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+CD phase transition at finite temperature in the dual Ginzburg-Landau theory
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We study the pure-gauge +CD phase transition at finite temperatures in the dual Ginzburg-
Landau theory, an efFective theory of +CD based on the dual Higgs mechanism. We formulate the
efFective potential at various temperatures by introducing the quadratic source term, which is a new
useful method to obtain the efFective potential in the negative-curvature region. Thermal e6'ects
reduce the QCD-monopole condensate and bring a first-order deconfinement phase transition. We
find a large reduction of the self-interaction among @CD monopoles and the glueball masses near
the critical temperature by considering the temperature dependence of the self-interaction. We also
calculate the string tension at finite temperatures.

PACS number(s): 11.10.Wx, 12.38.Aw

I. INTRODUCTION

It is believed. that hadron physics is governed by quan-
tum chromodynamics (QCD). Although high-energy phe-
nomena such as deep inelastic scattering are described
by perturbative QCD owing to asymptotic freedom [1],
the theory becomes highly nonperturbative at low en-
ergy. Lattice QCD theory [2] was then developed for low-
energy phenomena and demonstrated again the good-
ness of QCD. This gigantic numerical simulation method,
however, does not tell us yet how low-energy phenomena
such as quark confinement and chiral-symmetry break-
ing take place. We need therefore some efFective theory,
which incorporates the essence of the low-energy QCD
physics and at the same time reproduces the observables
with a few parameters in the effective theory, such as the
Ginzburg-Landau theory in the superconductivity.

In recent years, Suzuki and co-workers [4] proposed the
dual Ginzburg-Landau theory (DGL) as an attractive ef-
fective theory of nonperturbative QCD. The DGL theory
incorporates the QCD monopole fields as essential ingre-
dients for confinement of colored particles (quarks and
gluons). The QCD monopole field has its clear origin
through Abelian gauge fixing in the non-Abelian gauge
theory in the manner of 't Hooft [5]. In this theory, the
QCD vacuum is characterized by QCD xnonopole con-
densation, which provides a mass to the dual gauge field
through the dual Higgs mechanism and hence the color
electric field cannot freely develop in the QCD vacuum.
Therefore, the color electric field originated &om one
colored object should be confined in a small vortexlike
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tube to end at the other colored object [4,6]. This cor-
responds precisely to the Meissner efFect of superconduc-
tivity. But here the role of the magnetic and the electric
fields is reversed and this phenomenon is called as the
dual Meissner efFect. Such a picture for color confine-
ment has been extensively investigated by recent studies
[7,8] based on lattice gauge theory, and much evidence
of QCD-xnonopole condensation in the nonperturbative
QCD vacuum has been reported [7].

Suganuma, Sasaki, and Toki (SST) studied the DGL
theory in further detail [6]. They formulated the confine-
ment potential of heavy quarks in a natural way and ob-
tained the linear potential in the same form as the vortex-
like solution in the superconductivity. SST then showed
QCD xnonopole condensation also induced the dynami-
cal chiral-symmetry breaking (DySB) [6,9,10]. Thus, the
DGL theory d.escribes both the confinement and DySB
of QCD in the nonperturbative region. These two non-
perturbative features, the confinement and DySB, would
be changed in the high-temperature system, which is ex-
pected to be realized as the quark-gluon plasma (QGP) in
ultrarelativistic heavy-ion collisions or in the early Uni-
verse [12]. Nowadays, finite-temperature QCD including
QGP physics is one of the most interesting subjects in
intermediate-energy physics [12].

In this paper, we would like to develop the thermody-
namics of the DGL theory [13] and study the change of
the properties in the QCD vacuum with temperatures es-
pecially in terms of the deconfinement phase transition.
To this end, we concentrate on the pure-gauge QCD case,
where glueballs appear as physical excitation. Although
such a pure-gauge system is different &om the real world,
it is regarded as a prototype of the real QCD and is well
studied by using the lattice QCD simulation [2]. It is
worth mentioning that our &amework based on the DGL
theory can be extended to include the dynamical quarks
straightforwardly [4,6] keeping the chiral symmetry of the
system, which is explicitly broken in the color-dielectric
model [11]or in the lattice QCD with the Wilson fermion
[21.
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II. EFFECTIVE POTENTIAL FORMALISM
AT FINITE TEMPERATURE

The DGL Lagrangian [4,6,13] relevant for the QCD
vacuum is written by the dual gauge field B„=(B„,B„)
and the QCD-monopole field X (n = 1, 2, 3):

&DGL = ——(~pB~ —o~B~)
4 P v v P

3

+ ).[1(i~~ —ge: B~)x-I' —&(Ix.l' —v')'].

Here, e denotes the magnetic charge of the QCD-
monopole field X: ei ——(1,0), eq ——(—2, —

2 ), and

es ——(—2, ~2). The dual gauge coupling constant g satis-
fies the Dirac condition, eg = 4m, with e being the gauge
coupling constant. The strength A for the self-interaction
of the QCD-monopole field and the vacuum expectation
value e are the parameters of the DGL theory. In prin-
ciple, the values of these parameters can be extracted
from the lattice QCD data, but it is practically difficult
at present. Hence, these parameters are determined by
fitting to various low-energy observables. The DGL La-
grangian (1) is obtained by integrating over A„ in the
original DGL partition functional in the pure gauge case
[4,6].

We investigate the efFective potential in the path inte-
gral formalism. The partition functional is written as

Z[J] = /D1i 11B exP i ed zii Cleee

—J).Ix I' (2)

where we take the quadratic source term [14] instead of
the standard linear source term [1,12]. As is well known

in the P4 theory [1,12], the use of the linear source term
leads to an imaginary mass of the scalar Geld y in the
negative-curvature region of the classical potential, and
therefore the efFective action cannot be obtained there
due to the appearance of "tachyons. " In this respect,
there is an extremely advanced point in the use of the
quadratic source term [14], because the mass of the scalar
Geld y is always real even in the negative-curvature re-
gion of the classical potential owing to the contribution of
the source J to the scalar mass. [See Eq. (6).] Then, one
obtains the efFective action for the whole region of the
order parameter without any difficulty of the imaginary-
mass problem. Moreover, the efFective action with the
quadratic source can be formulated keeping the symme-
try of the classical potential. Since this method with the
quadratic source term is quite general, it is convenient to
formulate the nonconvex efFective potential in the P4 the-
ory, the linear o model, or the Higgs sector in the unified
theory [1].

The vacuum expectation value of X (n=1,2,3) is the
same value x due to the Weyl symmetry [4], and therefore
we separate the QCD-monopole field x into its mean
Geld y and its fiuctuation y as

x = (x+x )exp(i( ).

Here, the phase variables ( have a constraint,
0, where two independent degrees of &ee-

dom remain corresponding to the dual gauge symmetry
[U(1)s x U(l)s] [4,6]. When QCD monopoles condense,
the phase variables g turn into the longitudinal degrees
of the dual gauge field B„,which is the dual Higgs mech-
anism.

Since we are interested in the translational-invariant
system as the QCD vacuum, we consider the x-
independent constant source J, which leads to a homoge-
neous QCD-monopole condensate. In the unitary gauge,
the Lagrangian with the source term is rewritten as

&DGL —J) Ix-I' = &.i(x) —3Jx' —2x[2&(x' —v') + J]) x.

(B„B„—B„B„—)2—+ —m~2B„'+ ) [(B„x )' —m'x ]

3

+ ) .&g'(e: B~)'(X' + 2XX-) —&(4XX' + X') ), (4)

where Z, i(X) is the classical part,

Z, i(x) = —3A(x —v ) .

Here the masses of g and B„are given by

m,'=2)(3X' —v')+ J=4&X', m~ =3g'X',

where we have used the relation between the mean field y and the source J:
(6)
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J = —2A(g —v ).

This relation is obtained by the condition that the linear term of y vanishes. It is remarkable that the scalar mass
m~ is always real owing to the source J even in the negative-curvature region of the classical potential, g ( v/v 3

Integrating over B„and y by neglecting the higher-order terms of the Quctuations, we obtain the partition
functional

Z]d] = exp
] if d e(dt(k,) —kdk ) ]]Det(tDn )] ]Det(idt )]

where the exponents, —1 and —3/2, originate from the numbers of the internal degrees of freedom. Here, Dxx and D„
are the propagators of H„and y in the QCD-monopole condensed vacuum:

( kk) i
k2 —m2 +i~x

in the momentum representation. Hence, the efFective action is given by the Legendre transformation [1]

3.
I'(g) = i lnZ[J]+— d +3' = d xZ, x(g) +i 1 nDet(i D& ) + i lnDet—(iD ).

The functional determinants are easily calculable in the momentum space, and we obtain the formal expression of the
effective potential [1]:

d x = 3A(g —v ) + 3 . 1n(mxx —k —ie) + — . ln(m —k —ie).4 —2 2 2 d4I, , 3 d4k

i(2m) 4 2 i(2~)4

In the Finite-temperature system [12], the partition functional Z is described by the Euclidean variables: xo —— iT, —
and the upper bound of the 7 integration is P = 1/T with T being the temperature. Then, the ko integration in the
functional determinant becomes the infinite sum over the Matsubara frequency [12]. The efFective potential at finite
temperatures physically corresponds to the thermodynamical potential, and is given by

tee(k;T) = 3k(k* —ve)'+ 3T ) f, in((2neT)'+ k'+ enn)
n= —oo

+ T) f ln—((2nvT)t + kt+ nv') (12)

in the DGI theory- Performing the summation over n and the angular integ ation we obtain the final expression of
the effective potential at finite temperatures:

V (tt;T)=3k(it —v) +k— dkk in t — v"+ i + —— dkk ln(t —e V + *i ), (13)

where mxx and mx are functions of g as shown in Eq. (6).
Here, we have dropped the T-independent part (quantum
fluctuation) because we are interested in the thermal con-
tribution to the QCD vacuuxn [13].

III. NUMERICAL RESULTS AND DISCUSSIONS

potential [6].i These values provide mxx = 0.5 GeV and
mz ——1.26 GeV at T = 0. The (local-) minimum point of
V,xx(g; T) corresponds to the physical (xneta)stable vac-
uum state. As the temperature increases, the broken
dual gauge symxnetry tends to be restored, and the QCD-
monopole condensate in the physical vacuum, g~h„, (T),
is decreased. A first-order phase transition is found at the

We show in Fig. 1 the effective potential at various
temperatures (thermodynamical potential), V,xx(g; T), as
a function of the QCD-monopole condensate g, an order
parameter for the color confinement. The parameters
A = 25, v = 0.126 GeV, and g = 2.3 are extracted by fit-
ting the static potential in the DGI theory to the Cornell

We examined several possible parameter sets, and found
a small parameter dependence on our results shown in this
paper.
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V,f((x;T) [fm ]

20

the lower critical temperature T~ ——0.38 GeV, which
is analytically obtained by using the high-temperature
expansion [12,13]:

6A
Ti —2v

i

-20

-40

0.00 0.05 0.10 0.15 0,20

X[GeV]

FIG. 1. The efFective potentials at various temperatures as
functions of the QCD-monopole condensate g. The numbers
beside each curve are the temperatures. The absolute mini-
mum points of the efFective potentials are shown by crosses.

thermodynamical critical temperature, T~ 0.49 GeV,
and the QCD vacuum becomes trivial, mph„, (T) = 0, for
T & T~. This phase transition is regarded as the decon-
6nement phase transition, because there is no con6ning
force among colored particles in the QCD vacuum with
Xpiys(T) = 0.

We show the behavior of the QCD-monopole conden-
sate in the physical vacuum, /pi, „,(T), as a function of
the temperature T in Fig. 2. One 6nds yphys 0 126 GeV
at T = 0, and the QCD-monopole condensate decreases
monotonously up to yzhy,

——0.07 GeV at the upper criti-
cal temperature T„p:0 51 GeV, where the minimum at
finite g disappears in Vir(g; T). On the other hand, the
local minimum is developed at g = 0 in V,ir(g; T) above

X....P )[«V]
0.15

The minimum value of V,ir(g;T) at g = 0 becomes
deeper than that at finite y above the thermodynami-
cal critical temperature T~ ——0.49 GeV. Here, we get
the 6rst-order phase transition because we have consid-
ered full orders in g as shown in Eq. (13). On the other
hand, Monden et al. [13] did not get the first-order phase
transition due to the use of only the lowest order in y in
the high-temperature expansion [12], and therefore they
had to introduce the cubic term in y in the Lagrangian.

Here, we consider the possibility of the temperature
dependence on the parameters (A,v) in the DGL the-
ory. The critical temperature, T~ ——0.49 GeV, seems
much larger than the one of the recent lattice QCD pre-
diction, T~ ——0.26—0.28 GeV, which is, for instance, esti-
mated &om the relation, Tc/~k 0.62 [3] and the string
tension k = 0.89—1.0 GeV/fm. However, we should re-
member that the self-interaction term of y has been
introduced phenomenologically in the DGL Lagrangian.
In particular, the asymptotic freedom behavior of QCD
leads to a possible reduction of the self-interaction among
QCD monopoles at high temperatures. Hence, we use a
simple ansatz for the temperature dependence on A:

A(T) =A/
Tc )

keeping the other parameter v constant. Here, the con-
stant a is determined as a = 0.89 so as to reproduce
Tc = 0.28 GeV. [We take A(T) = 0 for T ) Tc/a. ]
The results for the monopole condensate /pi, „,(T) are
shown in Fig. 3. The qualitative behavior is the same
as j.n the above argument with a constant A. We find
a weak first-order phase transition in this case also.
Here, we find a large reduction of the self-interaction
of the QCD monopoles near the critical temperature

0.10—

0.05—
C

0
,'~,'

X,„„(T)[GeV]
0.15

0.08 0.2
Tlow,:.'' &c'. Tup

0.4 0.6

T [GeV]

0.10—

0.05—

FIG. 2. The QCD monopole condensate gphr, (T) at min-
ima of the efFective potential as a function of the tempera-
ture T. The solid curve denotes mph„, (T) corresponding to
the con6nement phase, which is the absolute minimum up to
T~ ——0.49 GeV and becomes a local minimum up to T„p:051
GeV. A minimum appears at g = 0 above Tj ——0.38 GeV
and becomes the absolute minimum above T~ ——0.49 GeV.
The dot-dashed curve denotes the value of g at the local max-
1mUXIl.

0.
0%4

I I

0. 1 0.2

T [GeV]

0.3

FIG. 3. The QCD monopole condensate mph„, (T) at min-
ima of the efFective potential as a function of the tem-
perature in the case of variable A(T) so as to reproduce
To =0.28 GeV [3]. The meanings of the curves are the same
as in Fig. 2.
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Tc.'A(T Tc) 2.7 is considerably smaller than
A(T = 0) = 25. It would be an interesting subject to
examine such a large reduction of A(T) near Tc &om the
study of the inonopole action in the lattice QCD [8].

Next, we investigate the variation of the masses of the
dual gauge field B„and the QCD-monopole field A at
finite temperatures. Here, B„and y would appear as
the color-singlet glueball field with 1+ and 0+, respec-
tively [4,7,9]. The glueball masses, m~ and m~, at the
finite temperature T are given by

m~(T) = i/3gg~h„, (T),
mx(T) = 2V A(T)&i hv (T) (16)

e2m2 (T) (mz~(T) + m,'(T)
ln

/24m ( m2~ (T) )
(17)

as shown in Eq. (6). In Fig. 4, we show m~(T) and
mx(T) as functions of the temperature T usin. g variable
A(T) in Eq. (15). (Their behaviors are almost the same
as the case of a constant A except for the difference of
the value of Tc.) It is worth mentioning that m~(T)
and mx(T) drop down to m~, mx Tc(=0.28 GeV)
from m~, m~ 1 GeV near the critical temperature
Tc. In other words, the QCD phase transition oc-
curs at the temperature satisfying m~, mz T, which
seems quite natural because the thermodynamical fac-
tor 1/(exp(i/k2 + m2/T) 6 1) becomes relevant only for

m T. Thus, our result predicts a large reduction of the
glueball masses, m~ and m~, near the critical tempera-
ture T~. It is desirable to study the change of the glueball
masses at finite temperatures, especially near T~, in the
lattice QCD simulation with the larger lattice size and
the higher accuracy.

We investigate the string tension A: at finite tempera-
tures, since k is one of the most important variables for
the color confinement, and controls the hadron properties
through the interquark potential. We use the expression
of the string tension k(T) provided by SST [6]:

where the glueball masses m~(T) and mx(T) are given by
Eq. (16). The results are shown in Fig. 5 as a function of
the temperature T. In the case of constant A, the string
tension k(T) decreases very gradually up to the temper-
ature, T„~= 0.51 GeV. On the other hand, in the case of
variable A(T), the string tension k(T) decreases rapidly
with temperature, and k(T) drops down to zero around
T~ ——0.28 GeV. Hence, one expects a rapid change of
the masses and the sizes of the quarkonia according to
the large reduction of k(T) at high temperatures. We
plot also the pure-gauge lattice QCD results for the tem-
perature dependence of the string tension by black dots
[16], with Tc = 0.28 GeV [3]. We find our results with
variable A(T) agree with the lattice QCD data.

We discuss further the temperature dependence of the
parameters (A,v) in the DGL theory. Definitely, we
should follow the lattice QCD data for this determina-
tion as the case of the Ginzburg-I andau theory of super-
conductors extracting the temperature dependence from
experiments. Since there exists the lattice QCD data on
the string tension k [16],we try to reproduce k by taking
a simple ansatz on A and v. We try the ansatz

B(T) = 3A(T)"(T) = 3A"
~ Tc )'

where the constant a is determined so as to reproduce
Tc = 0.28 GeV. [We take B(T) = 0 for T ) Tc/a. ]
The variable B(T) corresponds to the bag constant,
the energy-density di8'erence between the nonperturba-
tive vacuum (~y ~ g 0) and the perturbative vacuum
(~A ~

= 0) in the DGL theory; see Eq. (13). The ansatz
(18) suggests the reduction of the bag constant at high
temperatures, which provides the swelling of hot hadrons
by way of the bag-model picture. Since we have already
examined a typical case for variable A(T) keeping v con-
stant, we show here another typical case for variable v(T)
keeping A constant. The string tension k(T) in the vari-
able v(T) case with a = 0.91 is shown by the dashed
line in Fig. 5. We find almost an identical result and
find again a good agreement with the lattice QCD data.

[GeV] k(T ) [GeV/fm]

1.0 1.0 const—

0.5 0.5

'II.o 0.1

I

0.2 0.3 0.8— 0.2 0.4
I

0.6
T [GeV] T [GeV]

FIG. 4. The masses of the glueballs at various tempera-
tures: ms(T) and mx(T). The solid lines denote the case of
variable A(T) with a constant v. The dashed lines denote the
ease of variable v(T) with a constant A. A large reduction
of these masses is found near the critical temperature. The
dotted line denotes m = T. The phase transition occurs at
the temperature satisfying m&, m~ T.

FIG. 5. The string tension k(T) as a function of the tem-
perature T. The solid and dashed lines correspond to the
variable A(T) case with a constant v and the variable v(T)
case with a constant A, respectively. The constant (A, v) case
is also shown by the thin line. The lattice +CD results in the
pure gauge in [16] are shown by black dots near the critical
temperature.
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Other combinations on A(T) and u(T) under the relation
(18) also provide equally good results on k(T).

Finally, we investigate the relation between the scalar
glueball mass rnx(T) and the string tension k(T). For
variable A(T) keeping v constant, one finds &om Eq. (17)
an approximate relation

m (T) (247r)i~2

gk(T)

near the critical temperature T~. On the other hand,
for variable v(T) keeping A constant, the glueball masses
at finite temperatures, m~(T) and mx(T), are shown by
the dashed line in Fig. 4, and. Eq. (17) leads to a simple
relation

mx(T) ( 2A

gk(T) (7r ln((3gz + 4A)/3g2) ) (20)

for the whole region of T. Thus, the DGL theory sug-
gests a proportional relation between the scalar glueball
mass and the square root of the string tension at least
near Tc. It is worth mentioning that Engels et al. [15]
obtained a similar relation, mGB(T) = (1.7+ 0.5) gk(T),
for the lowest scalar glueball at finite temperatures 6.om
the thermodynamical study on the SU(2) lattice gauge
theory. Equations (19) and (20) can be examined from
the thermodynamical study on the glueball mass in the
lattice QCD, which may also reveal T dependence on the
parameters in the DGL theory.

XV. SUMMARY AND CONCLUDING REMARKS

We have studied the properties of the pure-gauge QCD
vacuum at finite temperatures in the dual Ginzburg-
Landau (DGL) theory, where the color confinement is
realized through the dual Higgs mechanism. We have
formulated the effective potential at finite temperatures
(thermodynamical potential) using the path integral for-
malism. We have used the quadratic source term in-
stead of the linear source term. The use of the quadratic
source term overcomes the problem of the imaginary
scalar mass, which is encountered in the case of the linear
source term as is well known in the P4 theory.

We have found the reduction of the QCD-monopole
condensate at finite temperatures, and have found a

first-order deconfinement phase transition at the criti-
cal temperature T~ 0.49 GeV using the temperature-
independent parameters. The QCD-monopole conden-
sate vanishes and the broken dual gauge symmetry is
restored above T~. We have considered the temperature
dependence of the QCD-monopole self-interaction noting
Tc = 0.28 GeV as the lattice QCD simulation indicates.
We have found a large reduction of the QCD-monopole
self-interaction near the critical temperature. We have
investigated the temperature dependence of the glueball
masses, m~ and m~, and have found their large reduc-
tion near the critical temperature T~. m~, m~ T~.
We have calculated also the string tension at finite tem-
peratures. The results agree with the lattice QCD data
both in the variable A(T) and in the variable v(T) cases.

In particular, the glueball mass reduction at high tem-
peratures would be an important ingredient in the QCD
phase transition. In the pure gauge, there are only glue-

ball excitations with the large masses ( 1 GeV) at low
temperatures [2,15], and therefore it seems unnatural
that the QCD phase transition takes place at a small crit-
ical temperature, T~ 0.28 GeV. This problem would
be explained by the large reduction of the glueball mass
near the critical temperature as is demonstrated in this
paper. In other words, this glueball-mass reduction may
determine the magnitude of the critical temperature T~
in the QCD phase transition. This large reduction of the
glueball masses at high temperature would serve as an
interesting subject of the lattice QCD.

It is also very interesting to investigate the thermal
effect of the dynamical quark in the DGL theory, espe-
cially in terms of the chiral phase transition [2,12]. The
chiral-symmetry restoration as well as the deconfinement
phase transition is expected to happen in the DGL the-
ory, because our previous works [6,9,10] showed the close
relation between the color confinement and the dynami-
cal chiral-symmetry breaking in the DGL theory. With
respect to this subject, we are studying now the restora-
tion of chiral symmetry at high temperature in the DGL
theory [17].
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