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Quark masses and chiral symmetry

Michael Creutz*
Physics Department, Brookhaven National Laboratory, Upton, New York, 11978

(Received 10 May 1995)

I discuss the global structure of the strongly interacting gauge theory of quarks and gluons as a
function of the quark masses and the CP-violating parameter 8. I concentrate on whether a first
order phase transition occurs at 8 = m. I show why this is expected when multiple Qavors have a
small degenerate mass. This transition can be removed by sufficient Havor breaking. I speculate on
the implications of this structure for Wilson's lattice fermions.

PACS number(s): 11.30.Rd, 11.15.Ha, 11.30.Er, 12.15.Ff

I. INTRODUCTION

This paper concerns the mass term mug in the stan-
dard hadronic gauge theory of quarks and gluons. I was
originally motivated by attempts to understand chiral
symmetry on the lattice, but realized that my general
understanding of chiral symmetry was inadequate. Thus
arose the present discussion in a continuum framework.
Indeed, this might be classified as a chiral-Lagrangian
paper, in that I use primarily symmetry arguments to
explore the theory as a function of the quark masses.

I will be quite cavalier about defining products of
fermion fields, such as the mass term above. I assume
that some regulator, such as the lattice, has made these
quantities well defined. Some caution is needed with re-
gard to issues such as the chiral anomalies, which arise
because of the singular nature of products of fields at
a single space-time point. I will, however, ignore other
complications of the regulator, except when I explicitly
conjecture on the role of the lattice doublers.

One of my goals is to provide an intuitive picture for
the physical meaning of the CP-violating parameter of
the strong interactions. This term, often called the 0
term, is usually discussed in terms of topological excita-
tions of the gauge fields. Here, however, I treat it entirely
in terms of the chiral symmetries expected in the mass-
less limit of the theory.

Among the conclusions is that a erst-order transition
is expected at 0 = vr when the Havors have a small but
degenerate mass. This transition can be removed if Qa-
vor breaking is large enough. At the transition, CP is
spontaneously broken. I will also make a few remarks
on the implications for the structure of Wilson's lattice
fermions.

This is a subject with a long history, and much of what
I say is buried in numerous previous studies. The impli-
cations of 0 to the fermion mass matrix are well known
to low-energy chiral Lagrangian discussions [1—8). The

Since 1 = (ps), this modifies the fermion mass term to

:migQ+im2vpps@, (2)

where

occurrence of a first-order phase transition at large 0 has
been discussed in [2]. The possibility of a spontaneous
breaking of CP was pointed out even before the signifi-
cance of the parameter 8 was appreciated [3]. The rela-
tion of 8 to lattice Wilson fermions was elucidated some
time ago by Seiler and Stamatescu [9] and was the sub-
ject of some recent work of my own [10]. My main new
contributions are hopefully some added intuition to the
understanding of these issues and more support for the
structure of Wilson fermions presented in [10].

The sign of the fermion mass is sometimes regarded
as a convention. Consider a Feynman diagram involving
a fermion loop interacting with an arbitrary number of
gauge boson lines. Insert a factor of 1 = (ps)2 at one
vertex, and then move one of the factors of p5 around the
loop, anticommuting it with each p matrix it encounters.
This reproduces the formal expression for the diagram
but with each factor of m replaced by —m. Thus we
naively conclude that the physics of a gauge theory is
unaltered by a change of the sign of the mass term.

This conclusion, however, is not true in general. It is
probably correct for ordinary quantum electrodynamics
in four space-time dimensions, where by Furry's theorem
[ll] there are no triangle diagrams and corresponding
anomalies. On the other hand, it is explicitly false for
the massive Schwinger model of electrodynamics in two
space-time dimensions [12,10]. Furthermore, as the re-
maining discussion in this paper will argue, it is alxnost
certainly true that hadronic physics would change if the
sign of one of the quark masses were Hipped.

To be a bit more general, consider a change of variables

ipss/2q

mi = m cos(0),
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m2 —m sin(e).

The kinetic and gauge terms of the gauge-theory action
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are formally invariant under this transformation. Thus,
were one to start with the more general mass term of
Eq. (2), one might expect a physical situation indepen-
dent of 0. However, because of the chiral anomaly, this
is not true. The angle 0 represents a further nontrivial
parameter of the strong interactions, beyond the fermion
masses. Its nonvanishing would give rise to CP-violating
processes. As such are not observed in hadronic physics,
the numerical value of 0 must be very small [5].

If Eq. (1) just represents a change of variables, how
can this afFect physics? The reason is entwined. with the
divergences of quantum field theory and the necessity of
regularization. Fujikawa [13]has shown how the anomaly
can be incorporated into the path integral formulation via
the the fermionic measure, which becomes noninvariant
under the above chiral rotation. More specifically, un-
der a Pauli-Villars [14] approach 8 represents a relative
p5 rotation between the mass term for the fundamental
particle and the mass term for the heavy regulator field.
On the lattice with Wilson's fermion prescription [15],
the doublers play this role of de6.ning the relative chiral
phase [9,10].

Prom this point of view, the fermion doublers of lattice
gauge theory are not a nemesis, but rather are necessary
to the physics of 0 and the chiral anomaly. While the
Wilson term does represent an explicit breaking of chiral
symmetry, it is philosophically no worse than the heavy
auxiliary G.eld used in the Pauli-Villars approach.

Coleman [12] discussed the physics of this extra param-
eter in two-dimensional electrodynamics, where it repre-
sents a background electric field. In Ref. [10] I used these
results to infer a possible expected behavior of Wilson lat-
tice fermions in both two and four dimensions. In partic-
ular I proposed generalized phase diagrams in the space
of the parameters mi and m2. In this paper I show how
some of these features follow directly from chiral symme-
tries and details of the known particle spectrum. I frame
the present discussion in the context of the continuum
theory after any regulator has been removed.

The resulting diagrams are strongly dependent on the
number of fermion flavors. With a single species, a Grst-
order phase transition line runs down the negative mi
axis, starting at a nonzero value for mi. This is sketched
in Fig. 1. For two flavors the details depend on the

II. TWO FLAVORS

I begin by defining eight fields around which the dis-
cussion revolves

cr = c@@,
~ = icvgps7@,

q = ic@ps@,

h = cg7$.

(4)

The fermion Q has two isospin components, for which v
represents the standard Pauli matrices. The factor c is in-

sign of a term in the efFective action, but I argue for two
first-order phase transition lines, starting near the origin
and running up and. down the m2 axis. For degenerate
quarks these transitions meet at the chiral limit of van-
ishing fermion mass, while a small flavor-breaking can
separate the end points of these first-order lines. This is
sketched in Fig. 2. The chiral limit is pinched between
these end points. With Ny & 2 flavors, the argument is
sharper, with the (mi, m2) plane having Ny first-order
phase transition lines all pointing at the origin. The con-
ventionally normalized parameter 0 is Ny times the angle
to a point in this plane, and these transition lines are each
equivalent to 0 going through m.

Whenever the number of flavors is odd, there is a
first-order transition running down the negative mi axis.
Along this line there is a spontaneous breaking of CP,
with a natural order parameter being (i@psg). This pos-
sibility of a spontaneous breakdown of CP was noted
some time ago by Dashen [3] and has reappeared at var-
ious times in the lattice context [16,17].

I begin my detailed discussion with the two-flavor case.
Here several simpli6cations make the physics particularly
transparent. I then discuss how the one-flavor result
arises when one of these flavors is taken to a large mass.
Prom this I conjecture an analogy with heavy doublers
and Wilson lattice fermions. Finally, I discuss the general
Ny situation.
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FIG. 1. The phase diagram for one-Qavor with the general-
ized mass term. The wavy line represents a first-order phase
transition, along which iQpsg acquires an expectation value.
The end point of this transition line is renormalized away from
the origin towards negative mi.
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FIG. 2. The two-Qavor phase diagram. First-order lines
run up and down the m2 axis. The second-order end points of
these lines are separated by a Qavor-breaking mass di8'erence.
The chiral limit is pinched between these end points.
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serted to give the fields their usual dimensions. Its value
is not particularly relevant to the qualitative discussion
that follows, but one convention is take c = F/~(@@)~
where E is the pion decay constant and the condensate
is in the standard vacuum.

Corresponding to each of these quantities is a physical
spectrum. In some cases this is dominated by a known
particle. There is the familiar triplet of pions around 140
MeV and the g at 547 MeV. The others are not quite
so clean, with a candidate for the isoscalar o being the
fo(980) and for the isovector h being the ao(980). These
detailed identifications are not particularly important to
the following discussion. One fact I emphasize is that the
lightest particle in the b channel appears to be heavier
than the g.

Now consider an effective potential V(o, vr, g, h) con-
structed for these fields. There are various formal ways
of doing this, either &om a Legendre transform on the
generating function, or more physically by asking for the
state of minimum energy given a set of expectation val-
ues for the fields. Two comments are in order. First,
the fact that we are working with composite fields is
inessential to the construction of V. Indeed, many of us
still have qualms about distinguishing between elemen-
tary and composite fields. Second, formally the effective
potential must be convex. Physically, this is because of
a phase separation which would occur if an expectation
value is held in an unstable region. Multiple minima
are filled in by a Maxwell construction. This is a rather
technical but well-understood point which I ignore for
the sake of pedagogy.

I first consider the theory with vanishing quark masses.
I remind the reader that this limit is remarkable in that it
is totally &ee of any adjustable parameters. In the con-
tinuum limit, the strong coupling constant is absorbed
via the phenomenon of dimensional transmutation [18],
and all dimensionless quantities are determined. In the
full theory with the quark masses turned back on, the
only parameters are those masses and 0.

For the massless theory many of the chiral symmetries
become exact. Because of the anomaly, the transforma-
tion of Eq. (I), which mixes the cr and rj fields, is not a
good symmetry. However flavored axial rotations should
be valid. For example, the rotation

mixes 0 with m3o:+ cos(P)o + sin(P)mrs,

V=A(Z —v ) =A(o +sr —v ) . (8)

Here v is the magnitude of the vacuum expectation value
for o, and A is a coupling strength related to the o mass.
The normalization convention mentioned below Eq. (4)
would have v = F. I sketch the generic structure of
the potential in Fig. 3. This gives the standard picture
wherein pions are Goldstone bosons associated with fields
oscillating along the degenerate minima of the potential.

Now consider the influence of the fields 4 on this po-
tential. Taking only small values for these fields, I expand
the potential about vanishing L

V = A(Z —v ) +nA —P(Z 6) (9)

Here the coefficients a and P are functions of Z . For
most purposes the value of the latter is approximately v;
so, we can think of these coefBcients as constants. Note
also that since Z - 4 is odd under parity, the expansion
in this quantity starts off quadratically.

The terms proportional to u and P generate masses
for the g and b particles. Since L = g + b, the o.
term gives them equal masses. Substituting Z (v, 0)
gives (Z A) v g2; thus, the p term breaks the g—
b degenerac ~. Here is where the observation that the g
is lighter than the h comes into play; I have written a

the consequences can be compactly expressed by going
to a vector notation. I define the four component objects
Z = (cr, vr) and b, = (g, h). Chiral symmetry then implies
that the effective potential is a function only of invariants
constructed &om these four vectors. A complete set of
invariants is fZ, 4, Z

This separation into two independent sets of fields is
special to the two-flavor case, but makes the behavior
of the theory particularly transparent. When I turn to
more flavors, the arguments must be modified, but the
structure of the higher symmetries actually make the con-
clusions a bit stronger.

I now use the experimental fact that chiral symme-
try appears to be spontaneously broken. The minimum
of the effective potential should not occur for all fields
having vanishing expectation. We also know that parity
and flavor appear to be good symmetries of the strong
interactions, and thus the expectation value of the fields
can be chosen in the a direction. Temporarily ignoring
the fields 4, I expect the potential to have the canoni-
cal "sombrero" shape, as would be stereotyped with the
form

'lls r —sin($)o + cos(f)mls.

This transformation also mixes g with b3

g:+ cos(P)rI + sin(P)hs,

hs ,'—sin(P)g+ cos(P)hs.

For the massless theory, the effective potential must be
invariant under such rotations. In this two-flavor case,

FIC. 3. The "sombrero" potential when the quark masses
vanish.
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minus sign in Eq. (9), thus making the expected sign of
P positive. I assume this for now, but will comment later
on the changes that would occur were P negative.

This discussion of the masses is not completely rigor-
ous. I have ignored possible differences in the wave func-
tion renormalizations for the respective particles, and
higher terms in the expansion of Eq. (9) could also af-
fect the physical masses. However, all I really need for
my later conclusions is the sign of the effective coupling
between the Z and the 4 fields.

In conventional discussions the g (g' for three flavors)
acquires its mass via topological excitations in the gauge
Belds. These effects are buried in the coefBcients o; and
P. I only assume that these are generated appropriately,
and make no comments on the detailed mechanisms.

Now I turn on the fermion masses. I consider small
masses, and assume they appear as a general linear per-
turbation of the effective potential

V:V —(Mg Z+ M2 4)/c. (10)

Here the four-component objects Mi 2 represent the pos-
sible mass terms. The normalization constant c appears
in Eq. (4). The zeroth component of Mq gives a con-
ventional mass term proportional to @g, contributing
equally to both flavors. The mass splitting of the up
and down quarks appears naturally in the third compo-
nent of M2, multiplying @wsQ. The term mq of Eq. (2)
lies in the zeroth component of M2.

The two four vectors Mq ~ represent a total of eight
possible "mass terms. " However, the chiral symmetries
of the problem tell us that physics can only depend on
invariants. For these I can take Mz, M2, and Mq M2.
That there are three parameters is reassuring; there are
two quark masses m„and mg as well as the CP-violating
parameter 0. The mapping between these parametriza-
tions is nonlinear, the conventional definitions giving

M~ = (m„+ m&) /4 + m„m~ cos(9) /2,

M2 ——(m„+ m&)/4 —m„mz cos(8)/2,
Mq M2 ——m„mg sin(0) /2.

Note if one of the quark masses, say m„, vanishes, then
the 0 dependence drops out. While this may be a possi-
ble way to rexnove any unwanted CP-violation from the
strong interactions, having a single quark mass vanish
represents a Gne tuning which is not obviously more com-
pelling than simply tuning 8 to zero. Also, having m„= 0
appears to be phenomenologically untenable [7,8].

I now give a physical picture of what the two mass
terms Mq and M2 do to the "Mexican hat" structure of
the massless potential. For Mz this is easy; its simply
tilts the sombrero. This is sketched in Fig. 4. The sym-
metry breaking is no longer spontaneous, with the tilt
selecting the direction for Z 6eld to acquire its expec-
tation value. This picture is well known, giving rise to
standard relations such as the square of the pion mass
being linearly proportional to the quark mass [19].

The effect of M2 is more subtle and represents my main
interest here. This quantity has no direct coupling to the
Z field; so, I must look for a higher-order effect. The M2

FIG. 4. The effect of Mq on the effective potential. The
ellipse in this and the following 6gures represents the mini-
mum of the effective potential from Fig. 3. The dot represents
where the vacuum settles.

term represents a force pulling on the 4 field. It should
give the latter an expectation value proportional to the
strength, (4) oc M2. Once A gains an expectation value,
it then effects Z through the n and P terms of the poten-
tial in Eq. (9). The n term is a function only of Z, and,
at least for small M2, should not qualitatively change the
structure of the symmetry breaking. On the other hand,
the P term will warp the shape of our sombrero. As this
term is quadratic in Z.L, this warping is quadratic in the
strength of M2 and quadratic in Z. With P positive, as
suggested above, this favors an expectation value of E ly-
ing along the vector M2, but the sign of this expectation
is undetermined. This effect is sketched in Fig. 5.

To summarize, the effect of Mi is to tilt our Mexican
hat, while the effect of M2 is to install a quadratic warp-
ing. The three paraineters of the theory are the amount
of tilt, the. amount of warping, and, finally, the relative
angle between these effects. To better understand the in-

terplay of these various phenomena, I now consider three
specific situations in more detail.

III. CASE A: M~)]My

First consider Mi and M2 parallel in the four-vector
sense. This is the situation when we have the two mass
terms of Eq. (2) and no explicit breaking of Havor symme-

try. Specifically, I take Mq ——(mq, 0) and Mq ——(m2, 0).
In this case the warping and the tilting discussed in the
last section are along the same axis.

Suppose I consider m2 at some nonvanishing fixed
value, and study the behavior of the vacuum as mi is
varied. The m2 term has warped the sombrero, but if
mi is large enough, the potential will have a unique min-
imum in the direction of this pull. As mi is reduced in
magnitude, the tilt decreases, and eventually the warp-
ing generates a second local minimum in the opposite
sigma direction. As mq passes through zero, this second
minimum becomes the lower of the two, and a first-order
phase transition must occur exactly at mi ——0. This sit-
uation is sketched in Fig. 6. From Eq. (11) we see that
this situation represents m„= mg and 0 = x.

As m2 decreases, the warping decreases, reducing the
barrier between the two minima. This makes the transi-
tion softer. A small further perturbation in, say, the vr3

FIG. 5. The effect of Mq on the effective potential. The
dots represent two places where the vacuum can settle.
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m =0

FIG. 6. Varying m~ at fixed m~. A first-order phase tran-
sition is expected at m, i ——0. This corresponds to e = m. The
dots represent places where the vacuum can settle.

direction, will tilt the sombrero a bit to the side. If the
warping is small enough, the Geld can then roll around
the preferred side of the hat, thus opening a gap sepa-
rating the positive m2 phase transition line from that at
negative m2. In this way sufficient flavor breaking can re-
move the Grst-order phase transition at 0 = vr. If I start
at 8 = 0 with a mass splitting between the up and down
quarks, an isoscalar chiral rotation to generate nonzero 0
will generate just such a term.

Is the physical quark mass splitting sufficient to re-
move the 0 = vr transition? Given that this splitting is
of comparable magnitude to the masses themselves, this
is difficult to decide. Mitten has argued [2], based on
the largeness of the gauge group SU(3), that the physi-
cal up-down mass difFerence is indeed too large for this
transition to occur. On the other hand, it is a rather
academic question, since changing 0 is on the same foot-
ing as changing the quark masses, all of which have been
predetermined by nature.

agram, I add an m3vr3 piece to the potential. This efFec-

tively twists M~ away from being exactly perpendicular
to M2. When such a term is present, it adds an ex-
plicit CP-breaking term and can be expected to remove
the transition, just as an applied field removes the phase
transition in the Ising model. We thus have a phase dia-
gram in the (mx, ms) plane with a first-order transition
connecting two symmetrically separated points on the mi
axis. This is sketched in Fig. 8.

The end points of this transition line are associated
with the two points where one of the respective quark
masses vanishes. The phase transition occurs when the
two-flavors have masses of opposite sign. Simultaneously
flipping the signs of both quark masses can always be
done by a flavored chiral rotation, say about the vr3 axis,
and thus is a good symmetry of the theory.

Taking one of the flavors to inGnite mass provides a
convenient way to understand the one-flavor situation.
As sketched in Fig. 8, this represents looking only at the
vicinity of one end point of the above transition line. In
terms of the light species, this transition represents a
spontaneous breaking of CP with a nonvanishing expec-
tation for i@f5@. In the lattice context the possibility
of such a phase was mentioned briefly by Smit [16], and
extensively discussed by Aoki and Gocksch [17].

V. CASEC: P(0

IV. CASE H: Ma 4 M

I now turn to a situation where Mi and M2 are or-
thogonal. To be specific, take Mx ——(mx, 0) and M2 ——

(0, 0, 0, bm), which physically represents a fiavor symmet-
ric mass term mx ——(m„+ mq)/2 combined with a fiavor
breaking bm = (mg —m„)/2. Now M2 warps the som-
brero downwards in the k+3 direction. A large m~ would
overcome this warping, still giving a vacuum with only 0.

having an expectation value. However, as mi decreases
in magnitude with a fixed bm, there eventually comes a
point where the warping dominates the tilting. At this
point we expect a new symmetry breaking to occur, with
m3 acquiring an expectation value. This is sketched in
Fig. 7. As m3 is a CP-odd operator, this is a sponta-
neous breaking of CP. The possibility of such a sponta-
neous breaking of CP was pointed out some time ago by
Dashen [3].

To make this into a proper two-dimensional phase di-

I now return to the case where Mi is parallel to M2,
but consider the consequences were the parameter P to
be negative. As discussed above, this is unlikely to be the
case for the continuum theory. Nonetheless, as I mention
below, there is some evidence that this may be the case
for the strongly coupled lattice model.

If P is negative, then the warping will be upward rather
than downward along the direction of M2. The case of the
(mx, m2) plane, as discussed in Sec. III for Mx

~
~M2, would

at first glance seem to interchange with the picture of
Sec. IV, for Mq 3 M2. Thus we expect an intermediate
phase with a spontaneous generation of an expectation
for the pion Geld. However, there is one crucial difFerence.
In Sec. IV I considered an explicit breaking of flavor,
using the third direction for the example. In contrast,
here I do not include any explicit flavor breaking. Thus
when, say, 7r3 acquires a vacuum expectation value, it
could just as well have been vrz or m2. For the pion to
gain an expectation requires a spontaneous breaking of

n n n n n ii n n n n nVVVVVVVVVVVV
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FIG. 7. Varying m, q at fixed quark mass splitting. A sec-
ond-order phase transition occurs when the tilting is reduced
sufBciently for a spontaneous expectation of vr3 to develop.
The dots represent places where the vacuum can settle.

FIG. 8. The (mx, xns) phase diagraxn for unequal xnass

quarks. The wavy line represents a first-order phase tran-
sition ending at the second-order dots. The light box on the
right shows how the one-Havor diagram of Fig. 1 is extracted.
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flavor symmetry. This is a continuous symmetry, and two
Goldstone bosons appear.

The possibility of a phase with a spontaneous flavor-
breaking has been extensively discussed. by Aoki and col-
laborators [17] in the context of Wilson lattice fermions
at supercritical hopping. They give rather convincing
arguments that such a phase indeed exists for strongly
coupled lattice gauge fields. Similar phases have also
been found for nongauge models based on four fermion
couplings [20].

Based on the prejudice that for two light flavors the
physical value of the parameter P should be positive, I
suspect that these favor-violating phases are lattice arti-
facts. At strong coupling, P may indeed be negative, but
as the lattice spacing is reduced, it should switch to its
physical sign and physics should revert to the situation of
the previous sections. In the process the flavor-breaking
phase should be pinched out, much as seen in Ref. [20].

dicated in Fig. 1. This may join with numerous other
transitions at the intermediate values of mq, all of which
then finally merge to give a single first-order transition
line ending near mq ———8Kr. The situation near 0 and
+4Kr involves larger numbers of flavors, and properly
requires the analysis of the next section. However, one
possible way the lines could join up is shown in Fig. 9(a).

For two-flavors of Wilson fermions, if we look near to
the singularity at 8Kr we should obtain a picture similar
to Fig. 2. However, further away these lines can curve
and eventually end in the structure at the other doubling
points. One possible picture is sketched in Fig. 9(b).
There may still be an Aoki phase, as discussed in the
last section, appearing at strong coupling. But in the
weak coupling limit I expect that phase to be squeezed
out.

VII. GENERAL Ny

VI. IMPLICATIONS FOR WILSON'S LATTICE
FERMIONS

The Lagrangian for free Wilson lattice fermions is [15]

1(K,r, M)

As mentioned in the Introduction, the general flavor
case is somewhat more complicated because nonanoma-
lous axial vector currents can mix the 0. and g fields,
making their separation less helpful. Given Ny flavors, I
turn to a matrix notation. My basic spin-zero fields are
now

= ) K P, (kp„+ r)Q, ~.„+Q, ~ (p„+r~)Q. ,)
U g = cg (1+ps)Qs.

+ ) (mph' g~ + im2g. ps@,). (12)

The indices a and 6 run over the Ny flavors, and c is a
normalization factor as introduced in Eq. (4).

Taking various traces will reproduce analogues of the
fields introduced earlier. The cr field is

Here j labels the sites of a four-dimensional hypercubic
lattice, p runs over the space-time directions, and e„ is
the unit vector in the pth direction. I have scaled out all
factors of the lattice spacing. The parameter K is called
the hopping parameter, and r controls the strength of the
so-called "Wilson term, " which separates oK the famous
doublers. I have also added to the theory of Ref. [15] an
unconventional m2-type mass term to make the connec-
tion with my earlier discussion.

Being quadratic and only involving nearest-neighbor
couplings, the spectrum is easily found by Fourier trans-
formation. I omit the straightforward and well-known
details. I et me only observe that as a function of the
mass parameter mq, there are several places where the
fermion spectrum has no mass gap. At these points there
are massless particles in the spectrum. Conventionally,
a massless fermion is obtained by taking mq ——8Kr, but
there are other places where this original particle is mas-
sive while other doublers from the naive r = 0 theory
become massless. At mq ———8Kr one such species does
so, at each of m~ ——+4Kr there are four massless dou-
blers, and at M = 0 I find the remaining 6 of the total
16 species present in the naive theory.

My conjecture is that these various species should be
thought of as flavors. When the gauge fields are turned
on, the the full chiral structure should be a natural gener-
alization of the earlier discussion. Thus near mi ——8Kr
I expect a first-order transition to end, much as is in-

cr = c) g g = Tr(U+ Ut). (14)

m2

-8Kr 8Kr

b.

r
I m

&4 '8Kr
r

se ~a

FIG. 9. Possible phase diagrams for lattice gauge theory
with Wilson fermions. The dashed lines represent first-order
phase transitions and the dots represent points where massless
excitations should exist. (a) and (b) are for the one- and
two-Bavor cases, respectively. The number of lines joining
at each of these points counts the number of doubler species
becoming massless there.
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The pseudoscalar meson fields are

7r =iTr[A (U —Ut)]. (15)

Here A represents a set of Hermitian and traceless gen-
erating matrices for SU(Ny), i.e. , extensions of the Pauli
matrices for SU(2). For normalization, I choose

Tr(A Ab) =2b b

The other relevant fields are generalizations of the g, now
called g', and b

q' = iTr(U —Ut)

h. = Tr[A. (U+ Ut)].

The effective potential V(U) is now a function of these
N& fields. The consequences of chiral symmetry for the
massless theory are that independent "left" and "right"
SU(Ng) rotations on the field U do not change the po-
tential. Thus I have

V(U) = V(ggUg~ ) (19)

(U b) = v8.b. (20)

whenever g~ and g" are matrices Rom SU(Ny). The
theory has an SU(Ny) xSU(Ny) symmetry. Because of
anomalies, V(U) is not expected to be invariant under
general phase changes. Thus Eq. (19) would not be true
for arbitrary elements of U(N~) x U(N~). In particular,
V(U) can depend on the determinant of U.

I now assume that the massless theory undergoes chi-
ral symmetry breaking in the usual manner; so, the field
U acquires a vacuum expectation value. Furthermore, I
assume that flavor and parity are still good symmetries;
so, I am free to pick this expectation value to be pro-
portional to the unit matrix. This is analogous to taking
the 0. direction for the breaking in the two-flavor case. In
this "standard" vacuum I have

What does such a distortion do to the manifold of ground
states? The space of possible vacua is multidimensional,
but by restricting the mass to this simple form, the im-
portant coordinates are the real and the imaginary parts
of the trace of U. To help visualize the relevant struc-
ture, I generated 10000 pseudorandom SU(3) matrices
with the invariant Haar measure, and plot in Fig. 10 the
imaginary versus the real part of their traces. I also plot
the boundary of the allowed region, mapped out as t in-
creases by matrices of the form exp(itis), where As is
chosen to be proportional to the diagonal matrix with
elements (1,1, —2).

This figure dramatically shows the special role played
by the center elements; these are of the form

g b
——6 b exp(2vrin/Ny), (24)

where n is an integer. Figure 11 contains a similar plot for
SU(4). This complex structure of the stationary points of
the trace of an SU(N) matrix is probably connected with
the phase transitions seen at finite coupling for lattice
gauge theory with N larger than four [21].

The role of the group center can be understood more
formally. The energy of the physical vacuum should be
stationary under small variations of the expectation value
of U. Making a variation in the group direction says that
the vacuum must satisfy

quantity. Chiral symmetry says that physics is un-
changed under taking M: ggMgR, where gg and g~
are elements of SU(Ny). In this way an arbitrary mass
matrix can be put into some standard form. Perhaps the
most natural is the product of a real positive diagonal
matrix, where the elements are the quark masses, with
an overall phase factor e' /'

To study the multiflavor generalization of the (mi, m2)
phase diagram, I take all quark masses equal and let

M b
——b b(mi+ im2).

Please do not confuse the Kronecker symbol here with
the scalar field b of before.

Chiral symmetry indicates that this choice is not
unique; indeed, I could equivalently have chosen

(Ub)u ——vg b

0 = (~(MUX. —).UtMt)). (25)

V(U): V(U) —Tr(MU+ UtMt)/c. (22)

Here the mass matrix M is an arbitrary complex Ny x Nf

where g is an arbitrary element of SU(Ny) and labels the
respective vacuum. The set of degenerate vacua thus di-
rectly maps onto the group SU(Ny). For two-Havors this
is the the four-dimensional sphere (Ss), projected onto
an circle for the earlier figures. One di8'erence for higher
Ny is that anomaly &ee rotations, such as by nontrivial
elements of the group center, can mix the o. and g' field.
This is why the separation into fields E and 4 is not
generally useful.

I now add masses to perturb this manifold of vacua.
Following the earlier discussion, the added terms are lin-
ear in the various scalar and pseudoscalar quark bilinears

-3
-2

ReTrg
2 3 4

FIG. 10. Taking 10000 SU(3) matrices generated randomly
with the invariant measure, I plot the real vs the imaginary
parts of their traces. The boundary is obtained from matrices
generated by A8 ~
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Just as in the two-Havor case, I expect Havor-breaking
to complicate the picture. A more general mass term
can pull in other directions in the group manifold, and
the group center need no longer play a special role. In
particular, this can cause the transitions near the origin
to separate. Depending on the detailed masses, the case
0 = m need no longer necessarily have a phase transition.

-2

-3- VIII. SUMMARY AND CONCLUSIONS

-4 -3 -2 -1 0 1 2 3 4
Re Trg

FIG. 11. Taking 10000 SU(4) matrices generated randomly
with the invariant measure, I plot the real vs the imaginary
parts of their traces. The boundary is obtained from diagonal
matrices generated by diag(1, 1, 1, —3).

Note that for the case of Eq. (23), where M is propor-
tional to the unit matrix, this equation is satis6ed when-
ever (U) is itself proportional to the unit matrix. This is
because the lambda matrices are traceless.

I assume that the perturbation is sufficiently small that
the low-energy states are still cleanly mapped onto the
group SU(Ny). Those elements of SU(Ny) which are
proportional to the unit matrix form the center of the
group. Thus whenever U is a constant times one of these
elements, we have a candidate for the vacuum in the
presence of the above mass term. While there are other
stationary states in the group manifold, they are saddle
points, and the true vacuum satisfies

(U) = v exp(2min/Ny). (26)

The mass addition can rescale the quantity v from its
value in the symmetry limit.

The diagonal mass term of Eq. (23) may be thought of
as tilting the energy of the matrices in the (ReU, ImU)
plane. Depending on the direction of this tilt, the lowest-
energy state always lies at one of the vertices of the dis-
torted Nf polygon illustrated in Figs. 10 and 11. As the
phase of the mass matrix changes, the preferred vacuum
jumps from vertex to vertex. As we encircle the origin,
we expect Nf 6rst-order phase transitions as we jump
through these Nf possible vacua, eventually returning to
where we started. Each of the transitions is physically
equivalent. The parameter 0 is Nf times the angle to
the corresponding point in the (mi, m2) plane; so, these
transitions each correspond to 0 going through vr.

Note how for Nf & 2 the group itself contributes to
warping the manifold of possible vacuum states. Whereas
for two-flavors I needed the term proportional to P in
the potential of Eq. (9), this is no longer the case with
more Bavors. The first-order transition at 8 = m with
many degenerate Bavors comes naturally from the vac-
uum structure.

I have presented a physical picture of the parameter 0
in the context of an effective potential for spin-zero bi-
linears of the quark fields. I have argued for a first-order
transition at 0 = m when all Bavors are degenerate, and
shown how Bavor-breaking can remove this transition.

The picture may need to be modified for very large
masses if the global structure of the effective potential
is sufficiently modified. For example, a large M2 could
conceivably give a large enough contribution to the o,
term in Eq. (9) to destroy the spontaneous symmetry
breaking on which the discussion is predicated. Then
the first-order lines in Fig. 2 could end before reaching
in6nity.

The parameter 0 is well known to generate CP-
violation [1—5]. For example, the n term of Eq. (9) can
give g ~ 2m decay when g has an expectation value,
as caused by the presence of M2. In the context of my
discussion, the strength of this decay is undetermined,
but Ref. [5] makes estimates using the full SU(3) sym-
metry. They also estimate the strength of the resulting
neutron electric dipole moment, which is experimentally
much more highly constrained. The unnaturally small
value of 8 is still unexplained.

A number of years ago Tudron and I [22] conjectured
on the interplay of the confinement mechanism with 0,
and speculated that confinement might make 0 unobserv-
able. Recently Schierholz [23] argued that keeping con-
finement in the continuum limit may drive the theory to
0 = 0. The connection with present discussion is unclear,
but the symmetries seem to indicate no obvious problem
with 8 being observable. Furthermore, the fact that the
q is lighter than particle candidates in the h channel sug-
gests that there indeed must be the P term of Eq. (9),
and it is this term which is directly responsible for the
physical dependence on 0.

An interesting question raised in Ref. [3] is whether
the spontaneous parity violation appearing in these mod-
els might be responsible for the parity violation seen in
nature. Generalizing these mass terms to Higgs boson
couplings between gauged and spectator fermions should
make it possible to create a mirror fermion model wherein
the different helicities have different masses. Such mod-
els have been proposed [24] to circumvent difficulties of
putting chiral fermions on the lattice [25]. While these
are not ruled out experimentally, the necessity of adding
the mirror states seems a bit artificial. Thus it would be
interesting to know if there are any problems in principle
with taking the auxiliary fermion masses to infinity. This
raises triviality issues that deserve further study.
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Finally, my discussion has been independent of con-
ventional gluonic perturbation theory, and circumvents
any perturbative mechanism for the 0 dependence. In-
deed, this phenomenon is nonperturbative and usually

discussed in terms of topological effects [I]. The conse-
quences, however, are highly constrained by confinement
and the syrnrnetries of the theory, allowing much to be
said without specifying the underlying details.
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