four-point
function in quenched QCD could be affected by in-
frared divergences appearing in the chiral limit due to g'
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TABLE V. vr-m scattering lengths in lattice units for the Wilson quark action at the hopping
parameter K = 0.164 on a 12 x 20 lattice. Numbers in square brackets are current algebra
predictions evaluated with the measured values of m and f listed in Table III.

ao
3.02(17)
[3 47(5)]

I=o
bEr

—0.0297(19)
Zr

0.903(7)
ao

—0.924(40)
[
—0.993(16)]

I =2
bEr

0.0166(9)
Zr

1.027(5)

1 1 (mp1
1536~s m f4 t,Nf ) (46)

to the s-wave scattering length, which diverges as m
0. In terms of the energy shift in the direct amplitude
R (t), this contribution translates to

(m', )
384vr2 m2 f4 qNJ: y

Ls (47)

with L the spatial size.
Recently we calculated [13] the parameter mp for

quenched QCD with the Wilson quark action using the
same set of configurations on a 12 x 20 lattice as are
employed in this paper. At the hopping parameter
K = 0.164 where our scattering length calculation is
made we obtained mp/QNf = 0.147(8). Combining
this result with those of m and f in Table III we find
bED ——2.7 x 10 for the expected magnitude of energy
shift for the direct amplitude for the Wilson case, which
is far too small to be detectable in our data for the ratio

The singular contribution (47) diverges in the chiral
limit. In order to see at what quark mass the contribution
seriously begins to affect the chiral behavior we recall [13]
that the values for mo we obtained can be fitted very well
with a linear function of the quark mass mz ——(I/K—
I/K. )/2:

loops [26]. These divergences originate from the double
pole mp/(p + m ) in the disconnected two quark loop
amplitude of the g' propagator, where m20—m, —m
represents the mass-squared splitting between the g' and
pseudoscalar octet mesons in the full theory. For the vr-vr

scattering amplitude the one-loop diagram in chiral per-
turbation theory formed by two double-pole propagators
yields a divergent imaginary part at threshold in the s
channel [27]. This implies that the vacuum amplitude
B (t) would be ill-behaved as t increases. A rapid loss
of signal seen in Figs. 4 and 9 may be partly related to
this point.

The same diagram viewed in the t channel gives a con-
tribution of the form

m~ = 0.5361(92) + 1.61(14)m~,
f = 0.0680(28) + 0.338(43)mv.

(50)
(51)

Combining (46)—(51) one can estimate the fractional
change of the I = 0 scattering length relative to the cur-
rent algebra value ap ——7m /(32vr f ) expected for the
Wilson action at P = 5.7. The result is plotted by a solid
line in Fig. 11 as a function of m /m~. We see that the
contribution of the singular term would become signifi-
cant only for realistically small values of quark masses,
which are beyond our computing resources.

A similar estimate for the Kogut-Susskind case, strictly
speaking, requires results for mo for that action which is
not available. One may, however, take over (48) as a
guide. Employing the data of Ref. [28] for the Kogut-
Susskind quark action at P = 5.7, which yield

m = 0.004(1) + 7.96(5)m~,
m~ = 0.782(86) + 10.0(6.7)m~,

f = 0.118(7) + 0.97mq,

(52)
(53)
(54)
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one finds the dotted line in Fig. 11 for the &actional
change hap/ap for the Kogut-Susskind case. Again the
singular contribution is very small hap/ap = 0.001 at the
point mz ——0.01 (m /m~ = 0.33) of the simulation. For
the energy shift we find bE = 3.8 x 10, which may be

mo = 0.299(14) —1.57(19)mq. (48)

m = 2.72(10)m~, (49)

For m2, m~, and f we find f'rom the values reported in
Ref. [24] that

FIG. 11. Fractional change of the I = 0 m-vr scattering
length due to infrared divergences in quenched QCD nor-
malized by the current algebra value ap = 7m /(32vrf ) at
P = 5.7 plotted as a function of m /m~. Solid line is for
the Wilson action and dotted line for the Kogut-Susskind ac-
tion. Arrows indicate the position where our calculation of
vr-m four-point functions is made.
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compared with the value hE = 1.2(4.0) x 10 4 extracted
&om the slope of the direct amplitude RD(t).

The estimate above indicates that the spurious in-
frared divergence and possible failure of the quenched
approximation do not become manifest in m-m four-point
functions unless the simulation is made with a quark
mass much smaller than the value being taken in cur-
rent quenched QCD studies. Of course, the problem of
unphysical singularity does not arise if calculations are
inade on full QCD gauge configurations.

In particular, a comparison of results at P = 5.7 and 6.0
indicates that finite lattice spacing errors are not large,
at least for the Kogut-Susskind case, for the I = 2 chan-
nel [compare open squares (P = 5.7) and open diamonds
(P = 6.0) in Fig. 12]. Whether this applies also to the
I = 0 channel should be examined in future work.

V. m-N, K-N) AND K-N SCATTERING
LENGTHS

D. Summary of vr-x scattering lengths
A. x-N scattering lengths

Our results for m-a scattering lengths are summarized
in Fig. 12 in terms of the dimensionless ratio 32m f ao/m
together with those of Refs. [18,19] for I = 2. We ob-
serve an agreement of lattice results with current algebra
predictions up to quite heavy quark masses (m /m~ =
0.7 —0.8) for both I = 0 and 2 channels. In detail, how-
ever, the Wilson result for the I = 0 scattering length ob-
tained at a heavy quark mass is somewhat smaller than
the current algebra value, while the Kogut-Susskind re-
sults at a small quark mass are larger. It would be an
interesting problem to repeat the Kogut-Susskind simu-
lation for larger quark masses in order to see if the trend
seen for the Wilson action is reproduced. For the I = 2
channel we do not observe such a difFerence between the
two actions.

Aside &om the complications for the Kogut-Susskind
case due to breaking of flavor symmetry discussed in
Sec. IVA1, possible sources of systematic errors in our
results are the uncertainties in higher order 1/L terms
of (1) and scaling violations due to a fairly large lattice
spacing of our simulation (a i = 1 —1.5 GeV at P = 5.7
determined from the p meson mass [23,24])„. For the I = 2
channel the previous work [18,19] checked these points.

1..6 I I I
I

I I I
I

I

K-jV (K=O. 164)

1,2
I=1/2

1,0 &~I~Iw

I=3/20.8

We calculate the vr-N scattering lengths &om vr-N
four-point functions. Since the wall source technique
w'ithout gauge 6xing does not yield good signals for the
nucleon, we use the Coulomb gauge fixing at the t = 0
time slice for the nucleon source. We employ the Wil-
son quark action at hopping parameters K = 0.164 and
0.1665, using 60 and 30 gauge configurations, respec-
tively.

In Fig. 13 we show the ratio Bi(t) of vr Nampli-tude
for the isospin eigenchannels I = 1/2 and 3/2 at the two
values of the hopping parameter. The data are fitted with
the linear form Bl(t) = Zi(1 —bEit) over 4 ( t ( 9, and
the results for the scattering length are listed in Table VI.
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FIG. 12. I = 0 and 2 8-wave m-m scattering lengths ao.
Solid and open symbols denote Wilson and Kogut-Susskind
results. Triangles are for Coulomb gauge results. Squares
(P = 5.7) and diamonds (P = 6.0) for I = 2 are from
Refs. [18,19]. Dotted lines indicate predictions of current al-

gebra.
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FIG. 13. Rr(t) (I = 1/2 and 3/2) for the m Nfour-point-
function at (a) K' = 0.164 and (b) 0.1665. Solid lines are
linear 6ts for 4 & t & 9.
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TABLE VI. vr-N scattering lengths in lattice units for the Wilson quark action on a 12 x 20
lattice. Numbers in square brackets are current algebra predictions evaluated with the measured
values of m„, m~, and f listed in Table III.

K
0.164

0.1665

ao
3.04(66)

[2.701(41)]
—0.70(58)
[3.02(11)]

I = 1/2
~EI

—0.0219(54)

0.011(11)

ZI
0.916(22)

1.021(52)

ao
—1.10(20)

[
—1.350(20)]
—1.31(22)

[
—1.509(53)]

I = 3/2
bEI

0.0151(35)
ZI

0.975(18)

0.0243(55) 0.964(31)

They are compared with predictions of current algebra
and PCAC (values in square brackets in Table VI), which
are given by

even (+) and odd (—) channels, summed over fermion
contractions having the quark line topology of the X di-
agram. In terms of the isospin eigen amplitudes Rr(t),
the crossing even and odd amplitudes are given by

ao(I = 1/2) =+-
4vr fg

ao(1 =3/2) = —' ",",
8vr

(55)

(56)

R+(t) = sRi=i/2(t) + sRI s/2(t),
R (t) = sRI ~/2(t) —~~RI s/2(t).

(57)

(58)

where p N = m mN/(m + mN) is the reduced mass
and the right-hand sides are estimated with the mea-
sured values of m, mN, and f in Table III. The results
at K = 0.164 are consistent with the current algebra
prediction, in spite of the fact that simulations are made
with quite heavy quarks corresponding to m /mz ——0.74.
The quality of data deteriorates for a lighter quark of
K = 0.1665; more statistics are clearly needed as Fig. 13
indicates.

I et us de6ne RK+(t) to be the contribution of X type
diagrams (A = D, C, R, and CR; see Fig. 2) to crossing

&-lV (Wilson, K=0.164)
I I I

[
I I I

J
I I I [ I I I

[
I

&I II I I

~ & II
10 Ie ~ ~ ~ ~ ~ ~ +

The ratios R~+(t) are plotted in Fig. 14 as a function of t
for K = 0.164. We recall that the crossed (C) and rect-
angular (R) amplitudes are governed by current algebra;
the soft pion theorem predicts that the crossing even am-
plitudes R+(t) and R+(t) should show a reversal of sign
in the slope with respect to t. The direct (D) and crossed
rectangular (CR) amplitudes do not appear in current
algebra to leading order in m, and therefore we expect
that RP (t) and Rg (t) are flat. Our results in Fig. 14 are
roughly consistent with these expectations except that
the t dependence is not very pronounced for the rectan-
gular diagram compared to the crossed diagram and that
the direct amplitude exhibits a positive curvature. Both
these features are similar to what appeared in the m-vr

case with the Wilson quark action, perhaps originating
from heavy quark mass employed (m /m~ = 0.74).

B. K-N and K-N scattering lengths
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FIG. 14. Individual ratios Rf (t) (X' = D, C, R, and CR)
for vr-N four-point function projected to crossing even (solid
circles) and odd (open circles) channels.

The prediction of current algebra and PCAC for SU(3)
symmetry is given by

a, "(I=o) =o,
KN(I 1) I KN

4~ fK
'

8x fK2

(60)

(61)

KN (I
8m fK2

(62)

with pKN = mKmN/(mK + mN) being the reduced
mass. Looking at Table I we observe that the results
for the KN channel are not unreasonable compared with
experiment, although the I = 1 scattering length is oK
by a factor of 2 probably due to a long extrapolation to
the soft K meson limit. On the other hand, comparison
of predictions (61) and (62) for the KNchannel with'-
the experiment requires a caution: vrA and mZ channels
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E-N(Wilson, K=o. 164)
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FIG. 15. Individual ratios Rz (t) (A = D and t ) of the
K-N amplitude for isospin eigenchannels. Solid and open
symbols denote I = 0 and 1 results.

FIG. 17. Rr(t) (I = 0 and 1) for the K Nfour--point func-
tion on a 12 x 20 lattice at P = 5.7 and K = 0.164. Solid
lines are linear fits for 4 & t & 9.

are already open at the KN threshold. lt is interest-
ing to note that the prediction (62) for the I = 1 KN
scattering length still agrees with the real part of the
experimental value. The fact that the real part of the
I = 0 KN scattering length predicted by (61) has a sign
opposite to that of the experiment is clearly due to the
presence of A(1405). We point out that the lattice results
reported below can be compared better with the current
algebra values, since the present lattice calculation with
the quenched approximation is basically a single channel
calculation without taking into account an opening of the
channels below the threshold.

Our results for K-N and K-N scattering lengths are
obtained at K = 0.164, employing the same hopping pa-
rameter for the strange and up-down quark masses. The
contribution of the direct and crossed diagrams to the
K-N amplitude in the I = 0 and 1 isospin eigenchan-
nels is plotted in Fig. 15. For the I = 0 channel (solid
circles) a small positive slope of the direct amplitude is
almost canceled out by the negative slope of the crossed
one. The direct and rectangular contribution to the K-N

amplitude for both isospin eigenchannels are presented in
Fig. 16.

The ratio Rl(t) for the isospin eigenchannels is shown
for the K-N and K-N cases in Figs. 17 and 18, respec-
tively. We made a linear fit Rr(t) = Zl(1 —bElt) over
4 & t & 9 with the results given in Table VII, together
with the current algebra values evaluated with the mea-
sured value of m, m~, and f in Table III. We see that
all signs agree with those of the current algebra results.
For the I = 0 KN scattering length for which the current
algebra value is vanishing, the lattice result also yields a
smaller value. For other cases, the agreement is up to a
factor of 2.

VI. N-N SCATTERING LENGTHS

Calculation of N-N scattering lengths poses a number
of challenging obstacles not encountered for the case of e-
m and vr-N scattering. First of all the experimental scat-
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FIG. 16. Individual ratios Rz (t) (A = D and R) of the
K-N amplitude for isospin eigenchannels. Solid and open
symbols denote I = 0 and 1 results.

FIG. 18. Rr(t) (I = 0 and 1) for the K-1V four-point func-
tion on a 12 x 20 lattice at P = 5.7 and K = 0.164. Solid
lines are linear fits for 4 & t & 9.
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ZI
0.987(19)

ao
0.55(47)

l 0]

4.64(37)
[4.O51(61)]

—1.56(13)
[
—2.701(41)]

2.63(64)
[1.35O(2O)]

—0.0415(64) 0.881(23) —0.0188(45) 0.941(20)

TABLE VII. K-N and K-N scattering lengths in lattice units for the Wilson quark action at
the hopping parameter K = 0.164 on a 12 x 20 lattice. Numbers in square brackets are current
algebra predictions evaluated with the measured values of m, m~, and f listed in Table III.

I = 0 I = 1
~El ao bEI Zl

K —N —0.0051(38) 0.0240(27) 1.012(16)

tering lengths are quite large, being of order 10 fm (see
Table I). This means that lattice sizes much larger than
2—3 fm, which are accessible in current numerical sim-
ulations, will be needed to suppress O(I ) corrections
neglected in the I uscher's formula (1). Secondly, extrac-
tion of the scattering length in the spin triplet channel re-
quires a calculation of the lowest scattering state orthog-
onal to the ground state, which is the deuteron bound
state. In fact the negative sign of the s-wave spin triplet
scattering length is a consequence of the existence of the
deuteron as follows &oxn Levinson's theorem. Finally
statistical Buctuations in N-N four-point functions are
expected to grow more rapidly than in the m -vr and
N cases toward large time separations and small quark
masses as we shall discuss in detail in Sec. VII below.

A possible strategy in this situation is to start &om the
region of heavy quark masses, where simulations are eas-
ier, and subsequently reduce the quark mass. To follow
this approach, we first examine the behavior of nucleon-
nucleon forces toward larger quark masses through a phe-
nomenological model of one-boson exchange potentials.
We then present our lattice results carried out with heavy
quarks corresponding to m /mz 0.74 —0.95.

A. Phenomenologieal considerations

Let us consider what happens if the quark mass is in-
creased &om the physical value. The mesons most af-
fected by the increase is the pion and 0 representing the
two-pion exchange, whose masses increase as +mal. Thus
the attractive potential provided by these states becomes
rapidly shorter ranged (while the hard core mostly given
by u changes little), and the two nucleons have to come
closer to remain in the potential well. One can imagine
that the resulting increase of kinetic energy may easily
overwhelm the small deuteron binding energy, leading to
unbinding of the deuteron state.

We have examined w hether this actually takes place by
employing the one-boson exchange model of Refs. [29,30]
and varying the values of m and m according to our
lattice result for the slope m /mz. We find a divergence
of the scattering length for the triplet channel taking
place at mq ——6.3 MeV that signals unbinding of the
deuteron. The &actional increase of quark mass &om the
value 4.9 MeV corresponding to the physical point is only
30%. We have repeated the analysis in several alternative
ways, e.g. , varying other meson masses and/or the nu-
cleon mass assuming the relation mH ——AH +BHmq, and
also including a variation of the meson-nucleon coupling
constants. We have found that the qualitative features
are not modified: the deuteron most probably ceases to
exist as a bound state when the quark mass is increased

Low energy N-N scattering data are usually described
by phenomenological models of one-boson exchange po-
tentials [3]. At large nucleon-nucleon separations r
2 fm, the potential is dominated by one-pion exchange.
At intermediate distances 2 & r & 1 fm, the two-
pion exchange provides the dominant attraction, which
is modeled by an isoscalar scalar particle 0 of mass

500 MeV. Heavier bosons such as p and ~ also be-
come important in this range of distance. The potential
turns into a hard core at r 0.5 fm whose dynamical
details are not understood well.

The formation of bound states in the triplet S~ chan-
nel that emerges &om such a potential is subtle. The
central potential, which has a depth of about —50 MeV
at r = 1 fm both in the triplet Sq and singlet So chan-
nels, is insufBcient for bound-state formation. For the
triplet channel, however, the tensor potential provides
an additional attraction of a similar depth. This leads to
the binding of the deuteron with a small binding energy
of 2.224 57 MeV with a sizable mixing of D wave.
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FIG. 19. Individual contributions of direct and crossed am-
plitudes to the ratio R(t) for triplet Sq (solid symbols) and
singlet Sp (open symbols) channels.
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FIG. 20. R(t) for N Nfour--point function on a 20 lattice
at P = 5.7 and K' = 0.160. Solid lines are linear fits for
4 &t (9.

by more than 30—40% from the physical value. Another
common feature is that the scattering lengths decrease
to a value of the order of 1 fm, when quark mass is in-
creased so that m /m~ = 0.7 —0.9. It is reasonable to
expect that the scattering length takes a value similar to
the hadron size in the absence of bound. -state eKects.

B. Lattice results

Our lattice study is carried out with the Wilson quark
action. In the calculation of the nucleon four-point func-
tion gauge con6gurations are fixed to the Coulomb gauge
over all space-time to enhance signals. Projecting out
spin singlet and triplet combinations of the two nucleon
system is made by nonrelativistically combining the up-
per Dirac components of the nucleon operator as ex-
plained in Sec. IIB. Other technical features are similar
to the vr-m and vr-N cases.

In Fig. 19 we show the individual contributions of the
direct and crossed amplitudes to the ratio B(t) for the
triplet Si (solid circles) and singlet So (open triangles)
channels obtained at K = 0.160. We find that the direct
amplitudes for the two channels are virtually the same.
On the other hand, the crossed amplitude in the spin
triplet channel increases in contrast to a Hat behavior in
the spin singlet channel.

In Fig. 20 we show B(t) for the spin singlet and
triplet channels at K = 0.160, which corresponds to
m /m~ = 0.85. A clear signal with a positive slope
is observed for both channels, which means attraction

FIG. 21. N-N scattering lengths in units of fm as com-
pared to m Nand -s-vr scattering lengths in quenched QCD at
P = 5.7 calculated with the Wilson quark action. Conversion
to physical units is made with a = 0.137(2) fm determined
from the p meson mass.

(bEiv~ = E~~ —2miv ( 0). Similar results are ob-
tained at two other values of the hopping parameter
Ik = 0.150(m /m~ = 0.95) and 0.164(m /m~ = 0.74).
We extract the energy shift bEiv~ by fitting R(t) to a
linear form B(t) = Z(1 —hE~Nt). The fitting range is
chosen to be 4 ( t & 9 for K = 0.150 and 0.160. For
the case of K = 0.164, however, we used 2 & t & 6 due
to poor quality of our data. The fitted values of bE~N
are quite small (= 0.01), justifying the use of a linear
function instead of an exponential.

Prom phenomenological considerations in Sec. VI A we
expect that the deuteron. is not a bound state at a heavy
quark mass where our simulations are made. Given this
expectation, Liischer's formula (1) may be applied for
both spin singlet and triplet channels. The results in lat-
tice units are tabulated in Table VIII. We should remark
that the scattering lengths we found are large enough to
warrant a calculation with yet a larger lattice size, even
though we used quite a large size of 20: the three terms
in (1) are comparable in magnitude. A finite-size analysis
with larger lattice sizes is clearly necessary.

In Fig. 21 we compare the results for the N-N scat-
tering lengths with those for vr-m and m-N obtained with
the Wilson quark action. Conversion to physical units is
made using a = 0.137(2) fm determined &om the p me-
son mass. It is apparent that the N-N scattering lengths
are substantially larger than the vr-N and vr-m scatter-
ing lengths already for a heavy quark corresponding to
m /m~ = 0.74. Also noteworthy is the trend, albeit with
sizable errors, that the values for the spin triplet channel

Wilson quark action on a 20 lattice.

'sp
bE

—0.0085(27)
—0.0072(33)
—0.0102(30)

z
1.012(19)
1.048(25)
1.021(12)

K
0.150
0.160
0.164

g
0.987(13)
1.007(18)
0.997(7)

Qp

9.2(1.3)
7.3(1.9)
8.0(1.1)

TABLE VIII. N-N scattering lengths in lattice units for the

S
bE

10.8(1.2) —0.0126(39)
9.0(1.6) —0.0109(45)
10.8(9) —0.0207(48)
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are larger than those for the singlet channel, indicating a
stronger attraction in the triplet channel. This is consis-
tent with the existence of the deuteron bound state for
physical quark mass.

In physical units our results correspond to ao(NN)
1.0 —1.5 fm. These values are small compared to the
experimental value of order 10 fm. However, the large
experimental scattering lengths are a reBection of the
fact that the 8-wave nucleon-nucleon system is either
marginally bound (triplet channel) or very close to a
bound-state formation (singlet channel), which would not
be the case for heavy quarks studied in our simulation.
Therefore, our results are not unreasonable. We expect
that lattice results will exhibit an increase as the quark
mass is decreased. For the triplet channel, in particular,
the scattering length should diverge at the point where
the deuteron bound state is formed. According to the
phenomenological consideration in the previous section,
however, this will take place quite close to physical quark
mass, which is not accessible in current lattice @CD sim-
ulations.
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VII. PROBLEM OF STATISTICAL ERRORS

Our results for R(t) for various channels share the fea-
ture that statistical errors grow rapidly for large times,
examples of which are seen in Figs. 5 and 10 for ~-m,
Fig. 13 for 7r-N, and Fig. 20 for N-N cases. This be-
havior can be understood from (41), which implies that
the error bRx(t) of the ratio Rx(t) for a diagram X
increases as bR (t) oc exp(nest) with the exponent cxx
given in Table IX. The t dependence of the measured
errors agree very well with this formula. Some typical
examples are shown in Fig. 22.

This consideration clarifies why the vacuum amplitude
for the m-7r scattering rapidly loses signal as t increases:
the error has the largest exponent o.~ ——2m among
the four amplitudes contributing to the m-a four-point
function. We also expect that the rate of growth of er-
rors decreases for the vr-vr case toward small quark mass,
since the exponent is governed by the pion mass. Explor-
ing the light quark mass region is more difBcult for vr-N

and N-N scattering: the exponent for these cases is a
difference of the nucleon mass and pion mass with some
coeKcient, which depends on the channel, and the ex-
ponent stays nonvanishing or even increases toward the
chiral limit. We illustrate this point in Fig. 23 where we
plot the largest exponent, 2m for vr-vr, mN —m /2 for

FIG. 22. Error bR (t) of ratio R (t) as a function of t at
P = 5.7 in qenched +CD. Use of Kogut-Susskind or Wilson
quark action is indicated in parentheses. Solid lines indicate
expected slope calculated with measured values of mN and
m . (a) vr-s at m~ = 0.01, (b) vr-7r at K = 0.164, (c) 7r Nat-
K = 0.164, (d) N Nin the tripl-et Sq channel at R = 0.160.
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FIG. 23. Largest exponent n governing the errors of ratio
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TABLE IX. Exponent a. governing the growth of error of
the ratio R (t) for a daigram of type X.
X D
7r"K 0
x-N m~ —-m3

N-N 2m~ —3m.

0 mar
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2m pf —3m~
mph —
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X

FIG. 24. Example of quark contractions contributing to
~-N four-point function.
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TABLE X. Weights of direct (D) diagrams for vr N-, K N-,

and K-N four-point functions projected to isospin eigenchan-
nels.

vr-N, and 2m~ —3m for N-N cases, as a function of
m /m~ where we used the fits (49) and (50) for m and
mp, and

Diagram Contraction
Dl 12345
D2 13245
D3 21345
D4 31245
D5 32145
D6 23145

= 1
2
2

= 3
2

2
1

—2
—1

1
—1

2
1

—2
—1

1
—1

K-N
I=OI=1 =0

2
1

—2
—1

1
—1

2
1

—2
—1

1
—1

mN. ——0.741(21) + 3.80(31)m~ (63)

VIII. CONCLUSIONS

for mdiv obtained from the hadron mass data in Ref. [24].
We observe that the problem will be particularly severe
for the N-N four-point function for which the exponent
begins to increase for m /m~ & 0.5.

TABLE XI. Weights of crossed (C) diagrams for vr N, -

K-N, and K-N four-point functions projected to isospin
eigenchannels.

Diagram
Cl
C2
C3
C4
C5
C6
C7
C8
C9
Clo
Cll
C12
C13
C14
C15
C16
C17
C18

Contraction
42315
43215
24315
34215
23415
32415
41325
43125
14325
34125
13425
31425
41235
42135
14235
24135
12435
21435

3. I 3
2 2
1 1

3/2 0
—1 —1

—3/2 O

1/2 -1
—1/2 1

—1 —1
—3/2 O

1 1
3/2 0

—1/2 1

1/2
1/2 —1

—1/2 1
—1/2 1

1/2 —1
—1 2

1 —2

K-N
I=0 I= 1

1
2

—1
—2

1
—1
—1
—2

1
2

—1
1
1

—1
—1

1
—2

2

1
0

—1
0

—1
1

—1
0
1
0
1

—1
—1

1
1

—1
2

—2

=0

Diagram
Rl
R2
R3
R4
R5
R6
R7
R8
R9
Rlo
Rll
R12
R13
B14
R15
R16
R17
B18

Contraction
52341
53241
25341
35241
23541
32541
51342
53142
15342
35142
13542
31542
51243
52143
15243
25143
12543
21543

~-N
I = — I =—

1 1
—1/2 1

—1 —1
1/2 -1

—3/2 0
3/2 0
—1 —1

1/2 —1
1 1

-1/2 1

3/2 0
—3/2 O

—3/2 0
3/2 0
3/2 0

—3/2 0
3 0

—3 0

K-N
I=O I=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1 I=O
1

—1
—1

1
—2

2
—1

1
1

—1
2

—2
—2

2
2

—2
4

—4

1
1

—1
—1

0
0

—1
—1

1
1
0
0
0
0
0
0
0
0

TABLE XII. Weights of rectangular (R) diagrams for 7r N, -
K-N, and K-N four-point functions projected to isospin
eigenchannels.

TABLE XIII. Weights of crossed rectangular (CR) dia-
grams for 7r-N, K-N, and K-N four-point functions projected
to isospin eigenchannels.

Diagram
CR1
CR2
CR3
CR4
CR5
CB6
CR7
CR8
CR9
CR10
CR11
CR12
CR13
CR14
CR15
CR16
CR17
CR18
CR19
CR20
CR21
CR22
CR23
CR24
CR25
CR26
CR27
CR28
CR29
CR30
CR31
CR32
CR33
CR34
CR35
CR36

Contraction
52431
54231
53421
54321
25431
45231
35421
45321
24531
42531
34521
43521
51432
54132
53412
54312
15432
45132
35412
45312
14532
41532
34512
43512
51423
54123
52413
54213
15423
45123
25413
45213
14523
41523
24513
42513

x-N
I=—

2—1/2
—1/2
-1/2

1
1/2
1/2
1/2
—1

0
0

3/2
—3/2

1/2
1/2
1/2
—1

—1/2
—1/2
—1/2

1
0
0

—3/2
3/2

0
3/2

0
—3/2

0
—3/2

0
3/2
3/2

—3/2
—3/2

3/2

I=—
2
1
1
1
1

—1
—1
—1
—1

0
0
0
0

—1
—1
—1
—1

1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

K-N
I=o I= 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

K-N
I=o I= 1

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

In this paper we calculated hadron scattering lengths
in a variety of channels at P = 5.7 in the quenched ap-
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proximation. %'e demonstrated that Luscher's formula
that correlates scattering lengths with the energy of the
two-hadron system confined in a finite box can be used
to calculate any class of diagrams of scattering ampli-
tudes, when implemented with a modified wall source
method proposed by the present authors. The results
are physically sensible and encouraging, being in reason-
able agreement with current algebra values and the ex-
periment for m-m and m-N cases; for N-N scattering the
resulting'scattering lengths are significantly larger com-
pared to the first two cases even for heavy quarks.

In the present study dynamical efFects of sea quarks
are not taken into account. However, it is straightfor-
ward to apply our method once configurations are gener-
ated with dynamical quarks. Worrisome toward a more
realistic calculation is the exponential growth of errors
for large times discussed in Sec. VII. The problem is
particularly acute for N-N scattering, for which the rate
is numerically large and is expected to increase as the
chiral limit is approached. The anticipated large N-N
scattering lengths, which henceforth requires a large lat-
tice size, makes the problem further dificult. Advance
in our understanding of the low energy nucleon-nucleon
scattering &om the first principle has to await not only
future progress of computing power but also further in-
novation of calculational techniques.

of the Ministry of Education (Nos. 03640270, 05640325,
05640363, 06640372, 05-7511, 05NP0601, 06NP0601).

APPENDIX

O(x, y) = s s, ( q- C psq-) q'-(x) x q 7 q-(y), (A1)

(A2)

where subscripts with tiMes are assigned to quark fieMs q
and those without tildes to antiquark fields q. Quark con-
tractions for the operator product O(x, y)Ot(x', y') may
be specified by permutations Rom the set (I, 2, 3, 4, 5j for
quark fields to the set (1,2, 3, 4, 5) for antiquark fields.
For example, the contraction with crossed rectangular
topology shown in Fig. 24 corresponds to

In this appendix we enumerate weights of various
quark contractions contributing to the vr-N, K-N, and
K-N four-point functions. Let us consider the meson-
baryon operators given by
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There are 6, 18, 18, and 36 inequivalent contractions for
the direct, crossed, rectangular, and crossed-rectangular
diagrams. In Tables X —XIII we summarize the weights
of the corresponding amplitudes for vr-N, K-N, and K-
N four-point functions projected to isospin eigenchan-
nels. Sign factors arising from Fermi statistics are not
included in the weight. For definitions of meson and nu-
cleon operators, see Sec. IIB.
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