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Gluon propagator in non-Abelian Weizsacker-Williams fields
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We carefully compute the gluon propagator in the background of a non-Abelian Weizsacker-
Williams field. This background field is generated by the valence quarks in very large nuclei. We find
contact terms in the small Quctuation equations of motion which induce corrections to a previously
incorrect result for the gluon propagator in such a background field. The well-known problem of
the Hermiticity of certain operators in the light cone gauge is resolved for the Weizsacker-Williams
background field. This is achieved by working in a gauge where singular terms in the equations of
motion are absent and then gauge transforming the small Buctuation fields to the light cone gauge.

PACS number(s): 12.38.Aw, 12.38.Lg, 12.38.Mh, 14.70.Dj

I. INTRODUCTION

In a recent work, two of the authors have argued that
parton distribution functions may be computed for very
large nuclei at sinall x [1]. They found that the valence
quarks in these nuclei are the sources of non-Abelian
Weizsacker-Williams 6elds. This work is similar in spirit
to that of Mueller who considers the distribution func-
tions generated by heavy quark charmoniumlike bound
states [2]. In [1] the general form of these fields was
found. It was argued that to compute the distribution
functions, one should compute the 6elds associated with
these valence quarks and then color average over these
6elds treating the valence quarks as classical charges.
The weight for this averaging was shown to be
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1"(x)= b"+b(x )p (zt, x+). (2)

where p(xt) is the distribution of transverse valence quark
color charge and p, is a parameter corresponding to the
valence quark color charge squared per unit area.

The current for the valence quarks was found to be

above. This is true so long as we look at transverse reso-
lution scales which are large enough that there are many
valence quarks per unit area, and small eDough that it is
much less than the confinement scale of 1 fm. In momen-
tum space, this requires that we only consider transverse
momenta which are in the range

~geo (( kc (( p A

The z+ (light cone time) dependence of the charge den-
sity is a consequence of the extended current conservation
law

D„J~ = O.

The current may be taken to be time independent if
we 6x the residual gauge &eedom by the constraint that
A (x = 0) = 0. This point will be discussed further
later.

Under these conditions, it is easy to guess the form of
the Weizsacker-Williams 6eld. The charge distribution is
con6ned to an infinitesimally thin sheet. Therefore, one
expects that the 6elds on either side of the sheet might
be a gauge transform of vacuum. We deduce therefore
that [1]

Here the light cone variables are

y+ =(ye+y )/v2.

W+ =0,
A =0,
A' = e(x )n'(x, ), (6)

The approximation which leads to this form of the cur-
rent is that x (( A r' so that the small x partons see a
nucleus which is essentially Lorentz contracted to a thin
sheet. This is the origin of the factor b(x ) above. Fur-
ther, since the small x partons are weakly coupled to the
source, the source is "static" and only the + component
of the current is important.

The charge distribution in transverse coordinates is es-
sentially random with a Gaussian weight as described

where

ns(xt) = U(xt) V'Ut(xt)—
g

The 6eld o. is a gauge transform of the vacuum. It gen-
erates zero magnetic 6eld. There is a transverse electric
6eld which is con6ned to the sheet x = 0. Gauss's law
shows that this field solves
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V' o. —gp is

One can verify that the light cone Hamiltonian satisfies G hfdf = Abgp, (10)

I =0 (9) and the propagator is

so that these classical 6elds have vanishing light cone
energy.

These fields are gauge transforms of vacuum fields with
a discontinuity which is adjusted so as to reproduce the
correct valence charge distribution. Because it is a pure
gauge transform of the vacuum on either side of the in-
finitesimally thin sheet, we expect that the propagators
are simple. In a previous papex', two of the authors ar-
gued that the fields which generate the propagator are
just gauge transforms of the ordinary small fluctuation
plane wave fields [3]. This argument is correct for matter
fields such as scalars and fermions, but as we shall see is
not quite correct for gluon fields.

The problem with the gluon fields is that there can
be contact terms in the gluon small fluctuation equa-
tions of motion associated with the thin sheet of valence
charge. These contact terms can generate contributions
to the gluon field which are constant or grow linearly at
large distances away &om the sheet. The linearly grow-
ing terms will give rise to a constant electric field. In
any case, neither of these terms were allowed for in the
previous analysis which claimed to have determined the
gluon propagator.

The terms which were ignored in the previous analysis
are very singular. A direct consequence of their bad be-
havior at in6nity is the non-self-adjoint character of the
light cone gauge equations of motion.

The present work is organized as follows: in Sec. II
we will see that the above-mentioned terms are a con-
sequence of the small fluctuation equations of motion in
light cone gauge (A+ = 0). To resolve the ambiguities
inherently associated with the singular behavior of the
small fluctuation fields, we choose to work in A = 0
gauge. In Sec. III, we show that this gauge is nonsingu-
lar and that the propagator can be computed directly. It
turns out that the propagator in this gauge is precisely
that previously computed by McLerran and Venugopalan
[3]. The propagator in light cone gauge is derived from
the propagator in the non-singular gauge. Details of this
derivation are the subject of Sec IV. In Sec. V, we discuss
the regularization prescriptions which enable us to gen-
erate a properly defined propagator in light cone gauge.
We write down an explicit expression for this propagator.
The propagator will be used in a sequel to this work to
calculate the gluon distribution function to next order in
o, In Sec. VI, we summarize our results.

II. THE SMALL FLUCTUATION EQUATIONS
IN LIGHT CONE GAUGE

The conventional approach to computing a Green's
function is to write down the equations for the small fluc-
tuation field in a fixed gauge. Denoting the small fluctu-
ation field by bP, the generic small fiuctuation equation

- b&~(&)b&g(y)G x, y

To derive the equations for the small fluctuation field
in light cone gauge (A+ = 0) we first look at Eq. (10)
with A = 0. Expanding around our background 6eld, we
6nd that the equations for the gluon Geld become

D(A) g"" —D"(A)D" (A) hA„—2F""bA„=0. (12)

E'+ = b(x )n'(xi).

On either side of 2; = 0, the background 6eld is a
gauge transform of the vacuum. We might therefore
think that the solutions to the above equation, in the
two diferent regions of x, are simply diferent gauge
transforms of the plane wave small fluctuation field one
would get in zero background 6eld. Further, continuity
at the origin could be assured by a matching condition.
This is precisely what was done in the previous work of
McLerran and Venugopalan [3].

Unfortunately, this procedure will not work here due
to the presence of the background electric field term. Be-
fore seeing how this works, let us Grst express the small
fluctuation equations in a slightly more transparent form
(hereafter latin indices refer to transverse variables):

D (A)bA" —D(A)"D(A) hA

= —2b"+b(x )n'bA; —28"~b(x )n~bA

The terms on the right-hand side of the above equation
are called contact terms; they appear when the derivative
8/Bz acts on the classical field which is proportional to
0(x ). Notice that the last term vanishes in the gauge
where b'A

~~ o= 0.
The small fluctuation equation for the plus component

of the above equations becomes

8+[cj+bA —D(A)'hA;] = 2b(x )n'hA . —(14)

This equation requires that

In this equation, A is the background field which accord-
ing to Eq. (6) is nonvanishing only for its transverse com-
ponents. D"(A) is the covariant derivative with A as the
gauge field (notice that D+ = 8+). We have assumed
the gauge condition hA (2: = 0) = 0 so that we can
ignore any time evolution of the source of valence quark
charge. If this gauge condition were not chosen, then the
extended current conservation condition would require
that the source evolve in time, and this would gener-
ate a correction to the above equation. This background
6eld generates no magnetic field, but it does generate a
nonzero electric Geld E+':
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8+6'A —D(A)'hA;

where 6 is some as yet undetermined function. We see
immediately that this implies that the fields have singu-
lar behavior at infinity. We might remove the singular
behavior at say x ~ —oo but due to the step func-
tion cannot remove it as x —+ +oo. In fact, the fields
will behave like x as x goes to infinity. This singu-
lar behavior is sufhcient to guarantee that the equations
of motion are not self-adjoint on this space of functions.
Rmther, the small Quctuation fields are discontinuous at
the origin (x = 0) and matching the fields there is inore
dificult. The singular behavior at infinity and the dis-
continuity of the fields at the origin were absent &om the
previous analysis of McLerran and Venugopalan [3]. This
was because they neglected to include the contact term
at the origin which (as we have seen) is present in the
equation of motion in light cone gauge.

Because of this lack of self-adjointness on this space
of functions, we have found no consistent way of directly
integrating the equations of motion in light cone gauge.
The most obvious problem is that the Green's function
will not solve the constraint imposed by symmetry and
by the Hermiticity of the underlying fields. Without a
better way of defining the equations of motion, we are at a
quandary and do not know how to properly construct the
Green's function in light cone gauge. This problem with
light cone gauge is well known in the relevant literature
and various schemes have been adopted to circumvent
it [4].

However, and this is the core of the present analysis, we
are compelled to compute the Green's function in light
cone gauge. There are several reasons for this.

It is well known that only in light cone gauge does the
parton model have the most direct and manifest physical
realization [5]. Only in light cone gauge is it possible
to construct a simple and intuitive Fock space basis on
which our formalism relies heavily. Light cone gauge (like
any other axial gauge) is free of ghosts and negative-norm
gauge boson states which makes the theory simpler [6].

In addition, there are further advantages in choosing
the A+ = 0 gauge. It can be shown that in this gauge J+
is the only large component of the fermionic current. The
transverse and minus components of the current are pro-
portional to &+ and are therefore small [1]. It is much
easier to eliminate the dependent fermionic degrees of
&eedom in this gauge since we do not need to worry
about inverting covariant derivatives. Finally, the gluon
distribution function is most simply related to physical
quantities measured in deep inelastic scattering experi-
ments only in A+ = 0 [7].

We will demonstrate in the following sections that the
Green's functions in light cone gauge can be obtained by
the following procedure: (i) first, solve the small fluctu-
ation equations in an alternative gauge (A = 0) and
then (ii) gauge transform the Green's functions thus ob-
tained to light cone gauge. In the following section, we
will show that the Green's function may be constructed
in A = 0 gauge and that the equations of motion for

the Green's function are self-adjoint. In subsequent sec-
tions we discuss the mechanics of how the Green's func-
tion may then be gauge transformed to light cone gauge.
When this transformation is carried through, there is in
general a singularity of the transformation function. This
singularity is regulated using the well-known I eibbrandt-
Mandelstam prescription [8]. We find that the Green's
function in light cone gauge does not satisfy the con-
straints which arise &om self-adjointness of the gluon
field. This lack of self-adjointness is not irretrievably
damaging and has been dealt with in the past for Green's
functions of gluon fields in light cone gauge [9]. Presum-
ably the precise nature of the singularity is not impor-
tant for gauge invariant quantities. When one chooses a
prescription for regulating the singularity, if performed
consistently in all quantities, it will give gauge invariant
results for physical quantities. We are not aware that
there is a proof of this, but believe it to be so.

III. THE SMALL FLUCTUATIONS
PROPAGATOR IN A = 0 GAUGE

0 (0 hA+ —D, (A)hA, ) = 0. (l.7)

We must now check that the remaining equation of
motion is properly satisfied. If we use the Gauss law
constraint that D"(A)h'A„= 0, this equation is

28+8 + D (A—) hA+ = —2h(x )n'hA'.

Now &om the Gauss law constraint,

h'A+ = D(A) 8A.
0 (19)

In deriving the above equation, we have used the condi-
tion that A+ does not blow up at x+ = +oo to eliminate
arbitrary constants that arise in integrating Eq. (17). Al-
though bA' is continuous at x = 0, the spatial covari-
ant derivative operator is not. The discontinuity gives
precisely the source term on the right-hand side of the
equation, and the equations are consistent.

We can now solve the above equations of motion in
the following way. We assume that the transverse field
on the side where the background field vanishes is a sim-
ple plane wave. On the other side of the boundary where
the background field is a gauge transform of the vacuum,

What is the virtue of writing down the equations of
motion in the A = 0 gauge? In the small Quctua-
tion equations for the transverse fields, the source term
vanishes (the equation reduces to the sourceless Klein-
Gordon field equation):

20+0 —+D,'(A) hA, = 0.

This equation is obtained by appropriately fixing the
residual gauge &eedom in A = 0 gauge. One of the
other equations is also sourceless, and is the Gauss law
constraint which must be imposed on initial field config-
urations. This constraint commutes with the equations
of motion. It is



2938 AYALA, JALILIAN-MARIAN, McLERRAN, AND VENUGOPALAN 52

we take the small Quctuation field to be a linear superposition of plane waves. The linear superposition is done in a
manner to ensure that the fields are continuous across x = 0. This is possible because the equations above have no
b function singularity at x = 0.

The expression for the transverse components of the Buctuation field in the A = 0 gauge is

bA,-~ = e"*&, e( *-)~--('+ e(* )-
(2~)'

x exp i — x d zie '~'" U(zi)U (zi)~U(zi)U (xi)
.27tQ't + Qt z —iq, z, - nP

2p

This solution is continuous at x = 0 and was fully discussed in an earlier paper by McLerran and Venugopalan [3].
The above expression can be substituted in Eq. (11) to obtain the gluon propagator in A = 0 gauge. There are

l

four separate pieces for G, ~' ~ (x, y) which depend upon the signs of x and y . The overall expression for G is

d4 ip(~ —y) gt
( y) = -h'. . . e( )e(-y ) .—' . + e(* )e(y )+. (* )+: (y ) +

27l p —Xt 2' 2

x [e(x-)e(—y-)e*(~*—~ l("-*&e-*(~:-&*'l ~'~ I'. ('(Z, )E ~'(z, )

+e( z )e(y
—)e'(s ~

—a~)(w~ —~~) e'(a,' i', )w —i2s ~~P (z, )y P (y, )] (21)

where I"„S(xi) = (U(xi)v Ut(xi)) . It can be easily
checked that this Green's function satisfies

—28+0 + D, (A) .„G&~(x, y) = 6;~ h( l (x —y)

as it must. This construction of the Green's function was
previously performed by McI erran and Venugopalan in
[3]. However, they incorrectly interpreted it to be the
result for A+ = 0 gauge, while we have shown here that
it applies to A = 0 gauge only.

For the pieces of the propagator which involve the com-
ponent bA+ we have

I

in these arguments because we want to 6nd the gauge
transform which will relate the Green's function in the
light cone gauge to the Green's function in the A = 0
gauge.

Let O(A) be some function of the field operators eval-
uated in the light cone gauge, A+ = 0. We will here
consider /ED and later generalize to the case at hand.
We have to evaluate the expectation value

f [dA] b(A+) e' O(A)

f [dA] b(A+) e's

and

(bA'bA+) = (bA D(A) bi*)
t9

(22)
We now introduce the identity in the form

f [dA] b(A + 8 A)

f [dA] h'(A + 8—
A)

(25)

{hA+hA+)= D(A) . hA D(A) bA —ihG++,
t9 0

(23)

where in our convention (A„A„) = —i G„„and {A„A„)
represents the correlation of fields in the path integral
sense.

Inserting this into the equation for O(A), we find that

f[dA][dA] h(A +8 A) b(A+) e'sO(A)

f [dA][dA] b(A —~ 0—
A) b(A+) e's

We now perform the gauge transformation

A" = A" +8"A. (27)
IV. ON DERIVING THE A+ = 0 PROPAGATOR

FROM THE A = 0 PROPAGATOR Since both the measure and the action are invariant un-
der the gauge transformation, we see that

In the previous section we derived an explicit expres-
sion for the small Quctuation Green's function in the
A = 0 gauge. In this section, we discuss general ar-
guments which allow us to compute expectation values
of operators in one gauge in terms of the expectation
values of operators in another gauge. The formal ar-
guments will be illustrated by the specific example of
the free gluon propagator. We are of course interested

f[dA][dA] h(A ) h(A+ —8+4) e' O(A —BA)

f [dA][dA] b(A )h(A+ —8+A)e's

Now doing the integration over A, we get
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Now perform the gauge transformation

(36)

Before proceeding any further, we will be more explicit
and illustrate the above approach by an example: we
show that the &ee propagator in the absence of a back-
ground field in A+ = 0 gauge can be obtained as a gauge
transformation of the same quantity in A = 0 gauge.

I.et us 6rst review the construction of the propagator
in A = 0 gauge. Henceforth all fields in this gauge
will be denoted by an A to distinguish them &om the
corresponding fieMs in light cone gauge. The action for
the vector field is

Since we are gauge transforming to the light cone gauge,
we require

We therefore obtain

bA+ =0,
bA- = b—A+,

S = (8 b—A+ —V' bA) + —bA'b,
~ 0 bA~,

8bA' = 8A' — bA+
g+ (ss)

where the operator 0 is the D'Alambertian in light cone
coordinates. From the above expression for the action,
we distinguish two classes of small Buctuation 6elds that
satisfy the equations of motion. We can see this &om the
following argument. To find the solution that minimizes
the action let us perform the shift

bA+ -+ b'A+ + V bA, (31)

to obtain a purely quadratic action in bA+ and bA, . The
minimum thus corresponds to the 6elds that make the
action vanish. We label the 6elds as follows: Type-I fields
satisfy

8 bA+ —V' bA = 0,
DbA' = 0,

whereas type-II 6elds satisfy

bA'=0,
8 8 bA+=0.

The contributions of different components to the &ee
propagator are then

pij
(bA'bA') = i

k'
(bA*bA+) = i

k2
(bA+bA+) = i

~

The second term in the parentheses above corresponds
to the contribution of the expectation value (bAiibAi+i)
to (bA+bA+). Notice that the contribution from terms
like (bAi+b'Ai+i) vanish. If we now combine all the above
terms together we obtain the familiar expression for the
gluon propagator,

We now use Eq. (29) and the previous expression for the
propagator in A = 0 gauge to derive

(39)

where n" = b" . This result is the well-known expression
for the &ee gluon propagator in the light cone gauge.

For the case at hand, small Buctuations around a back-
ground 6eld, the analysis goes through almost exactly as
before. There are two essential differences. The first
is that for the type of background field we consider the
gauge transformation property of the transverse field is

bA' = bA' + D*(A)A. (4o)

1
(II)

1 /' k2 k+ )
(k-)2 k-) (41)

One should note that the particular form of the gauge
transform above is valid only because we are interested
in small Buctuations. We are throwing away terms which
correspond to higher powers of the small Buctuation 6eld.
For the plus and minus components, the transformation
involves ordinary derivatives. We see that the analysis
above goes through in the same way it did for QED.

The other difFerence from the QED case is that the
structure of the small Buctuations analysis is more com-
plicated. There are modes (labeled type I) which involve
both bA' and bA+ as before but these modes now couple
to the background field [see Eq. (38) with 8' replaced by
D'(A)]. There are also modes (type II) which involve

only bA+ and therefore do not couple to the background
field since bA' = 0. The contribution of the type-I modes
to the propagator arises &om the distortion of the small
Buctuation 6elds by the background 6eld. The contri-
bution of the type-II modes to the gluon propagator in
momentum space is

1 t' „„n'&k"+kl'n*")
k2

q k. n'

where n'I" = b&+.

(s5)
The second of the two expressions in the above equations
is algebraically equivalent to the 6rst but corresponds
to a difFerent way of regulating the singular behavior of
the type-II modes at A: = 0. In the next section, we
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will see that the latter choice is the one aptly suited to
regularization.

V. REGULARIZATION PRESCRIPTIONS
AND RESULTS

bA+ m bA++ 0+4,
bA mbA +0 A,
bA' m 8A' y D(A)'A.

We have used the fact that in A = 0 gauge

(45)
(46)

(47)

bA+ =0, (42)

bA = — bA+,

bA' = bA' —D'(A) bA+
g+

(43)

(44)

To derive these equations, we note that a small gauge
transformation with a fixed background field A, where A
has only transverse components, is

We shall now use the method described in the previous
section to derive the gluon propagator in the light cone
gauge from the propagator in A = 0 gauge [Eq. (21)].
Note that the gluon propagator here is the gluon prop-
agator in the background field. It will shortly become
clear that we need to choose an appropriate regulariza-
tion prescription to obtain the Gnal expression for the
propagator.

If we have a fIuctuation field in A = 0 gauge, the
fields in A+ = 0 gauge are given in terms of the tilde
Gelds as

c) 8A+ = D(A);hA;. (48)

The transverse fluctuation Geld in the light cone gauge
is then Eq. (44) which we rewrite in matrix coinponent
notation as

b'A,-P(x) = b;i, —D; Di,
+

bA~~P(x). (49)

To see how the covariant derivative acts on the field,
notice that Di, bAi, (z) = Bi,bAi, —ig[Ag, h'AI, ] where
Ai, (x) = 0(x ) —'U(xq)Bi, Ut(xq) is the background field.

Then the commutator of the background field with bAy
will exactly cancel the derivative acting on U's. The re-
sult is that the covariant derivative will reduce to a simple
derivative which acts only on the exponential part of the
field.

Following the discussion leading to Eq. (29), we obtain
an implicit expression for the Green's function in the light
cone gauge which we can write as the sum of the contri-
butions of the type-I and type-II modes discussed in the
previous section. The former can be written as

i I

0 c)~ )()G,, (,') (*,y) = (b,„8,, —6, , ~

DD,
+ ( )

—,p, p+ ~~D + ) (&) ( — + ) (y)
(50)

where G&& i (x, y) is the Green's function in A = 0

gauge given by Eq. (21). The subscript I in the above
equation denotes the contribution of the type-I class of
small fluctuation fields.

We must add to this expression the contribution &om
the gauge transform of bt ++. This can be expressed as{II}

sions for nondiagonal components of the Green's func-
tion. Even though only transverse components of the
light cone gauge Green's function are needed to compute
the gluon distribution function, we will give an implicit
expression for all components for the sake of complete-
ness. They are

I I

G '(ii)' (~~&)
G '(~~)= 1

(x}

14' —D' Da G a(*,v)
+ . (y)

I I

(~G++)'P" P (»)(zl) xq g

|9~
0

( )

-++D' bG(ri) (~~ y—- {y)

and

where

d4I ik(x —y)
(gG++)'YPi"Y P (& ~) ( )PP( )P'P'

(2~)' (k
—)'

Gv(i) (» &)

+ ++ hG(„) (2:, y))
(~) — (y)

1 1
G (zy) = D; D~

(x} (y)

It is now straightforward to construct similar expres-
where G;~(y) is the Green's function in the A = 0 gauge

given by Eq. (21) while bG(ii) is the contribution of type-
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II solutions to the Green's function as given by Eq. (52).
From here on, we will concentrate on the transverse com-
ponents only.

It is evident &om the above equations that in relating
the fields in the two gauges, one has to define 1/(9+ and
1/(9 . These operators are not well defined unless some
prescription is adopted for treating the singularity at
k+ = 0 and at k = 0. Presumably, there is no physics in
these singularities —when one computes gauge invariant
quantities, different prescriptions should give the same
results. It has however proven most convenient to choose
a Feynman-like i~ prescription for regularizing this sin-
gularity, the so-called Leibbrandt-Mandelstam prescrip-
tion [8]. This prescription however spoils the Hermiticity
of the field bA'. This is not a new problem since even
in the absence of our background field, such a prescrip-
tion will destroy the reality properties of A in A+ = 0
gauge. It is indeed unpleasant, but it does make for a
Green's function which is manifestly causal. The price
to be paid for a small lack of Hermiticity of the fields
is small compared to the price of dealing with noncausal
Green's functions, albeit all such ambiguities must come
to naught when computing gauge invariant quantities.
For instance, a similar problem exists with the principal
value prescription but it has been used successfully pre-
viously to coinpute gauge invariant quantities (see p. 115
in Ref. [6]).

We must now establish our prescriptions for defining
the inversion of (9+. We first begin with &~ . For this op-
erator we use the ordinary Leibbrandt-Mandelstam pre-
scription

gauge transformations. We can therefore adjust the value
of A at any fixed value of x which we choose to be
x = 0. The virtue of this particular gauge choice is that
it makes the source of charge time independent, since in
this case the extended current conservation law is

0 J+ =0.
Our prescription will therefore be

1
E(x ) = dz' F(z' ).0 p

(55)

Let us see what this corresponds to in momentum space.
If we define

P(k+) = f Ch e* P(x ) (56)

then

(57)

We see that with this integration prescription, there is
never any singularity in Fourier space as k+ —+ 0.

Under the additional gauge constraint A (x = 0) =
0, the &ee propagator in the light cone gauge is no longer
the usual &ee propagator given by Eq. (39). To see why
this is so, gauge transform the &ee propagator to a gauge
where A (x = 0):

1 1

k — k ~ is/k+
A' =A —A (x =0). (58)

For the operator 1/(9+, we choose a prescription which
guarantees that bA ]

— o= 0. This integration choice
is in fact a further specification of the gauge and fixes the
residual gauge &eedom completely. This is because if we
work in A+ = 0 gauge, we can still make x independent

Hence, (9 A=A (x =0) ~A=
& A (2: =0).

Since A'+ = A+ —0+4 and A has no functional depen-
dence on x, A'+ = A+ = 0. The Green's function in
the light cone gauge with the additional gauge fixing is
given by

0; =~(A A )=i(IA' —8 A(x *=0)
I I

A' —P & (u =o) I)(9 ) (9

Fourier transforming Eq. (39) to coordinate space, and substituting the results in the above equation, we obtain the
following expression for the &ee Green's function in the gauge A' = 0, A' (x = 0) = 0:

d4@ ik(x —y)
gab gab g

~ 2 —ik+ y ik+ x
(2vr)4 k~ —ie ' k k+— 2 'a+(~- —y-) (60)

We will show later that the small Auctuation Green's function reduces to the above expression in the absence of an
external source.

The reason why the prescription A (x = 0) = 0 is not often employed is because the types of fields one ordinarily
considers are oscillatory at infinity, and therefore vanish in the Riemann-Lebesgue sense. In such cases it is more

convenient to choose 1/8+ = f or 1/o)+ = —J' since in the sense described above one can ignore the contribution
from infinity [10]. In the l,eibbrandt-Mandelstam prescription, positive &equencies propagate forward in time and
negative frequencies propagate backward in time. For our problem where we have a nucleus acting as a source of
charge, the fields do not vanish at x = +oo. There is therefore no advantage to choosing an integration prescription
with one of its integration limits at either +oo.

We can now combine terms together to get an expression for the small Buctuations propagator in the external
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background field. The derivation of G;z~iil from Eq. (51) is rather subtle and we shall elaborate a little on it. We can
easily do the k+ and ki integrations in Eq. (52) to get

—aA: (~+—y+)
bG+(, i+)(x, y) = ~ 7- b~'l(xi —yi)b(x —y )

It is clear that we have locality in both transverse and minus coordinates. Hence there will not be any contributions
from the regions 0(x )0(—y ) and 0(—x )0(y ). Then

(D')( )(D )(„)bG(+l ——[0(—x )0(—y ) 77. 0.;0 b~ l(xi —yi) + 0(x )0(y ) E (xi)F (yi) 8,.8 b~ l(xi —yi)]
—za (x+ —y+ )

xb(x —y ) (61)

We now write the b functions in their Fourier representations and replace

1 1 f k, k+)
(k

—)' k' g(k
—)' k —)

' (62)

Finally, making use of the identity

—11,;a+.-0( -) 0( )
(e —1)

which we also used in deriving G;~~il, we can now write Eq. (51) as

,,(l) (*y)=
(2 ), „. .. („„),—„ iP;P,

+0(x )0(y )&. (xi)+. (yi)1.

—1 e-'p'y —1 8 -x- 8 -y- ~.p~. 'p

The derivation of an analogous expression for G;ilail in Eq. (50) follows directly from the prescription rules discussed
above. Our 6nal expression for the Green's function in the light cone gauge is then

d4 ip(x —y)Gnp;n'p'
( )

p e
b

S'~pi
(2

ip+ (x —y ) ip+y ip+x )—
(2m-)4 p2 —ie "

p
—p+

x[0( x)0( y)~—.~~. ~—+0(x )0(y )+. (x)+. (y)]
2

0(
—

)0(
—

)
V& d2 i(q+ —p+)y i(pq —qq)(yg zq)~nP( )—~ca'P'(

) b + ~ 2
(

ip+x
2 2 p-p

Vii»j (,q+y 1) + Pii»j-Pi ' li (,p+~- I)(;q+y 1)—
v+ (» p+)(p ~+)

d' + +g( —)g( —) q& d2 (p —q )( — ) —(e —p )

+-'( )+-'( ) b + ''( '"" -1)+ '' ("'*
p p+ p

+ Pp'ViPi li
(

—i'p+y
1)(

iq+a 1)(»»+)(» v+)
(65)

2 2
where q+ = p+ + 2

"' . Equation (65) is the main2p
result of this paper. In the limit where the source van-
ishes, U = 1, qz ~ pq, and q+ —+ p+, one can use the
identity p = —2p+p + pz to show that the above re-
sult reduces to the expression in Eq. (60), as it should.
Notice further, that our expression for the gluon propa-
gator in the background field does not obey the parity
and translational symmetries. This is not surprising be-
cause the background field itself explicitly breaks these
symmetries.

In a forthcoming work, the small Quctuation Green's
function above will be used to compute the gluon distri-
bution function in the Weizsacker-Williams background
field to O(n2). There we will show explicitly that when
computing the gluon distribution function &om expres-
sion (65), the only prescription needed to deal with poles
is the Feynxnan (causal) ie prescription. In other words,
the nature of the additional p poles (besides the usual
one in p —ie) in the Green's function is unimportant.
Keep in mind that there are no additional poles in p+
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since their residues vanish. As a result, we never have to
use any additional ie prescription to compute the gluon
distribution function to this order. We are not sure if
this happens in all orders of perturbation theory or if it
is an amusing coincidence specific to O(a, ).

VI. SUMMARY

In this paper we have computed the propagator for
transverse gluons in the light cone gauge A+ = 0 and in
the presence of a background Weizsacker-Williams field
produced by the valence quarks of a heavy nucleus. We
have argued that such a propagator can be obtained &om
the propagator in the A = 0 gauge by a gauge trans-
formation. This method has the advantage of avoiding
the difBculties introduced by the singular behavior of the
Belds at x = +oo caused by the presence of the sources.
The gauge transformation requires a choice for the in-
verse of the operators 8, t9+. We chose these to be
such that the gluon fields satisfy the boundary condition
bA ]

— o
——0 and the usual Feynman causal behavior.

The expression for the gluon propagator in A+ = 0 gauge
is necessary if we want to extract Rom it the information
about the gluon density which can be compared to ex-
perimental measurements.

In the above analysis, there are still many subtle ques-
tions remaining about the independence of physical quan-
tities &om the precise choice of the regularization pre-
scription for the small k and k+ singularities. We have
shown that there is a gauge where there are no singu-
larities and that the subsequent singularities in the light
cone gauge Green's function arise &om the gauge trans-

formation relations. Then, it is only sensible that the
physical quantities computed here will be independent of
the nature of these singularities.

At the very least it seems we have a consistent pre-
scription. It should be noted that, because of the gauge
choice, there is no ambiguity about the limit k+ ~ 0.
The propagator is smooth in this limit as a consequence
of the way we have specified. the residual gauge degree
of &eedom. If it were only the &ee transverse propaga-
tor which was of interest, we would have a nonsingular
propagator at small k+. The problem we have with the
distribution function is however at small k . These sin-
gularities have been regularized in the only causal way
possible, by an ie prescription. The question of physical
interest is whether these small k, or correspondingly,
large k+ singularities cause any problems at higher or-
ders. It has been argued extensively in the literature that
the prescription we chose for k is essential to prove the
renormalizability of Yang-Mills theories in the light cone
gauge [11].
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