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Screening of the topological charge due to fermion-induced interactions is an important phe-
nomenon, closely related with the resolution of the strong CP and U(1) problems. We study the
mechanism of such screening in a “correlated instanton vacuum,” as opposed to the “random” one.
Both scalar and pseudoscalar gluonic correlators are analyzed by means of an observable that mini-
mizes finite size effects. Screening of the topological charge is established. This allows us to calculate
the n’ mass without having to invert the Dirac operator. We suggest that this method might be
used in lattice QCD calculations as well. Our results for the screening of the topological charge are
in agreement with the chiral Ward identities, and the scalar gluonic correlator satisfies a low energy
theorem first derived by Novikov et al. We also propose a modified Witten-Veneziano formula, in
which the topological susceptibility is not defined for an infinite box in a world without fermions,

but for small box in the real world.

PACS number(s): 12.38.Lg, 12.38.Gc

I. INTRODUCTION

Tunneling between topologically distinct sectors of the
gauge field, described semiclassically by instantons [1,2],
is known to be one of the major nonperturbative phenom-
ena in QCD. Their importance was significantly clarified
in the last few years. In particular, a large set of QCD
correlation functions was studied [3-5] in the so-called
“random instanton liquid model” (RILM). The results
are in surprisingly good agreement both with experi-
ment (see [6]) and lattice data [7]. They clearly show
that many hadrons (including, e.g., pions and nucleons)
are actually bound by the instanton-induced interactions,
and their properties such as masses and wave functions [8]
can be well reproduced by the simplest instanton-based
model.

Second, important new results were obtained from the
study of “cooled” lattice configurations. (“Cooling” is a
procedure that relaxes a given gauge field configuration
to its closest “classical version.”) The nonperturbative
classical fields were found to be the superposition of in-
stantons [9]. Furthermore, the recent work of Chu et
al. [10] has essentially reproduced the key parameters of
the “instanton liquid” picture of the QCD vacuum: the
mean instanton separation R =~ 1.1 fm and the typical
instanton radius p ~ 0.35 fm, about 10% off the val-
ues suggested by one of us a decade ago [11]. They also
demonstrated explicitly how hadronic correlators survive
cooling, and gave quite convincing arguments showing
that confinement effects play only a relatively minor role.

In spite of such progress in phenomenology and lattice
studies, a consistent quantitative theory of instanton-
induced phenomena is still missing. The model men-
tioned above, the RILM, assumes random instanton po-
sitions and orientations. It is the simplest possible model,
which ignores all effects related to instanton interactions.
It seems to be a good approximation for many phenom-
ena, but a few exceptions should be mentioned.
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In particular, finite temperature phenomena related to
the chiral symmetry restoration transition cannot be un-
derstood without the introduction of strong correlations
between instantons and anti-instantons [12]. Further-
more, in the phase above T, these correlations are so
strong that they lead to breaking of the liquid into a set
of weakly interacting II “molecules.”

In this paper we discuss a global manifestation of the
quark-induced interaction between instantons in the vac-
uum (T = 0) case. It is known that (in the chiral limit)
it should screen large-scale fluctuations of the topolog-
ical charge. As it is a very spectacular manifestation
of quark-induced dynamical correlations, it is natural to
start our new series of studies of instanton-induced phe-
nomena by reporting these results first. A detailed report
on properties of the correlated instanton vacuum, includ-
ing correlation functions and wave functions in particular
channels, will be published elsewhere [13].

Before we proceed, let us recall why fluctuations of the
topological charge are of interest. It is well known that
strong interactions conserve C'P to a high accuracy. Two
ways to understand this “fine-tuning” were suggested.
First, the 8 parameter may set itself to zero due to the
axion mechanism [14]. A new suggestion by Schierholz
[15] is that & = 0 may happen to be a phase transition
point. In any case, there are all kinds of open questions
related to QCD at nonzero values of 6, say whether or
not it is even a confining theory, see [15].

The second possibility is that the value of § may be
trrelevant because the total topological charge of the vac-
uum is screened completely. This happens if at least one
quark flavor is massless, but this does not seem to be the
case in the real world. A new proposal was put forward
by Samuel [16] who argued that the interaction between
instantons may screen the topological charge for nonzero
quark masses, below some critical mass value.

Another important aspect is the famous U(1) prob-
lem [17,18], related to properties of the ' meson. Phe-
nomenologically, its detailed properties are very impor-
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tant, for example, for understanding of the so-called “pro-
ton spin crisis.” Theoretically, a recent discussion in con-
nection with the Samuel mechanism can be found, e.g.,
in [19,20] in which the exchange of an 7’ was interpreted
as a mediator of the Debye-type screening. Generally
speaking, the “screening” phenomenon puts significant
constraints on the parameters of this meson. Finite tem-
perature effects in relation to the interpretation of the n’
particle as an inverse screening length were discussed in
[21].

A famous approach to the U(1) problem is based on
the Witten-Veneziano formula [22,23] relating the param-
eters of the 7/ to the topological susceptibility x. Al-
though it clearly explains qualitative features of the phe-
nomenon, we cannot be satisfied by its present formula-
tion. It is very difficult to make such a type of relation
quantitative because the two sides of the equation “live
in two different worlds” [19]. The parameters of the n’
meson are obtained from experiment and refer to the real
world, while x is calculated either in the large N, limit,
or in quenched QCD [24], or in other nonscreened theo-
ries. (Endless discussions of how one should match the
units on both sides were made, and in practice people
simply use some unjustified conventions.)

No convincing lattice measurements of the 7’ proper-
ties in QCD with dynamical fermions exist so far.! In
this paper we propose a method that does not require
the inversion of the Dirac operator and might therefore
be useful for lattice simulations.

The results of the n’ correlator in the RILM [3-5] are
also unsatisfactory: the corresponding channel has shown
to produce a too strong gq repulsion. In addition to that,
the random ensemble has obviously no screening, so one
cannot get any constraints related to it. Therefore, in
this paper we study an ensemble of “interacting instan-
tons,” and test whether and how the corresponding re-
lations hold. An alternative approach to gluonic correla-
tion functions, both in random and correlated instanton
vacua, is developed in [26].

We suggest that the best way to clarify the issue is to
study the dependence of topological susceptibility x(V)
defined in the subvolume V. Its dependence on V, as well
as on the quark masses my, are the main objective of our
work. The screening of the topological charge? implies
that, for large V,x(V') is proportional to the area of V'
instead of x(V) ~ V. However, for small volumes one
always has that x(V) ~ V. The crossover point between
these two regimes defines a screening length, identified
as the inverse 1’ mass.
~ In Sec. IT we define the instanton liquid model and dis-
cuss the parameters used in our calculations. In Sec. III
the Debye cloud of a topological charge is studied and

'The best one so far is reported in [25], where the n' mass
was calculated in quenched lattice gauge theory using a rather
indirect method.

%See also [27], where this phenomenon was discussed for the
Schwinger model.

in Sec. IV the volume dependence of the topological sus-
ceptibility is evaluated. These results are analyzed in the
context of correlators that follow from effective field the-
ory (see Appendix B). In Sec. V we discuss the scalar
gluonic correlation function which is related to the fluc-
tuations of the total number of instantons in a given vol-
ume. Concluding remarks are made in Sec. VL

II. THE MODEL

The basis of this work is the “interacting instanton lig-
uid model” (IILM), formulated as a particular statistical
model amenable for numerical simulations [28-30] or an-
alytical studies [31,32]. The partition function for N/2
instantons and IV/2 anti-instantons is generally given by

N Ny
Z:/HdQIdZIde”(pI)Hdet(T‘I"Z'mf)
I=1 f

X exp [—ﬁ(pA) > sﬁ] : (2.1)

I<J

where Qj, 2y, and py, denote the orientation, position,
and size of pseudoparticle I, respectively. The size distri-
bution u(p) contains a factor ~ p?~% (with the standard
[-function parameter b = %Nc — %Nf) due to the Jaco-
bian of the transformation to collective coordinates and
the leading quantum corrections. The QCD parameter
A in B(pA) = —blIn(pA) will be determined phenomeno-
logically.

The main dynamical effects we are going to study are
due to the determinant of the Dirac operator. In the
subspace of the zero modes it can be expressed in terms
of the overlap matrix elements T', which for the “stream-
line” gauge fields [33] are given by [34] (see Appendix A
for a derivation)

Tra(prpa)'’? = (p1pa)/? /d4$¢gl($)ib¢64(m)

= —3Tx(rIRAUTTUAF(N),  (2:2)
where the scalar function F'()) is’defined by
e drr3/2
F(A) =6 )
() /0 (r + 1/X)3/2(r + X)5/2° (2.3)

and RI4 = RIA/RI4. F()) depends only on the confor-

mally invariant combination

1/~
A:-(Rz+ﬂ+”—"‘)
2 pa  pI

1 9 1/2
+—[<R2+p—’+3‘1) —4] ,
2 PA pr 7

where R = R/\/pipa. Asymptotically, for large R/p,
the Tra ~ 4p°/R® (the geometric average of p; and py4
is denoted by p).

(2.4)
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Considering the interaction due to gauge fields, let us
first mention that we deviate from previous works® by
using the interaction derived in [33] from the so-called
“streamline equation” [35]. They correspond to the true
bottom of the valley for the II configurations. This in-
teraction differs from the previously used ones in one im-
portant aspect: for one relative orientation the repulsive
“core” at small distances is gone. OQur numerical simula-
tions have confirmed earlier suspicions that it leads to an
“overcorrelated liquid” of close II pairs.? Thus, it seems
that the original hopes to stabilize the ensemble at the
purely classical level [31] are not satisfied. Presumably
quantum effects (especially subtraction of perturbative
contributions, relevant for close instanton-anti-instanton
pairs with a strongly attractive interaction) will generate
the effective repulsion. Two recent developments should
be mentioned in this context. First, Diakonov and Petrov
calculated the instanton interaction from the semiclassi-
cal quark scattering amplitude [36] and found a short
range repulsion. However, at the moment it is not yet
clear to what extent this interaction is of relevance to the
present problem. Second, some quantum corrections, dis-
cussed in [37] using the scale anomaly relation, also lead
to some effective repulsion.

Lacking a detailed understanding of these effects, we
have introduced a phenomenological repulsive core® to the
streamline action S!())

. A B B .
57 = 532 Trl2Ur 'UaloUg U + $™(), (2.5)
; A
S}r}"; = W’I‘I.]-ZUI—IU}leI_IlUI’y (2,6)

the same for pseudoparticles of the opposite and same
kind. (In the latter case the classical interaction is ab-
sent and only the hard core is included.) The strength of
the core is denoted by a free parameter A, and the color
traces are needed to reduce the magnitude of the inter-
action if two pseudoparticles belong to different SU(2)
subgroups of SU(N,).

In principle, A determines the total instanton density
in terms of A‘éCD. Unfortunately, it is not known with
sufficient accuracy, and therefore it is logical to do the
same thing as on the lattice, namely tune those two pa-
rameters to some measured masses, and then consider
others as predictions. This strategy will be used in a
subsequent work on hadron spectroscopy in the IILM.

3They used variational trial functions for the gauge fields
known as the “sum” or “ratio” ansatz.

41t is still possible that one may get a phenomenologically
acceptable ensemble by a significant increase in the density
of instantons. However, to spend a major portion of com-
puter time simulating pairs that are not even semiclassical
fluctuations is not practically reasonable or possible.

5Let us point out an analogy to the famous problem of nu-
clear matter saturation: although there is no doubt for the
existence of a repulsive core for NN forces and its decisive role
in the problem, its properties and physical nature is debated
even today, after decades of investigations.

However, in this paper, related to only a limited num-
ber of issues, we adopt a simpler normalization prescrip-
tion. For all masses, number of colors or flavors we (i) fix
the total density of the instantons at n = 1 fm*, roughly
corresponding to the standard gluon condensate value
and to lattice measurements, and (ii) the repulsive core
strength is fixed to be A = 128, for which we obtain
a quark condensate that is close to the empirical value.
(Note that in this region the dependence on A is rela-
tively weak.)

We simulate the partition function with a Metropolis
algorithm for an ensemble of N/2 = 32 instantons and
an equal number of anti-instantons in a box of size (2.38
fm)3x4.76 fm. We average over typically 1000 statisti-
cally independent configurations.

III. SCREENING OF THE TOPOLOGICAL
CHARGE

Let us start with the evaluation of the topological
charge

2 ~
Q) = /H " d's L FF (o), (3.1)

in a subvolume (“slice” of the box) H(ly) = L® x l4. It
is not an easy task on a lattice, but for our instanton
ensemble this simplifies to just counting instantons and
anti-instantons with centers in the subvolume.

Our aim is to study the details of the screening phe-
nomenon such as the size and shape of the corresponding
“Debye cloud.” Let us take the center of one of the anti-
instantons as the origin of the coordinate system and
measure the charge distribution in the rest of the sys-
tem. In Fig. 1 we show results of such studies for N, = 3
and Ny = 2 (both quarks with equal masses, given in the
label of the figures). Since the total charge in the box is
set to zero, the “compensating charge” contained in the
slice H(l4) for large enough L, should approach 1 (the
anti-instanton in the center is not counted).

Our data (points) do show a strong screening phe-
nomenon, namely that most of the compensating charge
is contained in a rather small slice of the box, with a
width of only about 1/3 fm. That means that the correla-
tions between instantons and anti-instantons, responsible
for screening, are actually very short range ones. The rel-
evant hadronic excitation, the pseudoscalar flavor singlet
channel, should therefore be relatively heavy. Thus, our
ensemble solves the U(1) problem at least qualitatively.

One more qualitative phenomenon to mention here
is the observed charge oscillations around the central
charge. Those are well seen for m = 0, and fade away for
larger masses. The oscillations are clearly nonstatistical,
and their appearance suggests that in the “instanton lig-
uid” there exist correlated clusters of various sizes. Let
us recall in this connection, that in many ordinary lig-
uids one finds a local order characteristic to a crystalline
phase, and that clusters can be as big as containing hun-
dreds of atoms. This interesting topic clearly deserves
further studies.
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Doing a more quantitative analysis, we have fitted
these data by the function

QUa) = a”[1 — exp(—myLe)] + (1~ a?)

(3.2)
The fraction a is the magnitude of the “compensating
charge,” if & = 1 the charge is screened completely. The
second term corresponds to the remaining charge which
is assumed to be distributed homogeneously over the box.
The first term is obtained by integrating the correlation
function (B13) for fixed 4 — ys = l4 and ¢ = 0. In the
effective low energy field theory (discussed in Appendix
B) the mass m,, is identified as the 7’ mass.

The obtained values for o? are 1.0, 0.99, 0.96, and 0.80
for the 4 masses used (m =0.0, 0.1, 0.2, and 0.4 in units
of fm~1), with statistical errors about 0.05. Thus, the
nonscreened charge (1 — a?) ~ m® with the power § = 1
to 2. This conclusion should be compared to the con-
ventional wisdom, according to which it should be pro-
portional to the lightest quark mass. We do not know
whether there is a discrepancy, or that it is due to finite
size effects [the 1/L term in (3.2)]. In the scenario pro-
posed by Samuel, the effect should vanish at a nonzero
critical mass (1 — a?) ~ (m — m.)?. Our results lead to
an upper limit of about m, < 20 MeV.

The value of the second parameter, m,  equals 673,
623, 555, and 518 MeV, in these four cases, respectively.®
The result is that singlet mass decreases with the current

SWe remind the reader that the “MeV” makes sense in those
unphysical theories only after we have defined them by some
convention. Rather arbitrarily, we do this by keeping the
density of instantons fixed at some value. Comparison to
lattice simulations is possible, but only after all numbers are
translated into the same convention.

quark mass and suggests that the screening length be-
comes larger if one is increasing all quark masses.

IV. FLUCTUATIONS OF THE TOPOLOGICAL
CHARGE IN A SUBVOLUME

In this section we switch to more conventional observ-
ables, which have been discussed in both theoretical and
lattice literature. They are closely related to what was
done above, but at the same time they do not demand
the charge to be localized.

Although the average value of the topological charge
in some volume is, of course, zero, one may study its
fluctuations (Q?). The attention in literature has been
focused on the large volume limit of that quantity, the
topological susceptibility

L @V))
Vi—ro00 V4 ’

X = (4.1)
but in this paper we study the dependence on the volume
V4. In general, one may write

(Q*(V)) = x(m)Va + xa(m)Asz + -,

where the subscripts refer to the dimensions of the man-
ifolds, so the second term is proportional to the sur-
face Az, etc. The particular behavior to be observed
is very informative, and can be used to extract addi-
tional information on vacuum properties (and hadronic
spectroscopy). Specifically, as we try to separate volume
from surface effects, we take a segment of the hypertorus
of variable length l; along the four-axis, i.e., the slice
H (l4) discussed in the previous section. Its total volume
L31, is proportional to l4, while its surface area L3 is inde-
pendent of it. Because our box size in the four-direction
is Ly = 2L, the effective range of I4 is 0 < Iy < L.
Furthermore, as we have seen in Appendix B, the topo-

(4.2)
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logical correlation function Ilp(z — y) [see (B13)] can
be connected with parameters of the SU(3)-scalar pseu-
doscalar mesons, the famous n'—particle and the corre-
sponding excited states.

Another important aspect is the dependence of x on
the quark masses m. It should be of course the same
as for unscreened charge 1 — o? discussed above: the
standard scenario with the “screening of the topological
charge” implies that x ~ m at small m, while in Samuel’s
scenario x = 0 for all quark masses below some critical
value m < me.

The fluctuations of the charge Q(l4) in the box H(l4)
are obtained by integrating the correlation function
(B13):

Kp(ly) = (Q(l)?)
ly
. 3 3m .- 52 2 1/2 .
_L/Lad /_hdtu )P (32 + £2)1/2)
(4.3)

For finite {4 this integration can be done as well; for suf-
ficiently large L > 1/m the range of the spatial inte-
gration can be extended to infinity with high accuracy
O(exp(—Lm,)) and the result is

(Q(le)?) = L®n [14 + cos? ¢;"—f (Mﬁ - 14)

n' mn/

2 _ _
+ain? g7 (u% _14) ] (4.4)
n n

This integral vanishes for Iy — oo if any quark becomes
massless” [see Eq. (B15) in Appendix B]. For I; — 0 we
find

(Q(l4)2> =nL’l,.

This result is independent of the specific shape of the
subvolume, and in general we have
(@*(V))

V-0 |4

(4.5)

(4.6)

Together with Eq. (B14), this results in the following
formula for the 1’ mass:

2N, L (@)
f2 small V Vv ’
which is our analogue of Witten-Veneziano formula, with
the topological susceptibility replaced by local fluctua-
tions of the topological charge. By “small V” we mean
not infinitely small volumes, of course, but those in the
window between the size of a single instanton O(p*) and
the inverse of their density O(1/n) = R*.

In terms of the flavor singlet spectral function, the cor-
relation function (4.4) implies that neither the contribu-
tion of the n (1440) nor the contribution of the contin-
uum have been taken into account. We only calculate the

(4.7)

2 2 2 _
my +my, — 2my =

" A similar cancellation takes place in many cases, e.g., in [the
two-dimensional (2D)] Schwinger model (see [27] for details).

nonperturbative contribution to the correlation function
Ty = Ip — %™ which implies that the contribution of
the continuum and the resonances appear with opposite
signs in 1. In particular we will find a cancellation be-
tween the ¢ and the continuum. In the fits to be discussed
below we included the contribution of the continuum, and
in all cases we found that the best fit was obtained for
zero coupling of the continuum. From now on we do not
include it in our discussion.

Our results for the fluctuations of the topological
charge, Kp(ly), in a slice with length I, are shown in
Figs. 2-4. The first qualitative point we would like
to make is that the data points clearly show the ex-
pected transition from a linear dependence on ly (for
small box size) to a constant for larger boxes (in case
the quark mass is zero). These data points deviate dras-
tically from the full line corresponding to randomly po-
sitioned instantons.® Thus, the topological charge is in
fact screened and its fluctuations become a surface rather
than a volume phenomenon, as soon as the quark-induced
interactions are “unquenched.”

T T 17T T T T T L
15 |— I ]
L N, = 2
Kp(L,)[C ]
10 — ]
C , Ne=2 \ -
5H— ...-0"01’0"0"""l“l‘.to'...‘ ]
: "_:’O-."l"."!“"0'0‘0"."0".‘0"04::‘ |
w3 Ne= 1 \
0 11 1 1 l | T | | 1111 I | S |
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T T 177 T T T T 7T 17T
15 [ [ I T
- N, = 24
Ks(L)[ ]
5[ ]
0 | O | I | I I L1 11 I | T |
0.0 0.5 1.0 1.5 2.0

1,/L

FIG. 2. The pseudoscalar cor:elator Kp(l4) (upper figure)
and the scalar gluonic correlator Ks(ls) (lower figure) as a
function of the length of the slice, I, in the four-direction
of total length 2L. The full line is for randomly positioned
instantons and the dashed curves represent results of a fit.
All results in this figure are for two colors and one or two
massless flavors.

8The functional form of this curve, which follows immedi-
ately from the binomial distribution of the instantons, is given
by N(la/L4)[1 — (la/La)).
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In the upper figure of Fig. 2 we compare the cases with
one and two massless quarks, for N, = 2. For massless
quarks the correlation function (4.4) reduces to

1 — exp(—myly)

<Q(l4)2>chiral -

(4.8)
Myt

The dashed curves show a fit of this function to the data
points. For Ny 1 and Ny 2 we find m,y = 535
MeV and m,; = 756 MeV, respectively. The ratio of the
masses is 1.41 which is right on top of the theoretical ex-
pectation that m, ~ /Ny [see (B14)]. If we study the
susceptibility (Q(l4)2) as a function of increasing quark
mass, which effectively reduces the number of flavors, we
therefore expect on the one hand that the n’ mass de-
creases, whereas, on the other hand, it increases because
of the explicit contribution of the quark masses.

The quark mass dependence of the topological correla-
tor is studied in Fig. 3. In this case the number of colors
is three and we consider two flavors with equal mass (the
same instanton configurations as in Fig. 1). For the quark
mass we refer to the label of the figure.

In the case of equal quark masses, the fitting formula
[that follows from Eq. (B13)] is

(Q(l)?) = nL? |:a214 (1 - 21—“L)

1-— exp(—m,,:h)}

My

+(1-a?) (4.9)
The value of o obtained from a least-squares fit is 0.0,
0.0, 0.0, 0.19 and m, equals 580, 520, 430, and 340 MeV
for quark masses of 0.0, 20.0, 40.0, and 80.0 MeV, in
this order. As we already observed in the previous sec-
tion, our results set a limit on the existence of a critical
mass below which we have complete screening. (Again
with the disclaimer that the individual parameters are

not well determined by the fit.) Only the height of the
curves is well determined. Our values for the n’ mass are
somewhat less than in the previous section, but show the
same trend: it decreases with the increasing quark mass

rT 1T 17T7T | II‘III

15
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m,=my4=0.05
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ll]llllllllll[_
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FIG. 4. The pseudoscalar correlator Kp(ls) (upper figure)
and the scalar gluonic correlator Ks(l4) (lower figure) as a
function of the length 14 of the subvolume for N. = 3, Ny = 3,
and m, = mq = 10 MeV and m, = 150 MeV. Further expla-
nation can be found in the caption of Fig. 2.

0 11
0.0

2.0



52 SCREENING OF THE TOPOLOGICAL CHARGEIN A . .. 301

(for not too large quark masses).

Finally, in Fig. 4, we show results for realistic quark
masses,? m, = mq = 10 MeV and m, = 150 MeV.

The dashed line corresponds to effective theory with
realistic meson masses and 7-’ mixing angle, it agrees
with data points quite well. However, our best fit of
Eq. (4.4) to the data (shown by the full line) suggest
quite different parameters: the pion and the kaon mass
to be zero, whereas m,» = 605 MeV. Clearly, only some
combinations of the parameters can really be determined
from those data points, not all the individual parameters.
In particular, we have found that the fitted curve is very
insensitive to the value of the strange quark mass. (And
in fact the best fit misses the strange quark contribution
to the m,, ) Note that in naive chiral perturbation the-
ory this meson should possess a strangeness-related mass
mETA8 = m, /\/2 = 388 MeV. The sum of these two

n
numbers are in the correct region.

V. COMPRESSIBILITY OF THE INSTANTON
LIQUID

Let us now proceed to studies of a related gluonic cor-
relation function

3272 3272 (5-1)

9’ g
stz ) = (27 FF@)303 FF0) ),
containing the action rather than the topological charge,
and therefore counting instantons and anti-instantons
equally. The total topological charge in a subvolume V
is given by

- s 9
N(V) —/Vd a:327r2FF(.1:), (5.2)

which satisfies that (N(V)) = nV. For pointlike pseu-

doparticles we have

2 N
J_FF(z) =Y 5% — X1).
I=1

3972 (5.3)

For small |z — y| only terms involving the same instanton
contribute and we find that

Os(z —y) = né*(z —y) for |z —y| — 0. (5.4)
In reality the instantons are not pointlike, and show a re-

pulsive interaction. This leads to the low-energy theorem
38,31,39]

20f course, for any finite volume simulation the value of m f
cannot be taken arbitrary small: the minimum possible value
of m is the point where the m derivative of the condensate
vanishes. For feasible columns we work with my = 0.5 =~
10 MeV, being small compared to hadronic masses but still
considerably larger than the light quark masses in the real
world.

(INOP) = (N(V))? = SN (V) (5.5)

where b = %Nc — %Nf is the standard Gell-Mann-
Low coefficient, and the volume is assumed to be large,
V — oo. The compressibility of the instanton liquid is
thus equal to 4/b. As can be seen from (5.4), for rela-
tively small volumes the fluctuation just is proportional
to the instanton density n, without the factor 4/b. How
can we understand this in terms of the physical states
contributing to the correlation function?

The lowest-lying intermediate state is a “scalar glue-
ball,” which we will generically call o, which presumably
has large mass m, ~ 1700 MeV (and should not to be
mixed with the quark-based o of sigma model, at 600
MeV). Using a somewhat different convention than in
the pseudoscalar channel the relevant matrix element is

2
<0| Y _FF a>=,\,.

3272
Including also the contribution of the continuum with
coupling constant A, = a%/327*, this results in the cor-
relator

(5.6)

Os(z — y) = A2D(m,, |z — y|)

+2 /oo dsD(v/s, |z — y|)s>. (5.7)

o]

This result contains both perturbative and nonpertur-
bative contributions. However, the correlation function
from the instanton liquid calculation only receives con-
tributions from the latter sector. Therefore, we should
compare out results to IIg" = IIg — II5*™*. The spectral
representation of the perturbative contribution is given

by

Mgt = a2 [ dsD(v [z - u)s® (5.8)
]

which results in the nonperturbative correlator

TP = A2D(m,, |z — y|) — A2 / dsD(v/35, |z — y|)s”.
4]
(5.9)

In the same way as for the topological correlator we
define the correlator, Ks(l4), as the variance of the total
field strength inside the box H(ly). Numerically, this
correlator can be evaluated again by simply counting the
number of instantons inside the box. It is related to IIg"
by

lg .
Ks)=12* [ @ [~ ats = )T (@ + £)72).
(5.10)

Using the correlators (5.7) and (5.8) we find
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Ks(ls) = m—"2L3 (z4 - Mfé 4))

2273 % 1 1 —exp(—lsv/s)
AL /0 S ly NG s“ds.
(5.11)

For large volumes the low-energy theorem (5.5) should
be obeyed. This leads to the relation

)\2

2
mg

4
52 = —n.

b

1
- 5,\'g’ (5.12)

In the lower part of Figs. 2, 4, and 5, we show results
for the scalar correlators. The full lines in all figures cor-
respond to a random positioning of the instantons. For
infinite volume we would get a straight line, but finite
size corrections turn it into a parabola. The numerical
results are represented by dots. The dashed line is a fit
using a combination of (5.11) and (5.12) with the lin-
ear large l4 behavior replaced by its parabolic finite size
counterpart. Explicitly, the fitting function is given by

sy =X [314 (1- o) ol omlomely
"\%—; (’\2 - %) F(l4x/8_o)], (5.13)

where the “missing continuum function” F follows from
the integral in (5.11):

1 2 1 2 2
F(z) = -3 + i (; + e + F) exp(—z). (5.14)
This fitting function both reproduces the short distance
behavior (5.4) and the low-energy theorem (5.5). The

constant A is related to A, by A2 = A\2/(m2n).

Results for N, = 2 and Ny = 1 or Ny = 2 are shown
in Fig. 2. The fitted values of A, /m, equal 1.09 fm ~2 in
both cases, the values of \/sg are 1700 and 1215 MeV and
me turns out to be as large as 34 and 31 GeV, respec-
tively. This very large value is no surprise. The correla-
tor (5.1) was evaluated by counting the number of pseu-
doparticles inside a box which is equivalent to approxi-
mating the profile of the instantons by delta functions.
The glueball contribution is indeed a strongly peaked one
with a fitted value of A2 /m2 = 1.19n.

In Fig. 5 we study the current quark mass dependence
for N. = 3 and two flavors of equal mass. For current
quark masses equal to 0, 20, 40, and 80 MeV we find
a fit with A, /m, equal 1.16, 1.12, 1.13, and 1.39 fm 2,
respectively.’® For the continuum parameter /s, we find
the values 1.8, 2.2, 1.8, and 3.3 GeV, in the same order.

Finally, in the lower figure of Fig. 3, we show K for
realistic values of the quark masses (see caption). Also
in this case we find a best fit with A,/m, equal to 1.2
fm~2 (and a very large glueball mass of 19 GeV). For the
continuum parameter we find the very reasonable value
of 2.3 GeV. This large value implies that the continuum
only contributes at small volumes, while the bulk of the
results discussed in this section are well described by the
first term in (5.13).

VI. CONCLUSIONS

We have presented a detailed study of the volume de-
pendence of the fluctuations of the topological charge in

19T he fitted values of the glueball masses are 21, 18, 27, and
13 GeV. Again these large values are unphysical, and related
to the delta function short distance behavior of the correlator.
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an interaction instanton liquid model of the QCD vac-

uum. As was expected, we found that these fluctuations
are screened for a sufficiently large box and sufficiently
small quark masses due to the fermion-induced interac-
tion between instantons. The phenomenon disappeared
gradually as the quark mass increases from zero. An up-
per limit for the Samuel’s critical mass value is set to
about 20 MeV. Furthermore, the results for the corre-
lated instanton liquid have shown that correlations are
essential for reproducing the m, and its dependence on
the number of colors and flavors.

As a by-product, we have obtained a formula similar to
the Witten-Veneziano formula, but the topological sus-
ceptibility that enters into it is not the large volume limit
but rather the small volume limit in the presence of dy-
namical fermions.

We also present results for the fluctuations of total
number of instantons in the finite box. The results
clearly indicate that the instanton liquid is not an ideal
gas, but a liquid with an important repulsive interaction.
The results agree very well with the Novikov-Shifman-
Vainshtein-Zakharov (NSVZ) low-energy theorem, and
provide constraints for the parameters of the physical
particles in the scalar channel.

Finally, let us emphasize that the method to evaluate
the 1’ parameters proposed in this work can be applied
to lattice QCD calculations with dynamical fermions as
well. Straightforward evaluation of the quark propaga-
tors can be substituted by measurements of the topolog-
ical charge in a finite box, which may be much easier to
do.
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APPENDIX A: FERMIONIC OVERLAP MATRIX
ELEMENTS FOR THE STREAMLINE ANSATZ

In this appendix we calculate the overlap matrix el-
ements of the Dirac operator between fermionic zero
modes of an instanton and an anti-instanton in the
streamline field configuration.

For the streamline configuration we use the Yung
ansatz [35] which is very close to the exact streamline
solution (see [33]) and is given by

-1

a’Tz _ 1
AM? = UATanZVmeUA

P2/ + 5

Uro; Rytan’ @y —— >t =t
+Uro, Rutam,,, @ wz(wz-{—pz/)\)o“R“UI ,

(A1)

where Ru = R, /R. After a combined space inversion,

scale transformation and translation of the coordinates
z, — sz, /2 —c,, (A2)

and the fields

S T, X
a _ mov a e
Aj — e (6“,, 2 22 ) Aj (smz Cu) s

(A3)

and a gauge transformation, the field configuration (A1)
can be written as the sum of an instanton and an anti-
instanton in the singular gauge and several other terms
that vanish for large separation. The positions and the
sizes of the pseudoparticles are given by

sc sc
L= e S A4
TI 2 + p2/ Za 2+ pPA (A4)
_ _sp/VA _ spVA (A5)
p1~62+p2//\’ pA_CZ-i-pzA'

The separation R, between an instanton and an anti-
instanton is defined by

R, = 1';1; — :1:;‘}. (AB)

For the derivation of the inverse transformation we refer
to [33]. The result for A in terms of the sizes and the
separation is given in (2.4) in the main text of this paper.
The orientations of the instanton and the anti-instanton
in the streamline configuration at finite R is determined
from their values for R — oo. With this definition Ug
and Uy in (A1) are the usual orientation matrices. Note
that a space inversion transforms an instanton into an
anti-instanton and vice versa.

The overlap matrix elements of the Dirac operator
i7D, between fermionic zero modes ¢y and ¢4, are de-
fined by

Ty = / d*z}(z)ivD (). (A7)
Apart from the invariance under gauge transformations,
this matrix is also invariant under the conformal trans-
formations (A2) and (A3) supplemented by the transfor-
mation

P(z) = 33/2%1/1 (s% - c,,)

(A8)

for the fermionic fields. This allows us to evaluate it
for the conformally symmetric field configuration (A1).
Noting that instantons change into anti-instantons under
conformal transformations, the zero mode corresponding
to the first term in (A1) (an instanton zero mode in the
regular gauge) is

1 p\/x

; ——‘(mz i p2/\)3/2 UAEI’

$a(z) = (A9)

the zero mode corresponding to the second term (an anti-
instanton zero mode in the singular gauge) is

1 p/VA  y-z

T (2 + p2/X)3/2 |z| Ur(—i)o™ - Rey. (A10)

¢1(z) =
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In both cases the 4 X 2 matrix € is given by

1
1 _
Y (A11)
0

-1

One more subtlety should be mentioned. Under the con-
formal transformations (A2) the norm of the zero modes
is not invariant,

S

Y (A12)

/ dtedl, () ba(z) -
instead of 1 for (A9) and (A10). This can be shown
most easily by performing the transformation (A2) on
the explicit expressions (A9) and (A10). The norm of ¢;
transforms as

S

/d4$¢}(w)¢l($) Ty (A13)

The matrix elements of the normalized zero modes are
therefore not invariant under (A2). However, comparison
to (A5) tells us that the matrix elements of the normal-
ized zero modes transform according to
pTra = (prpa)/*Tra. (A14)
The calculation of the matrix element (A7) can be fur-
ther simplified by adding and subtracting ¢y8 to iyD and
using that ¢; and ¢4 are zero mode solutions of the Dirac
equation. The result is

Trap = —-p/ dizgl(x)ivdpa(z). (A15)
After differention with respect to d, the Dirac-color trace
n (A15) becomes

’I‘r(eL’y-z y-z iO‘I ‘R Ur'Uaer)

= 2?Tr(io} - RU;'Ua). (A16)

Using the spherical symmetry, the integral can be written
as

Trap = 6iTx(io} - R U7 'UL)

2:4

d
x/o m(m2+1/)\)3/2(x2+)\)5/2’

which, after a change of variables, agrees with the ex-
pression (2.4) in the text.

For large separation the conformally invariant param-
eter A — oo in which case the integral reduces to

(A17)

1 [ dz 1
5[) (z + A)5/2 = 3)3/2° (A18)
resulting in the asymptotics
Tro} - RUFU
(p1pa)'/?Tra = ‘2(PIPA)3/2"*‘—A (A19)

R3

for R — oo, in agreement with the asymptotic result for
the sum ansatz as obtained by Diakonov and Petrov [31].
(Note that their definition of the overlap matrix element
differs by a minus sign from ours.)

APPENDIX B: TOPOLOGICAL CORRELATORS
IN EFFECTIVE FIELD THEORY

The topological charge density is defined by

Q) = 55

(B1)

where F is the field strength tensor. The topological
charge Q(V) in four-volume V is obtained by integra-
tion of Q(z) over V. The fluctuations of the topological
charge in a given box are determined by the topological
correlation function defined by

F)).

In this Appendix we will derive this correlator from the
effective low-energy chiral Lagrangian [40] and its inter-
action with the topological charge Q. This derivation is
based on work in Refs. [18-20]. The main additional in-
gredient is that we include the 7-n' mixing in our deriva-
tion.

The topological charge density couples to the pseu-
doscalar singlet meson channel, and, for a diagonal mass
matrix with m, = mg, only the n-n mixing part of the
effective pseudoscalar Lagrangian is of relevance.!! This
part, which involves only the diagonal (SU(3)-flavor fields
¢o and ¢s, is given by [23,40,41,32,42]

2 2

9* Lz 9
Mp(z—y) = <327r2 FF)gmt

(B2)

~ =i [atz VNG 0t Llbo ), (B3)
with
1 [ ¢o 2 2y [ %o
c 9 =3 v 9
o =5 ()7 rae) (). e
aﬂd the square of the mass matrix [23]
Imk +im2 B2 (m2 —mk)
M? = (B5)
22(m2 —mY)  Amk — im2

The normalization of the fields and the coupling constant
f will be discussed below.

In the dilute gas approximation the instanton partition
function is given by [43,18]

111n fact, there is another state with the quantum numbers
of the ', 7 (1430) and formerly called ¢, which gives a compa-
rable contribution to this correlation function (see discussion
n [6]). We do not include it here, because it is hardly possi-
ble to extract any information about this state from the data
sample discussed in this paper.
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N++N‘

2 NLIN_ de Zlexp( /d"wﬁeﬁ). (B6)

The constant x was calculated to one-loop order in [2].
Treating the instantons as pointlike objects, the topolog-
ical charge density is given by Q(z) = > Q:d6(z — z;).
This allows us to perform the sum over N, and N_ in
the partition function. Our final effective Lagrangian is
obtained by expanding the resulting cosine function to
second order (weak field approximation):

Leg = —2K + 572—450 + L(do, $3)-
The constant k can be traded for the average pseudopar-
ticle density by differentiating both (B6) and (B7) with
respect to k. We find

2= (X) 2

The topological correlator (B2) can be obtained by in-
tegrating out the meson fields. However, it is somewhat
simpler to write the correlator in terms of functional
derivatives with respect to ¢o of the first term in the
Lagrangian (B3) and performing the differentiation after
the sum over the instantons, i.e., on the second term in
(B7). The correlator can be expressed as

(B7)

(B8)

(Q(2)Q(y)) = nd*(z — y) - po(z)¢o(v)). (B9)

R
The latter expectation value is most conveniently ob-
tained by diagonalizing the mass matrix M (including
the topological contribution) with eigenvalues identified
as m,» and m, and eigenvectors expressed in the 7'-n
mixing angle according to

[n') = cos @l¢o) + sin ¢|¢s), (B10)
[n') = cos @|ps) — sin @|Po)- (B11)
For the singlet correlation function we obtain
(¢o(z)¢o(y)) = cos?(¢) D (my, |z — y|)
+sin®(¢)D(my, |z — y|) (B12)
resulting in the topological correlator
2
<Q($)Q(y)> = E—N;mfop{(s‘l(r - y) - mtzop
x[cos®(¢) D(my, |z — yl)
+sin’(¢)D(my, |z — )]} (B13)

where the scalar propagator is given by D(m,z)

mKi(mz)/(4n%z). For convenience we have introduced
the topological mass
2N¢n
mfop = 72 —m  +ml — 2m%, (B14)

where the latter identity follows from the invariance of
the trace of the mass matrix under diagonalization. The
1’ contribution to this correlation function can also be
derived from the pseudoscalar singlet spectral function
using the matrix element (0|Q(z)|n’) = m2 f,/+/2N5.
This defines the constant and the normalization of the
fields in our effective Lagrangian.

It is interesting to calculate the topological suscepti-
bility

_ i (S d*2Q(2)]?)
R
L (ma - mml,
(3mk — 3m2)miy, + 2mEm2 —mj

(B15)

We observe the well-known fact that the topological
charge is completely screened if one massless quark is
present. Note that this formula has been derived for
m, = mgq. Indeed, for zero light quark masses we have
m, =0 and x = 0. If m, = 0 we have that m2 = 2m§{
and also x = 0.

As has been particularly emphasized by Dowrick and
McDoughal [19], we can look at the effective Lagrangian
in a different way. Namely we integrate over the pseu-
doscalar singlet and are left with a residual instanton
interaction. In the present case, with the SU(3)-mixing
angle taken into account, we have to integrate over both
¢o and ¢g. This results in the effective Lagrangian

2
c- 1250, (gp(m,, 12 — 2])

—mi|z - Zj|)>,

where we have subtracted the infinite self-energy terms
(for z; = z;). The range of the interaction between the
pseudoparticles is of order of 1/m,. Although it is be-
lieved that a Yukawa interaction is not strong enough
[44] to induce a plasma phase, the relatively long range
interaction justifies the study of the scenario recently pro-
posed by Samuel [16].

+%D( (B16)

[1] A. A Belavin, A. M. Polyakov, A. A. Schwartz, and Yu.
S. Tyupkin, Phys. Lett. 59B, 85 (1975).

[2] G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D
14, 3432 (1976).

[3] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys.
B410, 37 (1993).

[4] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys.

B410, 55 (1993).

[5] T. Schifer, E. V. Shuryak, and J. J. M. Verbaarschot,
Nucl. Phys. B412, 143 (1994).

[6] E. V. Shuryak, Rev. Mod. Phys. 65, 1 (1993).

[7] M. C. Chu, J. M. Grandy, S. Huang, and J. W. Negele,
Phys. Rev. Lett. 70, 255 (1993).

[8] T. Schifer and E. V. Shuryak, Phys. Rev. D 50, 478



306 E. V. SHURYAK AND J. J. M. VERBAARSCHOT 52

(1994).

[9] B. Berg, Phys. Lett. 114B, 475 (1981); M. Teper, in
Lattice ’90, Proceedings of the International Sympo-
sium, Tallahassee, Florida, edited by U. M. Heller, A. D.
Kennedy, and S. Sanielevici [Nucl. Phys. B (Proc. Suppl.)
20, 159 (1991)].

[10] M. C. Chu, J. M. Grandy, S. Huang, and J. W. Negele,

~ Phys. Rev. D 49, 6039 (1994).

[11] E. V. Shuryak, Nucl. Phys. B203, 116 (1982); B203, 140
(1982); B203, 237 (1982).

[12] T. Schéfer, E. V. Shuryak, and J. J. M. Verbaarschot,
Nucl. Phys. B412, 143 (1994).

[13] T. Schéfer, E. V. Shuryak, and J. J. M. Verbaarschot,
Mesons in the correlated instanton vacuum (unpub-
lished).

[14] R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440
(1977).

[15] G. Schierholz, “Towards a dynamical solution of the
strong CP problem,” DESY Report No. DESY 94-031,
1994 (unpublished).

[16] S. Samuel, Mod. Phys. Lett. A 7, 2007 (1992).

[17] S. Weinberg, Phys. Rev. D 11, 3583 (1975).

[18] G. ’t Hooft, Phys. Rep. 142, 357 (1986).

[19] N. J. Dowrick and N. A. Mcdougall, Phys. Lett. B 285,
269 (1992); Nucl. Phys. B399, 426 (1993).

(2

[21] 1. Zahed, Nucl. Phys. B427, 561 (1994).

[22] E. Witten, Nucl. Phys. 156, 269 (1979).

[23] G. Veneziano, Nucl. Phys. B159, 213 (1979).

[24] J. Smit and J. Vink, Nucl. Phys. B284, 234 (1987).

[25] Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, and A.
Ukawa, Phys. Rev. Lett. 72, 3448 (1994).

[26] T. Schafer and E. V. Shuryak, “Glueballs and Instan-
tons,” SUNY-NTG report (unpublished).

[27] A. Smilga, Phys. Rev. D 46, 5598 (1992).

[28] E. V. Shuryak, Nucl. Phys. B302, 559 (1988); B302, 574
(1988); B302, 599 (1988).

[29] E. Shuryak, Nucl. Phys. B319, 511 (1989); B319, 521
(1989), B328, 85 (1989); B328, 102 (1989).

[30] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys.
B364, 255 (1991).

[31] D. I. Diakonov and V. Yu. Petrov, Nucl. Phys. B245,
259 (1984); B272, 457 (1986).

[32] M. A. Nowak, J. J. M. Verbaarschot, and I. Zahed, Nucl.
Phys. B324, 1 (1989).

[33] J. J. M. Verbaarschot, Nucl. Phys. B362, 33 (1991).

[34] E. V. Shuryak and J. J. M. Verbaarschot, Phys. Rev.
Lett. 68, 2576 (1992).

[35] A. V. Yung, Nucl. Phys. B297, 47 (1988).

[36] D. I. Diakonov and V. Yu. Petrov, Phys. Rev. D 50, 266
(1994).

[37] K. Langfeld and H. Reinhardt, Phys. Lett. B 333, 396
(1994).

[38] V. Novikov, M. Shifman, A. Vainshtein, and V. Za-
kharov, Nucl. Phys. B165, 67 (1980).

[39] E. M. Ilgenfritz, Habilitation Leipzig, 1988.

[40] P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253
(1980).

[41] D. I. Diakonov and V. Yu. Petrov, Leningrad Report No.
LNPI-1153, 1986 (unpublished).

[42] M. A. Nowak, J. J. M. Verbaarschot, and I. Zahed, Phys.
Lett. B228, 251 (1989); R. Alkofer, M. A. Nowak, J. J.
M. Verbaarschot, and I. Zahed, ibid. 233, 205 (1989).

[43] C. G. Callan, R. Dashen, and D. J. Gross, Phys. Rev. D
17, 2717 (1978).

[44] R. Shrock, in Quantum Fields on the Computer, edited
by M. Creutz (World Scientific, Singapore, 1992).



