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We seek to understand the physical significance of the nucleon's tensor charge and make estimates
of its size in phenomenological models and the +CD sum rule.
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The nucleon's tensor charge b@ (rb = u, d, s, . . .) is de-
fined as the forward matrix element of the tensor current
Tr " = r/rrrr "g in the nucleon state:

(PS~go" @~PS) = b@ U(PS)o""U(P.S),

where P is the nucleon's four-momentum, S is a polar-
ization vector, and U(PS) is a Dirac spinor. Because of
the p-matrix identity o" ps ——(i/2)e" t cr p, one can
also define the tensor charge in terms of the operator
@o""its@,and then the right-hand side of Eq. (1) be-
comes 2b'r/r(P~S" —P"S"). Throughout the paper, we
adopt the notations of Itzykson and Zuber [1].

Like other nucleon charges (baryon charge defined by
the matrix element of Qp"@, axial charge by gp"ps@,
and scalar charge by g@), the tensor charge is one of the
fundamental parameters that characterize properties of
the nucleon. So far, however, little is known about its
value and its implication on the structure of the nucleon.
In this paper we seek to understand the physical signif-
icance of the tensor charge and make estimates in the
MIT bag model and the @CD sum rule.

The main reason for the lack of studies about the ten-
sor charge is that it is diKcult to access experimentally.
There are no fundamental probes that couple directly
to the tensor current. (Before the V —A weak interac-
tion was firmly established, physicists had entertained
the possibility of weak scalar and tensor couplings. )
However, the situation has changed fundamentally when
the factorization theorems in high-energy scattering are
shown to be valid on quite general ground [2]. The the-
orems provide a firm basis for the general parton-model
result that the perturbative scattering in hard processes
electively provides a versatile probe into the structure
of hadrons. One recent example of such an application
is the measurement of the nucleon's axial charge from
polarized lepton-nucleon scattering [3].

It was discussed by Ralston and Soper [4] that the
transversely polarized Drell-Yan scattering can probe a
new quark distribution of the nucleon, the transversity
distribution hi(x). What is the hi(x) distribution? Con-
sider a nucleon traveling in the z direction with its po-
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larization in the x direction. The polarization of quarks
and antiquarks in the nucleon can be classified in terms
of the transversity eigenstates

~ g$) = (~+) +
~

—))/v 2,
where ~+) are the usual helicity eigenstates. If one uses
Nt(x) [Ng(x)] to represent the density of quarks with
polarization

~ g) [~ $)], then

hi(x) = Ng(x) —Ng(x), (2)

and likewise for antiquarks. The hi(z), together with the
unpolarized quark distribution q(z) and the quark helic-
ity distribution gi(x), forms a complete set for describing
the quark state inside the nucleon in the leading-order
hard processes. It was demonstrated by Jaffe and Ji [5]
that the first moment of hi(z) is related to the nucleon's
tensor charge:

1 1

hi(x)dx = [hi(x) —hi(x)]dx = bg,
—1 0

where hi(z) at negative z is the negative of the antiquark
distribution hi( —x). Given no fundamental tensor cou-
pling, the integral may be the best hope to gain knowl-
edge about the tensor charge. In Ref. [6], other possible
experiments of measuring the transversity distribution
are examined. The BNI Relativistic Heavy Ion Collider
(RHIC) Spin Collaboration and the HERMES Collabo-
ration have proposed a first measurement of hi(x) in the
future [7].

According to Eq. (24), the nucleon's tensor charge
measures the net number of transversely polarized va
lence rIuarks (quarks minus antiquarks) in a transversely
polarized nucleon. One would argue that this number
should be the same as the net number of longitudinally
polarized valence quarks in a longitudinally polarized nu-
cleons (which is related to the axial charge), since, after
all, a polarization of the nucleon in its rest frame can
be said to be longitudinal, or transverse, or a combi-
nation of both. This argument would be correct if the
nucleon were made of free quarks. During high-energy
scattering, quarks in the nucleon do appear to be free.
However, rotational invariance now becomes nontrivial
because high-energy processes select a special direction.
In fact, in the so-called infinite momentum frame, where
the parton model was originally formulated, the rota-
tional operators explicitly involve interactions [8]. Thus,
the difference between the tensor and axial charges has
a dynamical origin.
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Unlike the baryon or axial charges, the tensor charge
is renormalization-scale dependent. A simple calculation
of the anomalous dimension for @o+"@yields

bag parameters, we demand Au —Ld = 1.257 and use
the normalization J'(f~+g~) = 1; then the tensor charge
is uniquely fixed:

g
2

p =2' +--.
16vr~

(4)
bu = 1.17,
bd = —0.29. (9)

where C~ = 4/3, g is the strong-coupling constant, and
the ellipsis represents higher-order terms in the coupling.
Thus, bvP scales according to

4

(5)

where ny is the number of flavors. As p~ ~ oo, 8'@

vanishes. This contrasts with the nucleon's scalar charge
12

(P]@@]P),which scales as (a(p, )/cL(ps~))
" '"&, and

blows up as p~ —+ oo.
Now, let us consider the size of the tensor charge in

nonrelativistic quark models [5]. In the limit of mz ~ oo,
the transverse-spin operator commutes with a &ee-quark
Hamiltonian, and so the transverse polarized quarks are
in the transverse-spin eigenstates. Then rotational in-
variance implies

where AQ is a conventional notation for the axial charge.
Or

4
bu = —,3'
bd = ——,1

3'
bs =0.

This result can also be obtained from the fact that the
tensor operator go 'its@ differs from the axial vector
current Qp'ps@ by a p0 factor, which reduces to 1 in the
nonrelativistic limit.

In the MIT bag model, the tensor charge can be ex-
pressed in terms of the upper and lower components (f
and g) of the quark wave function [5]:

4
I
f'+-g' f,3 i 3 )

bd= —— /f + —g )
This difFers &om the expressions for the nucleon's axial
charge by a sign in &ont of g, because of the same p0
factor mentioned above. Instead of trying to Gnd the best

I

These numbers are closer to the nonrelativistic quark
model result than are the nucleon's axial charge in the
bag. In other words, the nonrelativistic quark model pre-
diction for the tensor charge appears to be less suscepti-
ble to relativistic efFects than for the axial charge.

Of course, these estimates in phenomenological mod-
els are very crude and provide only guidance at best. In
particular, the matching between QCD quarks and con-
stituent quarks used in models is a subtle and unsolved
problem. This is reHected by the fact that model calcu-
lations have no explicit reference to any scale, although
one would generally believe that these models live in a
scale somewhere in between AgcD and the nucleon mass.
More reliable estimates can be made with QCD-based ap-
proaches in which one deals with QCD quarks directly.
One approach is the lattice QCD. The recent progress
in calculating axial and scalar charges on a lattice shows
that the lattice QCD becomes increasingly competitive
with other methods in computing hadron observables [9].
Another approach is the QCD sum rule. In the past 15
years, this method has produced a large number of inter-
esting results, which are largely consistent with hadron
phenomenology [10]. In the remainder of this paper, we
present a QCD sum-rule estimate of the tensor charge.

There exist in the literature several equivalent formula-
tions of the QCD sum-rule technique for calculating for-
ward hadron matrix elements. Following the approach
initiated by Balitsky and Yang [11], we consider the
three-point correlation function

IVAN- ~2 d4xd4ye'P' OT ~P" y n x 90 0,
(10)

where q is the nucleon interpolating Geld, q
'u Cp„ugp5p d~, and C =ip p is the charge conju-

gation matrix. We calculate R'~" at large Euclidean —p
using the operator-product-expansion technique on the
one hand, and using resonance saturation on the other.
The tensor charge is extracted by matching the two re-
sults at a certain kinematic domain where both methods
are supposed to be valid.

In resonance saturation, TV~ contains the nucleon
double pole, single pole, and other resonance contribu-
tions:

W"" = b@ (P o.""P+mzo""+ my{), 0-"")) + . = W', P o""P+Wqo. " + Ws{g, o"")+
(p' —m' )'

Here we have shown only the double pole term, in which
is the coupling of the nucleon with the interpolating

field, (O~g(0) ~p) = AU(p). Other terms are neglected be-
cause they either vanish or are suppressed after being

I

multiplied by (m~ —p ) and the Borel transformation.
There are three di8erent Dirac structures emerging from
the double-pole term: chiral-odd ones with coeKcients
Wi and W~ and chiral-even one with coe%cient R'3, each
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of which can be used to construct a sum rule and ex-
tract b'@. In principle, one has to obtain the same result
from each of them before one trusts the final answer.
Otherwise, one can obtain any desired result by making
different combinations of the sum rules. In practice, how-
ever, some sum rules are better approximated by leading
power corrections than others. Thus, choosing the right
sum rule to extract the physical observable is a very del-
icate issue.

Depending upon momentum flow in the Feynman dia-
grams, the operator-product expansion for W"" has three
distinct classes of contributions: perturbative, local, and
bilocal power corrections. The perturbative contribution
comes &om large momentum flow through al/ internal
lines of diagrams. The local-power contribution refers
to diagrams in which some particle lines are condensed
into a vacuum and the momentum flowing through the
composite operator @(7" g is large. The bilocal power
contribution is similar to the local one except the mo-
mentum flowing through the composite operator is in-
&ared. To evaluate the bilocal contribution, one needs
two-point correlation functions at zero momentum:

(12)

1
Ws —— ln( —p') (uu)

(—p' ]

ln
i i

(ugG . o.u) +24vr'p' ( p' )
where p2 is an in&ared cutoff that can be taken to be
AcD. After the Borel transformation, we get, at M

2
m+7)

mN80 y —s m~el —0P /III 0I (u )2m2A2

Taking so ——(1.5 GeV)2 and mo ——0.8 GeV, we get

bu = 0.94. (18)

terms, it is dificult to determine which one is more reli-
able. However, experience with other sum rules indicates
that the result from Wq with a nonvanishing local con-
tribution is more stable against higher-order corrections.

The contribution to the chiral-even W3 comes from the
dimension-three and five power corrections:

where 0 are local operators from the operator-product
expansion of Tg(x)g(0) = P C„(x2)O (0). These two-
point functions can be evaluated either in terms of the
QCD sum rule, or, in some cases, with QCD equations
of motion. The bilocal contribution is similar in spirit to
the contribution &om vacuum susceptibility introduced
by Ioffe [12].

Now we present the sum-rule results of the tensor
charges for the up and down quarks separately. For
the u quark, the leading large-momentum contribution
to Wq and W2 comes from the power corrections with a
dimension-six condensate:

2—
W) ———(uu) (dd) +4

2
W2 ——— (uu) (dd) +

3p2

Combining the above results, we conclude that the
leading-order sum-rule calculation gives

bu = 1.0 + 0.5 (19)

at the scale of p, = m~.
Next, we consider the d-quark tensor charge. Due to its

chiral-even property, W3 receives local power corrections
only &om odd-dimensional condensates. A simple con-
sideration shows that such contributions start with the
dimension-nine condensate, (@@) . This suggests that
the d-quark tensor charge is quite small. This suspicion
is confirmed by the consideration of the other two chiral-
odd sum rules.

For R'2, the leading contribution comes from a pertur-
bative term, followed by a power correction associated
with the dimension-four condensate (~G ). Neglecting
the latter, we have

where Wq receives contributions &om both local and bilo-
cal power terms, whereas W2 receives a contribution from
a bilocal power term alone. Following the standard pro-
cedure of multiplying by m~ —p, making a Borel trans-
formation, and matching it with the corresponding term
from Eq. (11), we find, for the Wq sum rule,

which yields

4 2W2 —— p ln —p32~4

bd =0.3,

(20)

(21)
2 2 ~~ M~

Su = —(uu)2e-~~~ .
A2

at M = m~, a number indeed quite small. The leading
contribution to Wq comes from a bilocal correlator II(0),

As the Borel mass M changes &om m~ to 2m~, bu
changes by about 50/p, so the sum rule is reasonably
stable. Taking (uu) = —(240 MeV), M = m~, A

7.0 x 10 GeV, we get

bu = 1.0-1.5.
On the other hand, the result &om the W2 sum rule is
smaller by a factor of 3. Without calculating higher-order

1
Wg ——— ln( —p )II(0) +

144vr2

where II(0) is

II(0) = If d'x(0]T(da d(0)da pd(z)]]0) .

Using a dispersion relation, we write

(22)

(23)
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11(0) =),(0ld d(o)l )( ld ~d(0)I0) (24)

Since do ~d(0) belongs to the (1,0)+(0,1) representa-
tions of the Lorentz group and is charge conjugation odd,
the states with quantum numbers 1+ and 1 con-
tribute to the sum in Eq. (24). Assuming the p(1 )
and B(1+ ) meson dominance, we find

(25)

with

(0[&~""&[p)= ' (»"—&".&),
~2

(0]d~ "d]B) =
~2

(26)

Estimating the coupling constants f~ and f~ again in the
QCD sum rule using the information in [13],we find

II(O) - (0.15 Gev)' . (27)

The small II(0) result comes from the cancellation of the
two resonances, and thus the theoretical error on the es-
timate is large. The Wq sum rule produces

b'd = Il(O) M2(m2 M2)em~/M
144m2A2 (28)

bd = 0.0 + 0.5

Depending upon of a choice of the Borel parameter, bd is
in the range of 0.0—0.1, Given uncertainties with diferent
sum rules, we conclude that

at p2 = mzN. This is consistent with a recent QCD
sum-rule calculation for the transversity distribution
hi(x) [14].

To recapitulate, the leading-order QCD sum rule sug-
gests bu = 1.0 + 0.5 and bd = 0.0+ 0.5 at the scale of
about 1 GeVz. A recent SU(3)-symmetric, leading-order
large-K, analysis [15] shows that bu+ bd is of the order
of I/jV„relative to bu —bd. This result on the flavor
structure also applies to the axial charge, for which an
analysis of a recent measurement [3] yields Au = 0.78
and Ld = —0.46, a favorable comparison with the large
N, . If the true value of bd is indeed rather small, as
the QCD sum rule indicates, the large-lV, analysis has,
perhaps, little relevance for the tensor charge.

In summary, we discussed in this paper various aspects
of the nucleon's tensor charge. We focused on its numer-
ical value in the MIT bag model and the QCD sum rule.
With various caveats, both results seem consistent. Ad-
mittedly, the QCD sum-rule calculation is done only at
the leading order, and one must show that the results are
stable against higher-order power corrections and that all
sum rules for the same quantity yield the same answer.
Nonetheless, we believe our result is qualitatively reliable.
Clearly, a lattice QCD calculation or a direct experimen-
tal measurement of the tensor charge will produce a more
definitive determination of this interesting observable.
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