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Baryon +CD sum rules in an external isovector-scalar field
and baryon isospin mass splittings
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Within the QCD sum-rule approach in an external field, we calculate the baryon matrix element
of isovector-scalar current, Hs = (B~uu —dd~B)/2M&, for octet baryons, which appears in the
response of the correlator of baryon interpolating fields to a constant isovector-scalar external field.
The sum rules are obtained for a general baryon interpolating field with an appropriate form for the
phenomenological ansatz of the spectral density. The key phenomenological input is the response of
the quark condensates to the external field. To first order in the quark mass difference bm = m& —m„,
the nonelectromagnetic part of the baryon isospin mass splitting is given by the product of bm and
H&. Therefore, the QCD sum-rule calculation of K& leads to an estimate of the octet baryon
isospin mass splittings. The resulting values are comparable to the experimental values; however,
the sum-rule predictions for H& are sensitive to the values of the response of the quark condensates
to the external source, which are not well determined.

PACS number(s): 12.38.Lg, 11.30.Hv, 11.55.Hx, 14.20.—c

I. INTRODUCTION

To understand the observed properties of hadrons &om
the underlying theory of the strong interaction, quantum
chromodynamics (QCD), is a challenging task since QCD
remains intractable at low energies. Among the attempts
made in dealing with the strong interactions at low en-
ergy scales is the QCD sum-rule approach [1], which has
proved to be a useful tool of extracting qualitative and
quantitative information about hadronic properties [1,2].

One of the extensions of the sum-rule methods made
by Ioffe and Smilga [3] for external field problems enables
one to calculate the baryon matrix elements of various bi-
linear quark operators. These include the matrix element
of electromagnetic current to determine the magnetic mo-
ments [3—5], the matrix element of the axial vector cur-
rent to find the renormalization of baryon axial vector
coupling constant [6,7], the matrix element of the quark
part of the energy-momentum tensor, which gives the
momentum fraction carried by the up and down quarks
in deep inelastic scattering [8,9], and the matrix element
of isoscalar-scalar current for evaluating the nucleon o.

term [10].
In this paper, we evaluate the baryon matrix elements

of isovector-scalar current, II~ = (B~uu —dd~B)/2M',
within the external field QCD sum-rule approach. In
Ref. [11], the proton matrix element (p~uu —dd~p) j2M„
has been calculated in the external Geld approach. How-
ever, one piece of the phenomenological representation
has been omitted in the calculation. This has been
pointed out recently by Ioffe [12]. In the present paper,
we shall derive the appropriate phenomenological repre-
sentation, which includes the piece neglected in Ref. [11].
We use this complete phenomenological representation
and a general baryon interpolating Geld to calculate the
matrix element H~ for octet baryons.

External Geld sum rules for baryons are based on the

study of the correlation function of the baryon interpolat-
ing field in the presence of an external field. The appear-
ance of the external field leads to specific new features
in QCD sum rules which distinguish them from those in
the absence of the external Geld. At the hadron level,
the spectral parameters usually used in the parametriza-
tion of the spectral density, baryon masses, pole residues,
and continuum thresholds, all respond to the external
field. Consequently the phenomenological representation
for the response of the correlation function contains a
double pole at the baryon mass whose residue contains
the matrix element of interest. This corresponds to the
response of the pole position. The response of the pole
residues gives rise to single pole terms, which contain in-
formation about the transition between the ground state
baryon and excited states. The single pole contributions
are not exponentially damped after Borel transformation
relative to the double pole term and should be retained in
a consistent analysis of the sum rules. In addition, there
are terms corresponding to the response of the continuum
thresholds, which should also be included in the calcu-
lation. At the quark level, the external field contributes
in two different ways —by directly coupling to the quark
fields in the baryon current and by polarizing the QCD
vacuum. By equating these two different representations
for the response of the baryon correlator, one obtains the
external field sum rules, which relate the baryon matrix
elements of various currents to QCD Lagrangian param-
eters, vacuum condensates, and the response of conden-
sates to the external source.

The observed baryon isospin mass splitting has its ori-
gin in the electromagnetic interactions between quarks
and in the different masses of the up and down current
quarks. The contributions of the latter to Grst order in
the quark mass difference bm = mp —m„ is given by
the product of bm and the baryon matrix element of the
isovector-scalar current. Therefore, the QCD sum-rule

0556-2821/95/52(5)/2964(13)/$06. 00 1995 The American Physical Society



52 BARYON QCD SUM RULES IN AN EXTERNAL ISOVECTOR-. . . 2965

calculation of the baryon matrix elements of isovector-
scalar current for octet baryons naturally leads to an es-
timate of the octet baryon isospin mass splittings. (The
Z -Z and Z+-Z splittings will not be considered here
as there is mixing of the Z with the A via isospin-
violating interactions. )

The rest of this paper is organized as follows. In Sec. II,
we establish the baryon QCD sum rules in an external
isovector-scalar field. In Sec. III, we then analyze the
sum rules and present the results. In Sec. IV, we es-
timate the isospin mass splittings of the octet baryons
using the baryon matrix elements of isovector-scalar cur-
rent calculated &om QCD sum rules. Further discussion
of our results are given in Sec. V.

II(Sv, q) = if d Te
'

( 0T)q)a ( T) g~ ( 0) f)g (2.1)

double dispersion relation. Here we present an alterna-
tive approach to derive the phenomenological represen-
tation. The operator product expansion (OPE) results
can be easily obtained following the procedures outlined
in Ref. [11]. We work to leading order in perturbation
theory and to first order in the strange quark mass. Con-
tributions proportional to the up and down current quark
masses and the gluon condensate are neglected as they
give numerically small contributions. We include con-
densates up to dimension 8.

Consider the correlator of the baryon interpolating
field in the presence of a constant external isovector-
scalar Geld S~.'

II. BARYON +CD SUM RULES
IN AN EXTERNAL ISOVECTOR-SCALAR FIELD

In this section, we establish the baryon QCD sum rules
in the presence of an external isovector-scalar Beld. In
previous works [3—12], the phenomenological representa-
tion for the correlator is usually obtained by analyzing a

where g~ is the interpolating Geld for the baryon under
consideration. We consider baryon interpolating fields
(currents) that contain no derivatives and couple to spin-

2 states only. There are two linearly independent fields
with these features, corresponding to a scalar or pseu-
doscalar diquark coupled to a quark. In this paper, we
take a linear combination of these two fields:

(x) = 2 s, f[u (x)Cdb(x)]»u, (x) + t[u (x)C»dp(x))u (x))

nz+(x) = 2e.~. ([u. (x)C»(*)]»u.(*) + t[u. (*)C»»(x)]u.(*))

g=o(x) = 2e s, ([s (x)Cub(x)]»s, (x) + t[s (x)C»ui, (x)]s,(x)),

(2.2)

(2.3)

(2.4)

where u(x), d(x) and s(x) stand for the up, down, and
strange quark Gelds, a, 6, and c are the color indices,
C = —C is the charge conjugation matrix, and t is an
arbitrary real parameter. The interpolating fields for the
neutron, Z and:-, can be obtained by changing u(d)
into d(u). The interpolating fields with t = —1, advo-
cated by Ioffe [13,14], have been used exclusively in previ-
ous papers on external field sum rules [3—12]. In principle,
the sum-rule predictions are independent of the choice
of t; in practice, however, the OPE is truncated and
the phenomenological description is represented roughly.
The goals in choosing the interpolating field for QCD
sum-rule applications are to maximize the coupling of
the interpolating field to the state of interest relative to
other (continuum) states, while minimizing the contri-
butions of higher-order terms in the OPE. These goals
cannot be simultaneously realized. The optimal choice
of the baryon interpolating Geld seems to be around
Ioffe's choice. We refer the reader to Refs. [14,15] for
more discussion about the choice of baryon interpolating
fields. We shall consider the interval —1.15 & t & —0.85
here. For t & —0.85 the continuum contributions become
large while for t & —1.15 the contributions &om higher-
order terms in the OPE become important relative to the
leading-order terms.

The subscript Si in Eq. (2.1) indicates the presence of
the external field. Thus, the correlator should be calcu-
lated with an additional term

AZ —:-Sv[u(x)u(x) —d(x)d(x)], (2.5)

added to the usual QCD Lagrangian, and —AZ added
to QQQD ~ Since S~ is a scalar constant, Lorentz covari-
ance and parity allow one to decompose II(sv, q) into
two distinct structures [11]:

ll(S~, q) = ll'(S~, q') + ll (S~, q')y . (2.6)

To obtain QCD sum rules, one needs to construct a phe-
nomenological representation for II(sv, q) and evaluate
II(s~, q) using the OPE.

A. Dispersion relation
and phenomenological spectral ansats

ri'(S
0 8 —g

(2.7)

for each invariant function (i = 1, q), where p'(Sv, s) =
i Imll'(Sv, s) is the spectral density. Here we have omit-
ted polynomial subtractions which will be eliminated by
a subsequent Borel transformation. We have also omit-
ted infinitesimal as we are only concerned with a large

To determine the correlator at the hadron level we use
the dispersion relation
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and spacelike q in @CD sum rules.
In practical applications of @CD suin-rule approach,

one usually parametrizes the spectral density by a sim-
ple pole representing the lowest energy baryon state of
interest plus a continuum which is approximated by a
perturbative evaluation of the correlator starting at an
effective threshold [1,2,13]. When Sv is present, we add
—LZ to 'Rgco, which is equivalent to increasing m and
m~ by S~ and —S~, respectively. Consequently at the
hadron level, the baryon spectrum will be shifted. Since
we are concerned here with the linear response to the
external source, S~ can be taken to be arbitrarily small
(see below). Thus, there is no rearrangement of the spec-
trum, and we can use a pole plus continuum ansatz for

the baryon spectral density

p'(Sv, s) = A~ P'b(s —M~ ) + p (Sv, s)8(s —so*),

(2 g)

where P' = (M&, 1) for (i = 1,qj, and p (Sv, s) is to be
evaluated in perturbation theory. Here A& is defined by
(0~rI~ ~B)g~ = A&v& with v& the Dirac spinor normalized
to V&v& ——2M&, M& is the mass of the lowest baryon
state, and so is the continuum threshold in the presence
of the external Beld.

I et us now expand both sides of Eq. (2.7) for small
Sv'.

IIo(q ) + SvIIi(q ) + = 2ds+ Sv 2ds+o(s) pi(s)
o 8 —g o 8 —g

(2.9)

Since S~ is arbitrary, one immediately concludes that

H, ( 2) Po(s) d,
0 -q' (2.10)

H;( 2) Pi(s) d,
o 8 —g

(2.11)

Obviously, Eq. (2.10) leads to the baryon mass sum rules in vacuum which have been extensively studied [13,16,2,17].
Here we are interested in Eq. (2.11), which corresponds to the linear response of the correlator to the external source
and contains the baryon matrix element under consideration (see below).

Expanding the right-hand side of Eq. (2.8), we find

po(s) = Aa~o~(s Ma) + po(s)~(s so)

p', (s) = 2II~ M~A~—(V()b'(s —M~) + AA~ /oh(s —MIi)

(2.12)

+EgV A~b(s —M~2) —Aso po(s)b(s —so) + p, (s)8(s —so), (2.13)

where we have defined

M~ ——M~ + SyH~ +

A~ ——Ag + SvAA~ +

(2.14)

(2.15)

so = so + S&Aso + (2.16)

4' = do+ Sv&4'+ (2.i7)

P (s) =Po(s)+S«i(s)+ " (2.is)

where the first terms are the vacuum spectral parameters
in the absence of the external field. Note that b,P = H~
and b, P'i = 0. Treating Sv as a small parameter, one can
use the Hellman-Feynman theorem [18,19] to show that

(Biuu —ddt B)
Hgy —— (2.i9)

where we have used covariant normalization

I

(k', B~k, B) = (2m) k h~ &(k' —k).
One notices that pi(s) has specific new features which

distinguish it from po(s). The first term in Eq. (2.13),
which is absent in po(s), gives rise to a double pole at the
baryon mass whose residue contains the matrix element
of interest. The second and third terms are single pole
terms; the residue at the single pole contains information
about the transition between the ground state baryon
and the excited states. In terms of quantum mechanical
perturbation, the double pole term corresponds to the
energy shift while the single pole terms result &om the
response of baryon wave function to the external Beld.
The fourth term is due to the response of the contin-
uum threshold to the external source and the last term
is the continuum contribution. As emphasized in the pre-
vious works, the single pole contributions are not expo-
nentially damped after the Borel transformation relative
to the double term and should be retained in a consistent
analysis of the sum rules.

The fourth term has been neglected in Ref. [11). The
contribution of this term is suppressed in comparison
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with the single pole terms by a factor e ('0 M&l~M [see
Eqs. (2.29)—(2.36)]. If the response of the continuum
threshold is small, one can neglect the contribution of
the fourth term. However, if the response of the contin-

I

uum threshold is strong, one needs to include the fourth
term in the calculation. This point has been noticed re-
cently by Ioffe in Ref. [12], where a double dispersion
relation is considered for the vertex function

pq(q) = f d Te'~' (0)Tg~(x) f d z[u(z)u(z) —d(z)d(z)) q~(0)~D)
W

(2.2o)

in order to get the appropriate phenomenological rep-
resentation. [This vertex function can be obtained by
expanding the right-hand side of Eq. (2.1) directly. ] We
note that our discussion and Eq. (2.13) are consistent
with those given in Ref. [12]. Substituting Eq. (2.13)
into Eq. (2.11), one obtains the appropriate phenomeno-
logical representation.

B. +CD representation

(uu)s = (uu)p —ySv( u)p,
(dd)s = (dd)o + gSv(dd)o
(ss)s = (ss)p —g Sv(ss)p

(2.23)

(2.24)

(2.25)

(g.u~. gu)s = (g.«gu)o —X Sv(g.u~ gu)o,
(2.26)

where (O)p = (0~0~0). The mixed quark-gluon conden-
sates change in a similar way:

The QCD representation of the correlator is obtained
by applying the OPE to the time-ordered product in the
correlator. When the external field is present, the up
and down quark fields satisfy the modified equations of
motion:

(g.der gd)s = (g.do . gd)o+ y Sv(g.do . gd)o ~

(2.27)

(g.s~ gs)s = (g.s~ gs)o —X .Sv(g.s~. gs)o,
(2.28)

(ip —m„—Sv)u(z) = O,

(iP —mq+ Sv)d(x) = 0,
(2.21)

(2.22)

where P = ")"(8„—ig, A„) is the covariant derivative.
(The equation of motion for the strange quark field does
not change. ) In the framework of the OPE, the external
field contributes to the correlator in two ways: It couples
directly to the quark fields in the baryon interpolating
fields and it also polarizes the QCD vacuum. Since the
external field in the present problem is a I orentz scalar,
nonscalar correlators cannot be induced in the QCD vac-
uum. However, the external field does modify the con-
densates already present in the QCD vacuum. To first
order in S~, the chiral quark condensates can be written
as

where O.g = o„„g""with g" the gluon field tensor. One
can express y, y„y, and y, in terms of correlation
functions (see Ref. [11]).Here we have assumed that the
response of the up and down quarks is the same, apart
&om the sign. The Wilson coefBcients can be calculated
following the methods outlined in Ref. [11]. The results
of our calculations for the invariant functions II& and II1
are given in the Appendix.

C. Sum rules

The QCD sum rules are obtained by equating the QCD
representation and the phenomenological representation
and applying the Borel transformation. The resulting
sum rules in the proton case can be expressed as

c1+6c2MSE L 8 9 —c1 + 6c2 M6E c2 2 M4E L 1 /27 1+
2 x- .+'x -.- ~

— +'
2 3

p2M2 ~p2 M M2 ~ p2M2 ~
—MJ, /M

p p p p p p p

80CE
4/9 + 2 2 L—26/27 ~ 1M2 — /M

2 0 (2.29)

4C1 —C3 4 4/9 C4 + C5 —6C2 2 „~2 ~ 26/27 C1 2 ~ ~2 ~4/9 1 + 2 2 2L—2/27M EoL
4 12

m'a'I. -'~" = 2JI X'M —~&'M' .™+ —'(")'»'M'L '" "'
12 p p p p (2.30)
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where a = —47r2(qq)p, A2—:327r4A2, b,A2—:327r4AA2,

and mp — (g, qo . gq)p/(qq)p. Here we have ignored
the isospin breaking in the vacuum condensates (i.e. ,

(uOu)p (dOd)p = (qOq)p); the inclusion of the isospin
breaking in vacuum condensates only gives small refine-
ments of the results. We have also defined c4 ——t + lot+1, c5 ——t +4t+7 . (2.32)

cl = (1 —t), c2 = 1 —t, cs = 5t + 2t+ 5,

—80/M
0 =

~
—so/M S

M2

( t)2
1 80/M x Of + 0

2M4 M2 (2.31)

The anomalous dimensions of the various operators
have been taken into account through the factor L =
ln(M2/A2&cD)/ln(y2/A&2cD) [1,13]. We take the renor-
malization scale p and the @CD scale parameter AqcD
to be 500MeV and 150MeV [13].

The sum rules in the Z+ case are given by

C1
3c2M E2L —3c2yaM El + y, f—aM El + (cl —2c3)m aM EpL

3c2m, f—aM EpL + y mpaM EpL / — m, f,—mpaM L

2c1 + 3c2 —6c3 2 2 38/27 c1 2c3 „2 2 2c3
12

m, moaM I + ja M + ym, a M
3 ' 3

+c2ym, fa M + c2y, m, fa M

= [2'+ A~+M/+ —AA~+ Mg+M —Hp+ A~+M ]e™E+/ + —m, ( s)pL
4

+ 1 f 1L—4/9 3 1L—4/9 + 2 2 L—26/27 ~ 1M2 —ss/M (2.33)

3c2m, M E1L / — aM EpL / + 3c2faM EpL / —3c2ym, aM EpL

4
3 caM4L 4/9 2 2 M2L —26/27 2 g 2 M2L —26/27

12
2 M2L 26/27 6 — m f 2 M2L 2/27 + 1 —a2M2L4/9

2c2yfa M—L / —2c2y fa M L / — 2 c,mIa/ — m, fa2L

2 2L—2/27 + 2 f 2 2L—2/27 + 2 f 2 2L—2/27

2 2L—2/27 + 2 f 2 2L—2/27 + 2 f 2 2L—2/27

= [2'+ g~Mp+ —AA~+M ]e™~+/M
C3 —8/9 —& M+ —(sp) —3c2m, a — m, fa A—sp4M L ' e (2.34)

where f—:(ss)p/(qq)p and f, = (g, so . Qs)p/(g, qo. gq)p. The sum rules in the =p case are

ME2L +——yaM El —3c2y—sfaM El —3c2m, aM EpL
2 2

+(cl —2cs)m, faM EpL + gtnsfsmpaM EpL4 —8/9 4 —14/27

2 2 2 38/27 2C1 + 3C2 —6C3 z 2 M2L 38/27 3 &2

4
——m, mpaM L

12
ms J smpa 3'

—c2fa M —(cl —2cs)ym, fa M —(cl —2c )y2, m, fa M

= [2H~o A-, M-, —AA-o M oM —H~o A, M-2] ™/M
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( 1)2L—4/3 + 1 1 L—4/9

f L—4/9 + f 2 L—26/27 ~ 1 —o/ (2.35)

C3
3c2m, M E1L / + aM—EpL / + 3c2faM EpL / —3c2ym, aM EpL

M4E L—4/9 + & 2 M2L 26/2—7 2 f 2 M2L 26/2—7

2 M2L —14/27 + 4 f 2M2L —26/27 2c ~f 2M2L4/9
12 ms a 8 0 2

fa2M2L4/9 + 1 f2 2M2L4/9 c f2 2L—4/9 1 f 2L—4/92+8

gfm2aL / ——y ffmaL / + y fmaL

'm fa gs9L 6/ M, o/M'— —
0

2 f 2 2L—2/27 1 ff 2 2L—2/27 + f 2 2L—2/27
12 ~ 0 12 ms S 0

= [2II~o A-oM=o —AA-o]e

+ —(s ) —3c2m. aC3 q

16
(2.36)

III. SUM-RULE ANALYSIS

0.8 ( M & 1.4GeV for the proton case,

1.2 & M & 1.8GeV for the Z+ and:- cases,

(3.1)

(3.2)

We now analyze the sum rules derived in the previ-
ous section and extract the baryon matrix elements of
interest. Here we follow Ref. [11] and use only the sum
rules (2.30), (2.34), and (2.36), which are more stable
than the other three sum rules. The pattern that one
of the sum rules (in each case) works well while the
other does not has been seen in various external field
problems [3,5,7,10,11]. This may be attributed to the
different asymptotic behavior of various sum rules. As
emphasized earlier, the phenomenological side of the ex-
ternal field sum rules contains single pole terms arising
&om the transition between the ground state and the
excited states, whose contribution is not suppressed rel-
ative to the double pole term and thus contaminates the
double pole contribution. The degree of this contamina-
tion may vary &om one sum rule to another. The sum
rule with smaller single pole contribution works better.
We refer the reader to Refs. [7,10,11] for more discussion
about the different behavior of various external field sum
rules. In the analysis to follow, we disregard the sum
rule Eqs. (2.29), (2.33), and (2.35), and consider oxily
the results from the sum rules Eqs. (2.30), (2.34), and
(2.36).

We adopt the numerical optimization procedures used
in Refs. [17,20]. The sum rules are sampled in the fidu-
cial region of Borel M~, where the contributions &om
the high-dimensional condensates remain small and the
continuum contribution is controllable. We choose

I

which have been identified as the fiducial region for the
baryon mass sum rules [3,21]. Here we adopt these
boundaries as the maximal limits of applicability of the
external Geld sum rules. The sum-rule predictions are ob-
tained by minimizing the logarithmic measure b(M2) =
ln[maxixnum(LHS, RHS)/minimum(LHS, RHS j] aver-
aged over 150 points evenly spaced within the fiducial
region of M, where LHS and RHS denote the left- and
right-hand sides of the sum rules, respectively.

Note that the vacuum spectral parameters A&, M~,
and sp also appear in the external field sum rules (2.29)
and (2.30) and (2.33)—(2.36). Here we use the experi-
mental values for the baryon masses and extract A&2 and
8O &om baryon mass sum rules using the same optimiza-
tion procedure as described above. We then extract H~,
LA&, and 480 &om the external field sum rules.

For vacuum condensates, we use a = 0.55 GeV (m„+
m~ 11.8 MeV) [3,13], mp ——0.8GeV [3,16], and f
f, = 0.8 [16,17]. We take the strange quark mass m, to
be 150MeV [21]. The parameter y has been estixnated
in Ref. [11]. The estimate in chiral perturbation theory
gives y 2.2GeV . It is also shown that to the lowest
order in bm, y is determined by

ibm = —p g O[(hm)2],

o.5 GeV-' & ~ & 3.o GeV-' . (3.4)

where p—:(dd)p/(uu) p —1, and b'm has been determined
by Gasser and Leutwyler, bm/(m„+ mg) = 0.28 + 0.03
[22]. The value of p has been estimated previously
in various approaches [23—32] with results ranging from
—1 x 10 2 to —2 x 10,which upon using Eq. (3.3) and
a median value for bm = 3.3 MeV, corresponds to
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We shall consider this range of y values. We follow
Ref. [11] and assume y y, which is equivalent to
the assumption that mo is isospin independent.

The parameter g, measures the response of the strange
quark condensate to the external field, which has not
been estimated previously. Since ss is an isospin scalar
operator, y, arises &om the isospin mixing and we ex-
pect y, ( g. Following Ref. [11], one may express

in terms of a correlation function and estimate it
in chiral perturbation theory. It is easy to show that
y, (ss)o ——

&& (ss)o. So, one may determine g, by eval-

uating
&& (ss)o in efFective @CD models. Here we shall

treat y, as a &ee parameter and consider the values of
y, in the range of 0 & y, & 3.0GeV . We also assume
t»t X —X .

We first analyze the sum rules for Ioffe's interpolat-
ing field (i.e. , t = —1). We start &om the proton case.
The optimized result for H„as function of y is plot-
ted in Fig. 1. One can see that H„varies rapidly with

Therefore, the sum-rule prediction for the proton
matrix element H„depends strongly on the response
of the up and down quark cond. ensates to the exter-
nal source. (The sum rules in the proton case are in-
dependent of y, and g, .) For moderate values of y
(1.5 GeV ( y ( 2.0 GeV ), the predictions are

Hp 0.54—0.78 .

On the other hand, for large values of y (2.4 GeV
y ( 3.0 GeV i), we find JI„0.97—1.25. For small val-
ues of y (y & 1.4 GeV ), the continuum contribution is
larger than 50%, implying that the continuum contribu-
tion is dominant in the Borel region of interest and the
prediction is not reliable. The predictions for LA„and
Ls~ also change with y in the same way as H„.

To see haw well the sum rule works, we plot the LHS,
RHS, and the individual terms of RHS of Eq. (2.30) as
functions of M with y = 1 8 GeV —1 in Fig. 2 using the
optimized values for Hz, LA„, and As~0. We see that the
solid (LHS) and long-dashed (RHS) curves are right on
top of each other, showing a very good overlap. We also
nate from Fig. 2 that the first term of RHS (curve 1)

2

—2
0.8 0.9 1.21.1 1.3 1.4

M (GeV~)

FIG. 2. The left-hand side (solid) and right-hand side
(long-dashed) of Eq. (2.30) as functions of Borel M for
t = —1, with y = 1.8 GeV and the optimized values for 0„,
AA„, and &8~. Curves 1, 2, and 3 correspond to the 6rst,
second, and third terms on the right-hand side of Eq. (2.30).

1.0

is larger than the second (curve 2) and third (curve 3)
terms. This shows that the double pole contribution is
stronger than the single pole contribution and the pre-
dictions are thus stable. (Although the second and third
terms are sizable individually, their suxn is small. )

In Fig. 3, we have displayed the predicted H~+ as
function of y for three different values of y, . One no-
tices that H~+ is largely insensitive to y„but strongly
dependent on y value. For y values in the range of
2.2GeV & y ( 3.0GeV, we find

Hy. + 1.65—2.48 . (3 6)

For smaller y, we obtain smaller values for H~+. The
predictions for LA&+ and Ls~o change in a similar pat-
tern. The sum rule works very well and the continuum
contribution is small for all y and y, values considered
here.

The optimized H=o as function of y, is shown in
Fig. 4. [When t = —1, the sum rule Eq. (2.36) is in-
dependent of y and y, .] We see that the result is very

1.6

1.4

1.2

1.0

3.2

2.8

2.4

2.0

0.8

0.6

0.4

0.2

0.0
0.5 1.0 1.5 2.0 2.5 3.0

1.2

0.8

0.4

0.0
0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1. Optimized sum-rule prediction for H„as function
of y, with Ioffe's interpolating field (i.e., t = —1). The other
input parameters are described in the text.

FIG. 3. Optimized sum-rule prediction for 0&+ as function
of g, with t = —1. The three curves correspond to y, = 0
(solid line), 1.5 GeV (dashed line), and 3.0 GeV (dotted
line). The other input parameters are the same as in Fig. 1.
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3.0 2.8

2.5

2.0
2,0

1.0
0.8

0.5 0.4

0.0
0.0 0.5 1.0 1.5

X,
2.0 3.0

0.0
0.5 1.0 1.5 2.0 2.5 3.0

FIG. 4. Optimized sum-rule prediction for H~o as function
of y„with t = —1. The other input parameters are the same
as in Fig. 1.

sensitive to the y, value. Thus the prediction for H=o
has a strong dependence on the response of the strange
quark condensate to the external field. For moderate y,
(1.7GeV i & x, & 2.2GeV ), we get

H=o 1.57—1.84 .

For larger (smaller) values of y„we find larger (smaller)
values for H=o. At y, = 0, we get H=o 0.68. The
results for AA2O and Assoincrease (decrease) as y, in-
creases (decreases).

All of the results above use IofFe's interpolating field
(i.e., t = —1); we now present the results for general in-
terpolating field. In Fig. 5, we have plotted the predicted
Hp H~+, and H=o as functions of t for y = 2.5 GeV
and y, = 1.5 GeV ~. As t increases, H„, H~+, and H=o
all increase; the rate of increase is essentially the same for
Hp and H~+, but somewhat smaller for H=o. We note
that the vacuum spectral parameters A& and 80 decrease
as t increases; this leads to a large variation of Hp, H~+,
and H=o with t.

The sensitivity of our results to the assuxnption of

FIG. 6. Optimized sum-rule prediction for K~ and H&+ as
functions of y, with t = —1 and g, = y, = 1.5 GeV . The
three curves correspond to y = y (solid), —y (dashed), and
-y (dotted). The other input parameters are the same as in

Fig. 1.

= y is displayed in Fig. 6, where t and y, (= y, )
are fixed at —1 and 1.5GeV, respectively. The three
curves are obtained by using y = y, 2y, and zy, re-
spectively. We note that H„and H~+ get larger (sinaller)
as y becomes smaller (larger). The results are more
sensitive to y in the proton case than in the Z+ case.
The prediction for H„changes by about 25%% while the
prediction for H~+ changes by about 15% when the y
value is changed by 50%%ur'&. This implies that the terms
proportional to y in the sum rules give rise to sizable
contributions. The sensitivity of our predictions to the
assumption of y, = y, is illustrated in Fig. 7, with
t = —1 and y = y = 2.5GeV . The three curves
correspond to g, = y„2y„and 2y„respectively.
One can see that both H~+ and H=o are insensitive to
changes in y, . This indicates that the terms propor-
tional to y, give only small contributions to the sum
rules. One also notices that H~+ depends only weakly
on y, . Finally, the efFect of ignoring the response of con-
tinuum threshold is shown in Fig. 8. The solid (dashed)

3.0

2.5

2.8

2.4

2.0

1.5 1.2

1.0 0.8

0.5

0.0 I I I I I

—1.15 —1.10 —1.05 —1.00 —0.95 —0.90 —0.85

FIG. 5. Optimized sum-rule prediction for H„, Hz+,
and H~o as functions of t, with y = 2.5 GeV and

g, = 1.5 GeV . The other input parameters are the same as
in Fig. 1.

0.4

0.0
0.0 0.5 1.0 2.0 2.5 3.01.5

X,
FIG. 7. Optimized sum-rule prediction for H&+ and H~o as

functions of y„with t = —1 and g = y = 2.5 GeV . The
three curves correspond to y, = y, (solid), —y, (dashed),
and —y, (dotted). The other input parameters are the same
as in Fig. 1.
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1.4 Mg- —M~+ = (Mg- —Mg+), i + hmHg+,

M-- —M=o = (M= —M-o) i+ bmH~o .

(4.3)

(4.4)

1.0

0.8

0.6

Note that H = —H&, H~- ———H~+, and H=- = —H=o
to the lowest order in Sm. Therefore, @CD sum rule
predictions for Hz, H~+, and H=o, along with the elec-
tromagnetic contributions [22]

0.4

0.2

0.0
0.5 1.0 1.5 2.0 2.5 3.0

(M„—Mp), i = —0.76 6 0.30 MeV,

(M~- —M~+), i = 0.17+ 0.3MeV,

(M= —M~o ),i = 0.86 + 0.30 MeV,

(4 5)

(4.6)

(4 7)

FIG. 8. Optimized sum-rule prediction for H„as functions
of y, with t = —1. The solid curve is obtained by including
all three terms on the RHS of Eq. (2.30), while the dashed
curve is obtained by neglecting the third term on the RHS of
Eq. (2.30).

curve is obtained by including (omitting) the third term
on the RHS of Eq. (2.30). The difFerence between the
two curves is large for moderate and large values of y.
This shows that the response of the continuum threshold
can be sizable and should be included in the sum rules.
Unfortunately, the response of the continuum thresholds
has been omitted in all previous works on external field
sum rules. This was first noticed by IofFe [12].

IV. ESTIMATE OF BARY'ON ISOSPIN MASS
SPLITTING S

hmp, ——(bmi, )oi+ (bmi, )q, (4.1)

where (Smh), i and (8m~)q denote the contributions due
to electromagnetic interaction and due to the up and
down quark mass difference, respectively. Following
Ref. [11],one can treat hm as a sxnall parameter and us-

ing the Hellman-Feynman theorem [18,19] to show that
the octet baryon isospin mass splittings to Grst order in
bm can be expressed as

M„—M„= (M„—Mp), i + 8mH„, (4.2)

In this section we estimate the baryon isospin mass
splittings using bm and the baryon matrix elements of
isovector-scalar current calculated in the previous sec-
tion.

The observed hadron isospin mass splittings arise &om
electromagnetic interaction and &om the difference be-
tween up and down quark masses:

will lead to an estimate of the baryon isospin mass split-
tings. Taking the experimental mass difference [33], one
finds

(M„—M„)'"P' = 2.05+ 0.30 MeV,

(Mg- —M~+)'"~' = 7.9 6 0.33 MeV,

(M-- —M~o )'"~' = 5.54 + 0.67 MeV .

(4.8)

(4.9)

(4.10)

V7e have seen &om last section that the uncertainties in
our knowledge of the response of the quark condensates
to the external Geld, y and y„ leads to uncertainties
in the sum-rule determination of the baryon matrix ele-
ments H~. (There are also uncertainties in bm. ) There-
fore, our estimate here are only qualitative. For most of
the values for t, y, and y, considered here, the sum-rule
analysis gives 0 & H„& H=o & H~+ (see Figs. 5, 6, and
7), which implies

This qualitative feature is compatible with the experi-
mental data. For the baryon interpolating Gelds with
t = —1 and moderate g and y, values (1.6 GeV
2.2GeV i and 1.3GeV i & y, & 1.8GeV ), we get

1.95MeV & (M —Mz)q & 2.41 MeV,

4.0MeV & (M~ —M~+)q & 6.3MeV,

4.5MeV & (M=- —M=o)q & 5.38MeV,

(4.12)

(4.i3)

(4.i4)

where we have used a median value b'm = 3.3 MeV. These
results are comparable to the experimental data, though
the result in the Z case is somewhat too small. Smaller
and larger values of y and y, lead to correspondingly
smaller and larger values for the baryon isospin mass dif-
ferences. As t increases (decreases), the results increase
(decrease) .

0 & (M Mp)q & (M M o)q & (Mp Mg+)q

(4.ii)

V. DISCUSSION

This separation is renormalization scale dependent. How-
ever, this scale dependence is weak; it is thus meaningful to
separate the contribution of quark mass difference from that
due to electromagnetic interaction (see Ref. [ll]).

Our primary goal in the present paper has been to
extract the baryon matrix element H~ = (B]uu—
dd~B)/2M~ for octet baryons. We observe that the sum-
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rule predictions for H~ are quite sensitive to the re-
sponse of quark condensates to the external isovector-
scalar Geld, which is not well determined. This means
that our conclusion about H~ can only be qualitative at
this point. The most concrete conclusion we can draw
&om this work is that QCD sum rules predict positive
values for H„, H~+, and H=o and Hp ( H 0 & H&+.
This qualitative feature is, for the most part, stable
against variations of the response of the condensates to
the external source and the choice of baryon interpolating
fields.

We note that the inequality Hp ( H=o ( H~+ indi-
cates SU(3) symmetry violation in the baryon matrix el-
ements of the isovector-scalar current. This arises mainly
&om the difference in the baryon interpolating Gelds
used in the QCD sum rules and &om the fact that the
isovector-scalar current is not a SU(3) singlet. Clearly,
it is a very interesting topic to check this inequality in
other efFective QCD models. At this stage, it is unclear
whether the difference in the baryon interpolating 6elds is
connected to the SU(3) symmetry breaking in the baryon
wave functions.

In the present study, we derived and used a complete
form for the phenomenological representation, which has
also been given in Ref. [12]. This form includes the re-
sponse of the continuum thresholds, which was ignored in
Ref. [11].We found that the neglect of the response of the
continuum thresholds can have large efFect on the extrac-
tion of the baryon matrix elements. This suggests that
the contribution arising from the response of the contin-
uum thresholds, neglected in previous works, should be
accounted in the study of general external 6eld sum rules
(see Ref. [12] for estimates of the efFects of this contribu-
tion on the extraction of various physical quantities).

The spectral parameters in the absence of the external
source, M~, A&, and so, appear in all external 6eld sum
rules. Unlike the mass, there are no experimental values
for the coupling A& and the thresholds sz. One usually
evaluates these parameters &orn the mass sum rules by
fixing the mass at the experimental value. This means
that the uncertainties associated with the vacuum spec-
tral parameters will give rise to additional uncertainties
in the determination of the baryon matrix elements of
various current, in addition to the uncertainties in the
external field sum rules themselves. This is a general
drawback of the external field sum-rule approach. It is
also worth pointing out that it is the product of A&2 and
the baryon matrix element appears in the external field
sum rules [see Eqs. (2.29) and (2.36)]. So it is more suit-
able to determine the product of A& and the baryon ma-
trix element from the external 6eld suxn rules; one then
needs a good knowledge of A& in order to extract the
baryon matrix element cleanly.

The sum-rule predictions are fairly sensitive to the
choice of baryon interpolating 6elds. This sensitivity
arises &om both the dependence of the truncated OPE re-
sult and the dependence of the extracted parameters A&
and so on the choice of the baryon interpolating fields.
We found that the latter has stronger dependence, and
hence leads to larger contribution to the change of the
predictions with t.

The nonelectromagnetic part of the baryon isospin
mass difference is essentially given by the matrix el-
ement H~ multiplied by the light quark mass differ-
ence b'm. Given the uncertainties in the determina-
tion of H~ mentioned above, our estimate of the isospin
mass splittings for the octet baryons must be qualita-
tive. It is found that the QCD sum-rule predictions yield
(M„—M„)q ( (M= —Mpo)q & (M~- —Mp+)q. This
qualitative result is consistent with the experimental data
and insensitive to the details of calculation. If we use a
median value bm = 3.3MeV and moderate values for y
and y„we obtain results comparable to the experimen-
tal values. However, since the response of various con-
densates to the external source and bm are not precisely
known and the uncertainties &om other sources cannot
be accessed systematically, it is not wise to make a criti-
cal comparison with data or to attempt to extract y [and
hence p through Eq. (3.3)] and y, by fitting the exper-
imental data. Clearly, further study of the response of
the quark condensates to external isovector-scalar 6eld
is important, along with more accurate determination of
the vacuum spectral paraineters. EfFective QCD models
may give some independent information on the response
of the quark condensates while the lattice QCD may off'er
clean determination of the vacuum spectral parameters
[»1~

There have been several earlier papers that study the
neutron-proton mass difference [25,30,31,34—36] and the
baryon isospin mass splittings for other octet baryons
[25,31], based on QCD sum-rule approach. In Ref. [25],
the baryon mass difFerences were extracted directly &om
the baryon mass sum rules by including the quark mass
difference and the isospin breaking in the quark conden-
sates. The contributions of quark-gluon mixed conden-
sates were ignored, and somewhat different values for the
vacuum condensates and the strange quark mass were
used. This can lead to large efFects on the extraction of
the isospin mass splittings. The procedure for analyzing
the sum rules was also quite difFerent &om the one used
in the present paper. In Ref. [34,30], the neutron-proton
mass was extracted &om the difference between the neu-
tron and proton mass sum rules, but the continuum con-
tributions were disregarded. In a later calculation [35],
the authors of Ref. [34] have included the continuum con-
tribution in the study of the density dependence of the
neutron-proton mass difFerence in the medium. In these
works, the contributions &om the quark-gluon conden-
sates and the change in the continuum thresholds were
omitted. The study of neutron-proton mass difFerence
in Ref. [36] was based on the mass sum rules directly.
Apart &om keeping the quark mass difference and the
quark condensates difference, an attempt was made to
incorporate the electromagnetic contribution also phe-
nomenologically in the sum rules.

The analysis in Ref. [31] is more closely related to the
present work. The goal of Ref. [31] was, however, to de-
termine the parameters bm and p by 6tting all isospin
mass splittings in the baryon octet. The sum rules were
obtained for Ioffe's interpolating 6eld by treating the
quark mass and the isospin breaking in quark conden-
sates as perturbations. On the phenoxnenological sides
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of the sum rules, all spectral parameters, mass, residue,
and continuum thresholds, were allowed to change. Note
that the sum rules derived by us in Sec. II can also
be derived directly &om the mass sum rules. Writ-
ing m„= m —8m/2, mq = m + hm/2 and assuming

—p/bm [see Eq. (3.3)], one can difFerentiate the
mass sum rules with respect to bm. For t = —1, one
can then identify our sum rules Eqs. (2.29) and (2.30)
and (2.33)—(2.36) with the sum rules given in Ref. [31].
This coincidence between the sum rules is not surprising,
since the quark mass term in the @CD Lagrangian can
also be regarded as a constant external scalar field. We
observe, however, that the contributions &om dimension
eight condensates have not been included in Ref. [31].
We have seen in our analysis of the sum rules (see Figs. 6
and 7) that these contributions can be numerically sig-
nificant. In addition, the authors of Ref. [31] directly
used the Z and:- mass sum rules Rom Ref. [16], where
all the terms proportional to m or md were neglected.
Consequently, some terms proportional to m, were not
taken into account in the Z and:- cases and there was
a factor two omitted in the contribution from four-quark
condensates in the nucleon case.

We note that the authors of Ref. [31] took a very dif-
ferent procedure in analyzing the sum rules. They used
both sum rules to eliminate LA& while we used only the
more stable one. The continuum contribution in sum
rules Eqs. (2.29), (2.33), and (2.35) is large. So these
sum rules are likely to be dominated by the single pole
terms and the predictions based on these sum rules may
not be reliable. The size of the continuum contribution
was not checked in Ref. [31]. Certain assumptions such as

Lso: 0 were also used in some cases. We notice that the
absence of continuum contribution in the external field
sum rules does not necessarily imply Lso: 0 In fact,
as long as there is continuum contribution in the mass
sum rules, one must include Lso as an unknown quan-
tity to be determined &om the sum rules. Any assump-
tion about Lso may bypass the information extracted
for other quantities. The authors of Ref. [31] claimed
that consistency of the two sum rules can be achieved for
p = —(2+1)x 10 s, which is difFerent &om the values dis-
cussed in the present paper (see discussions in Sec. III).
This discrepancy arises mainly &om the difference in the
procedures for analyzing the sum rules.
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APPENDIX

In this appendix, we give the OPE results for the in-
variant functions II& and II&. The interpolating fields
defined in Eqs. (2.2)—(2.4) are used in the calculation.
We work to the leading order in the perturbation theory
and to the first order in the strange quark mass m, . The
contributions proportional to up and down quark masses
and to gluon condensates are neglected. Condensates up
to dimension 8 are considered:

proton:

ci+3C2 —C3 2 1
x-(g q~ gq)»(-q )+, (qq). —,16+2 6 'q2 ' (A1)

q 2 4c1 c3 c4 + c5 —6c2 1
lli(q') = 32, (qq)o»( —q') + 96, (g.q~ gq)o —,

cq+ 2c2 1+
3 X(qq)o —,+

24 X(qq)o(g. q~ gq)o, ,),q2 24 (g
cy —2c2 1+

24 X-(qq)o(g. q~. «)o, ,), (A2)

Z+: II,'(q ) =
64

', (q')' ln( —q') + 8,X(qq) oq'»( —q') — ', X.(»)oq'»( —q')

cy —2c3 2m, (qq)oln( —q ) + m, (ss)oln( —q )

167t.2 (g.q gq)o»( —q ) + m. (g.sa gs)o —,
327l g

2&y + 3c2 —6c3 1 cq —2c3 1+ ~ m, (g, qo . gq)o —+ (qq)o(ss)o-

c3 2 1 c2 1 c2+—x'ilia(qq)o —
2 + —xms(qq)o(»)o —+ —x ~, (qq)o(»)o —, (A3)
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3C2 2 2 2ci —c3 3C2 2
327r4

m, q ln( —q ) + (qq)pin( —q ) — (aa)pin( —q )16a2 8m2

+ 2xm, (qq)pin( —q ) + X,m, (as)pin( —q )8+2 327r2
C4 1 5c2 1

(g, qa gq)0 —+ (g, acr . ga)0—
96vr2 q 32'7T' q2

7C2 1 c5 1
327r2

m, (g, qo. . gq)0 —+ X,m, (g, so. . ga)0—
q2 96+2 q

1 1 1+—'x(qq)0 —,— 2x(qq)0( ) —,— x.(qq)0( )o —,

c2 2 1 c3 —2c~ 1+—m. (qq)0 + m. (qq)0(ss)0
2 q 12
Cy 1 5c2 1+—x(qq)o(g. q ~q)o, , — x(qq)o(g. & )24 q2 2 24

7c2 1 cy 1
24

'X.(») (0g. q~ &q)0, , + —'X (qq)0(g. q~ &q)0
q2 2

q

X .(qq)0(g. s~. Pa)0, , — X (»)0(g.qa Pq)0

q2)

IIx(q') =

II', (q2) = — ' (q2)' ln( —q2) — '
X(qq) pq' ln( —q2) + X, (aa) pq' ln(

Cy —2C+ m, (qq)oln( —q ) — m, (sa)oln( —q )

3C2

16m2,X .(g.a~. ga)oln( —q )+,m, (g.q~ gq)0 —,
32% q

2cg + 3c2 —6c3 1 c3 2 1 c2 1+
96vr2

m, (g, scr ga) 0 ———(as) 0
———(sa) o (qq) o-s 8 2 6 P

cq —2c3 1 cq —2C3 1
Xm. (as)0(qq)0 —,— X,m, (sa)0(qq)0 —, ,

q2 6 q2

(A4)

(AS)

llx(q') = 3C2 2 2 C3 3c2 2
32+4

m q In( —q ) — (qq)p ln( —q ) — — (ss)p ln( —q )32%2 8a2
3C2 2C] —C3

Xm, (qq)oln( —q ) — X,m, (aa)oln( —q )

C5 1 7c2 1
96+2 (g.qa . Qq)o —+ (g.a~ . gs)o-

q 327r q2

5c2 1 C4 1
327r2 X m (g qp ' Pq)o —

2
— 2X m (g sp . Qa)o-

q2 96+2
1 1 cy 2 1

c2x(qq)0(»)0 —,—c2x (q'q)0(ss)0 + x (ss)o-
C2 2 1 C3 —2Cy 1+—m, (ss) 0 + m, (qq)0 (aa)0
2 q 12 q
7c2 1 cq 1
24 X(qq)o(g a~. 0s)o 2 + —X,(»)0(g, s~. gs)0

I 5c2 I
24

'
q2 2 24 '

q2 2

1 7c2 1+—x-(--).('-- ~ ). . .— 'x .I.).(..-- ~ ). .. . (A6)

Here cx, c2, cs, c4, and cs have been defined in Eq. (2.32), and we have ignored the isospin breaking in the vacuum
condensates (i.e. , (uOu)p (dOd) p

——(qOq) p). All polynomials in q, which vanish under the Bore] transformation,
have been oxnitted in Eqs. (Al) —(A6).
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