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Comparison of potential models through heavy quark effective theory
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I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate
of heavy quark symmetry-breaking con8icts with similar estimates from lattice QCD. I show that
a semirelativistic potential model eliminates the con6ict. Using the results of heavy quark effective
theory allows me to identify and compensate for shortcomings in the model calculations in addition
to isolating the source of the differences in the two models. The results lead to a rule as to where
the nonrelativistic quark model gives misleading predictions.
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I. INTRODUCTION

The nonrelativi-. 'i, ic quark model is one of the oldest
and most successful models of hadronic physics. This
success is somewhat puzzling in that it persists even when
the model is applied to light quark hadrons, where the
dynamics are dominantly relativistic. Perhaps more puz-
zling is that relativistic corrections to the nonrelativistic
quark model do not to substantially improve the model's
predictions for spectra [1]. Some (but not all) of the
ideas of the nonrelativistic quark model for heavy-light
systems gain a stronger theoretical basis through heavy
quark effective theory (HQET). In this work I show how
the nonrelativistic quark model can be used in conjunc-
tion with HQET to calculate heavy-light decay constants.
By doing the same calculation with a semirelativistic po-
tential model, I show how relativistic extensions of the
simple quark model can make a dramatic improvement in
some types of calculations. This, in turn, indicates which
nonrelativistic quark model calculations should not be
trusted.

Before turning to the model calculations it is impor-
tant to understand what HQET tells us about decay con-
stants, since HQET provides the only results that follow
directly from QCD. The application of the ideas of HQET
to heavy-light decay constants preceded the development
of the effective theory itself. The nonrelativistic quark
model led to the prediction that heavy-light decay con-
stants follow the scaling behavior [2]

Later, Voloshin and Shifman [3] and, separately, Politzer
and Wise [4] calculated the leading-logarithmic correc-
tions to Eq. (1),

(2)
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in a model-independent manner, i.e. , following directly
from QCD in the limit where the heavy quark mass goes
to infinity while the QCD scale remains fixed.

The above relation is of both theoretical and practi-
cal interest. Theoretically, Eq. (2) is interesting because
it is a model-independent prediction of QCD in a well-
defined limit. Practically, it is interesting because fthm

is an input to other calculations, such as B -B mix-
ing. Unfortunately, a direct measurement of f~ through
leptonic decay will be extremely challenging because of
the very small branching ratio and diKcult signature. A
measurement of fD, on the other hand, is much more
feasible. In fact, measurements of fD, which is related
to fry by flavor SU(3), are already available [5—7], albeit
with large errors.

Unfortunately, in the real world the bottom and, par-
ticularly, the charm quark masses are quite finite com-
pared to the QCD scale. It is therefore necessary to con-
sider the finite-mass corrections to Eq. (2). The pre-
dictive power of the effective theory vanishes when the
leading-order 6nite mass corrections the decay constants
are included. This means the size of the corrections
must be estimated using lattice QCD or some model.
This problem has been studied extensively on the lattice
[8—11], where results indicate that the corrections to the
heavy quark limit for f~ are O(20%%uo), which corresponds
to a subleading heavy quark term of size (1 GeV)/mq.
QCD sum rules [12] are consistent with these lattice re-
sults. The large correction is surprising when compared
to what one would naively expect &om the nonrelativistic
quark model, something like (0.3 GeV)/mq. Naive esti-
mates can miss by a factor of 3, of course. It is necessary
to do an explicit calculation to see that the nonrelativistic
quark model really conBicts with the lattice calculations.

This work uses two simple potential models to explic-
itly calculate decay constants in the heavy-quark limit
and beyond. The erst, hereafter referred to as the "non-
relativistic quark model" is based on the Hamiltonian of
the Isgur-Scora-Grinstein-Wise (ISGW) model [13] in the
heavy quark limit. This model is very simple, in contrast
with lattice methods, which are rigorous but also exceed-
ingly complicated. Even if the lattice is able to provide
precise answers to the structure of hadrons, it is useful to
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II. HABET FOR MESON DECAY CONSTANTS

The heavy-quark effective Lagrangian [14,15]

ZHg ——h D. vh„, (3)

find simple pictures that describe the important physics.
The second model, the semirelativistic quark model, is a
simple generalization of the first. The difference is sub-
stitution of the relativistic form for the kinetic energy for
the nonrelativistic form used in the ISO' model. This
simple change involves subtleties, which are discussed in
the body of the text.

One might reasonably ask, given a willingness to use
these models for calculations, why bother with HQET at
all? There are several reasons. The first is that HQET
provides some checks on the calculation. At subleading
order, HQET does show that there is a term missing
&om the model calculation. Fortunately, it is a term
that may be added by hand. A second reason is that
HQET allows the inclusion of radiative corrections in a
rigorous manner. Finally, and perhaps most importantly,
HQET provides a detailed way to compare models W.hen
models differ in their predictions, it is desirable to isolate
the regions in which they differ. Unfortunately, when one
takes apart two different models to compare, it becomes a
matter of comparing apples and oranges. By calculating
nonperturbative matrix elements that arise in HQET, the
two models can be compared in a physically meaningful
way.

The next section reviews the HQET predictions for
decay constants to subleading order in 1/mg. The fol-
lowing sections describe the calculations in the nonrela-
tivistic and semirelativistic models. I then compare the
results of the two models and discuss the implications
for other nonrelativistic quark model calculations. The
Appendix describes the numerical methods I used to do
the calculations.

is by now well known. For a review that includes an
extensive discussion of decay constants, see Ref. [16].
The spin and heavy quark mass symmetries of the heavy
quark limit are manifested by the lack of p matrices and
masses in Eq. (3). The usual definition of the pseu-
doscalar decay constant fM of a Qq meson M with four-
momentum p is

(0]A„~M(p)) = i fMp„, (4)

where A„ is the axial vector current. Throughout this
work, M(M') represents a heavy-light pseudoscalar (vec-
tor) meson with a heavy quark Q and a light antiquark
q. Using the symmetries of Eq. (3), one can see that, in
the heavy quark limit,

fM&mNI = (6)

where Po
——(33 —2ny)/3. The general form of the result

is C(p)I" (p), where C(p) is the perturbative coefficient
to the low-energy parameter I'(p). Since physics does
not depend on the choice of scale, the p dependence of
the product must vanish.

At subleading order in 1/mg and including leading-log
radiative corrections, the Lagrangian grows [17—19]:

fM/mM = +
where I' is a uiuversal dimensionful parameter of QCD.
This parameter depends on the nonperturbative sector of
QCD, so it is not currently calculable from first princi-
ples. (It is calculable on the lattice, in principle. ) In the
symmetry limit, i.e., when the bottom and charm quarks
are taken to be infinitely massive, the decay constants of
the D, D', B, and B* are determined by E.

The discussion so far ignores radiative corrections.
When the leading-logarithmic radiative corrections to the
axial vector current in the heavy quark limit are included,
the result becomes

n (&) — ~AacD~
CqcD = ZHq + & D & + '

&~g, o™&„Mh~+ &
~

2m~
" "

4m~ n. (mg)
" ' "" "

I m~2 )
A third term at order 1/mg, whose matrix elements vanish because of the equations of motion, has been omitted.
The first correction term is the leading part of the kinetic energy of the heavy quark. Its perturbative coeKcient is
unity because of reparametrization invariance [20]. The second correction term arises from the heavy quark's nnnzero
chromomagnetic moment. These terms give rise to corrections to the decay constant through modifications of the
meson wave function and of the heavy-light current. When these efFects are included, the simple result in Eq. (5)
becomes (ignoring radiative corrections for simplicity) [21]

1 A
fM/111M = +(&+ Igl+ 2&MG2] —&M

mQ 6mq

where dM = +3 (—1) for pseudoscalar (vector) mesons. Here the efFect of the modification to the meson wave function
because of the kinetic energy term and the chromomagnetic term are parametrized by Gz and G2, respectively. The
finite difFerence between the heavy quark momentum and the heavy meson momentum gives rise to the final term.
Gi, G2, and A are dimensionful parameters of QCD, which, like F, cannot be calculated in perturbation theory.

Unlike G~ and G2, the parameter A is directly related to other heavy quark processes. The difference between the
mass m~ of a heavy-light meson and the corresponding heavy quark mass mq is conventionally defined as
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A is related to A by [16]

A=mM —mg.

(10)

~(v)('+ 1
Gi(~) + 2dM

I

( n, (p) l'~ '
mQ (na mg

A 16 n, (p, ) 16 ( n, (p, )+ M6m' Pp n, (mg) 9 (n. (mg) )

fMV™M=
I

( n, (p)
qn, (m~) )

where mz is the light quark mass. Since the current masses of the up and down quarks (5—10 MeV) are considerably
smaller than estimates of A (typically 300—700 MeV), A is usually taken to be equal to A. A subtlety that arises in
the model calculations in the following sections makes this distinction important.

Including the leading-log radiative corrections to Eq. (8),

An important point about the above complicated expres-
sion is that the Gi(p) term has the same perturbative
coefficient as E(p) because of reparametrization invari-
ance, while the G2(p) term gets a nontrivial perturbative
coefBcient.

At this level the results of HQET have lost their
beautiful simplicity. Unfortunately, they have also lost
their predictive power because the four decay constants
f~~.~, f&~.~ are given in terms of four unknown parame-
ters E, Gi, G2, and A. Of these, only A is obtainable
&om other heavy-meson processes, in principle. The task
for the model calculations is to estimate these parame-
ters.

A
2m@

4o, , +ar .
3r (14)

Solving the Schrodinger equation

while the others use simple variational wave functions.
While variational wave functions are useful for the calcu-
lations in ISGW and ISGW2, which involve overlaps of
wave functions, they are not appropriate for decay con-
stants, which are sensitive to the wave function at a single
point.

As the heavy quark mass is taken to infinity, expecta-
tion values of p and h (r) remain of order of the QCD
scale. In this limit the above Hamiltonian reduces to [28]

III. NONRELATIVISTIC MODEL CALCULATION (15)

In the nonrelativistic quark model, meson decay con-
stants are given by [22—26]

for the ground-state wave function and comparing with
Eq. (12) gives

fM V'~M = ~»14M(r = o) I
. (»)

I' = i/121(P (r = 0)1.

The "nonrelativistic quark model" for this paper is a
heavy constituent quark Q bound to a light antiquark

q obeying the Hamiltonian

2 2P + P
2m@ 2m@

4o., 8~o.,Sg Sq'+ar+ ' 'b' r
3T 3mgmQ

The last three terms in the Hamiltonian are the quark-
antiquark potential. The first and third represent the
Coulomb-like and hyperfine effects of single gluon ex-
change, respectively. The linear term is a phenomenolog-
ical spin-independent confining potential. A more gen-
eral Hamiltonian would also include spin-orbit coupling
terms. I have omitted such terms because all of the calcu-
lations in this work involve only S-wave states for which
spin-orbit contributions vanish. Without the hyperfine
term, the Hamiltonian is that of the ISGW model [13].
With the hyperfine term, the model is closely related to
the updated model of Isgur and Scora (ISGW2) [27]. It
should be noted that this model difI'ers from ISGW and
ISGW2 in that I use exact (numerical) wave functions,

This model calculation explicitly obeys the mass and spin
symmetries of the heavy quark effective theory. Solving
Eq. (15) numerically gives I" = 0.55 GeV ~ . I have used
the parameter values m~ = 330 MeV, o., = 0.5, and
a = 0.18 GeV2 from Ref. [13]. Figure 1 displays the cal-
culated wave function. Unfortunately, numerical calcula-
tions such as this tend to obscure the dependence of the
results on the input parameters. This is particularly im-
portant when trying to establish agreement or disagree-
ment between diferent types of calculations. Figure 2
makes the parameter dependence of the result more ex-
plicit by displaying the dependence of E on the input
parameters within +50% of each nominal value.

In order to calculate the decay constant to subleading
order in 1/mg, it is necessary to reintroduce the heavy
quark kinetic energy and hyperfine interactions to the
Hamiltonian. The wave function can be written in an
expansion in powers of 1/mq as

(EKE+ dMphq ) + 0 2 . (17)
mQ (77lg )

The functions PKE and &P&P arise from the effects of
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FIG. 1. Nonrelativistic wave function.

the kinetic energy and spin-spin hyperfine terms, respec-
tively. They have been defined to be independent of mg.
Note that 4(S Sg) = (—3, 1) for (M, M') is —d~, which
was defined in the previous section. Simply solving the
Schrodinger equation including the 1/mg terms leads to
contributions of the subleading-mass terms to all orders
in 1/mg. The functions PNKER and PfrR can be isolated
using perturbation theory, where

CE(r) = ) " ' ' d'r'4.'(r') 4 (r') (»)
7LQOO

NR ~yNB. ( ) ) &n (r) d3 /ye ( I)
~ctar —— r r

tl QOO

g3( )yNR( (19)

In Eqs. (18) and (19) the set of functions P
represents the complete set of solutions to Eq. (15) with
the unperturbed Hamiltonian in Eq. (14). In practice it
proves easier to find the piece of the solution numerically
to the full Hamiltonian linear in 1/mg than to apply
Eqs. (18) and (19) directly.

The constants Gi and G2 defined in Eq. (8) are related
to the wave function corrections by

0.8-
0.7-
06

a 0.5-
0.4-
0.3

~ I ~ I I I ~ i ~ I ~0
0.4 0.6 0.8 1.0 1.2 1.4 l.6

Xo

FIG. 2. Parameter dependence of I' calculated using the
nonrelativistic model. The nominal values (xo) are (solid line)
n, = 0.5, (dashed line) m~ = 0.33 GeV, and (dotted line)
a = 0.18 QeV~.

The quark model calculation to order 1/mg reproduces
the form of the heavy quark result in Eq. (8) with the
exception of the term proportional to A, which is absent
in the model calculation. This missing term manifests
one of the limitations of the constituent quark model.
It can be understood as follows: The factor A = A—
mq arises in a process with q = mM, which is large
compared to AqcD. The relevant light quark mass mq
should therefore be the current quark mass, which means

current
q (22)

The quark model only knows about constituent quarks,
however, which would give

Aquark model A constituent
Omq (23)

This facet of the quark model calculation is wrong. For-
tunately, the deficiency can be compensated for by man-
ually including the A term.

A more serious problem arises in the calculation of
the hyperfine correction to the wave function (PhNfR). A
straightforward evaluation of the sum in Eq. (19) shows
that Phf (and consequently G2) diverges. The b'-function
potential is too singular for the Schrodinger equation, so
the wave function at the origin diverges, even at lead-
ing order in perturbation theory. Although it is possible
to regulate this singularity through a variety of meth-
ods, the resulting calculation depends critically on the
method chosen. Since the efFect of the perturbation on
the wave function (eigenfunction) is infinite, one might
naively expect that the e8'ect of the perturbation on the
mass (eigenvalue) would also be infinite. Then the cor-
rection to the heavy particle mass, which is measurable
through the R-B' mass splitting, could be calculated in
the regularized theory and subsequently be used to fix
the regularization parameter by fitting to the measured
mass splitting. Unfortunately, this procedure fails be-
cause the efFect of the hyperfine perturbation gives a fi-
nite eigenvalue correction, even though it gives an infinite
eigenfunction correction.

I will assume that the hyperfine contribution, and sub-
sequently t 2, is negligible compared to the kinetic-energy
contribution with the following justifications: Qualita-
tively, one can compare the terms in the Eq. (19) sum
with the terms in the Eq. (18) sum. In both cases the
first terms in the series, e.g. , the contributions of the
lowest-lying excited states, are larger in magnitude than
any other terms. Comparing only these first few terms,
the kinetic-energy perturbation is much larger than the
hyperfine perturbation. However, the large-n terms in
the hyperfine sum fall only as 1/n, so the sum diverges,
whereas the terms in the kinetic sum fall quickly enough
for the sum to converge. From this it seems plausible
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for values of Gq much larger (in absolute value) than 0.3
GeV.
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IV'. SEMIB.ELATIVISTIC MODEL

CALCULATION
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The idea of the semirelativistic model is to remove the
most obviously incorrect part of the nonrelativistic quark
model, the nonrelativistic form of the kinetic energy for
the light quark. Take the nonrelativistic quark model
Hamiltonian in the heavy quark limit, Eq. (14), and make
the substitution

FIG. 3. Parameter dependence of Gq calculated using the
nonrelativistic model. The parameters (z) are (solid line) n„
(dashed line) m~, and (dotted line) a.

2+m2 . (27)

mre mq mQ

for the light quark mass m~. However, simply making
the substitution introduces corrections to all orders in
1/mg. This is a problem because the heavy quark ki-
netic energy p~/(2mq) is only correct to leading order
in 1/mg. Taylor expanding P(0) as a function of m„~,

P(r) = P (r) + (m„g —m~)
BP (r)

Omq

+O[(m„g —m, ) ],
yields the following expression for Gi.

m cIP (r)
(0) 0m~

(26)

Numerically, it is easier to treat the heavy quark kinetic
energy as a perturbation, as described above.

The numerical calculation gives G~ ———0.14 GeV. Fig-
ure 3 displays the parameter dependence of the calcula-
tion, showing that varying the parameters does not allow

Which, of course, leads one to wonder about higher-order
corrections to the light quark kinetic energy, which do not
converge, since typical values of p are of the same order as
the constituent light quark mass m, &. Concerns such as these
inevitably lead to a model with relativistic light-quark kine-
matics such as the one in the following section.

that an appropriately regularized calculation will yield
~Gs~ & ]Gq~. Fhnthermore, two /CD sum-rule calcula-
tions [12,21] give ~Gs~ && ]Gq~. Therefore, it is reasonable
to assume that the hyper6ne interaction can be neglected
in this calculation.

Fortunately, the dominant Gq term is easily calculable
in the nonrelativistic model. The effect of (re)introducing
the heavy quark kinetic energy can be incorporated in the
usual way by substituting the reduced mass m„g,

The resulting wave equation

'+ m,'@ = (E —V)g (28)

is known as the spinless Salpeter equation [29]. It fol-
lows &om the full Bethe-Salpeter equation in the spin-
independent and instantaneous-interaction approxima-
tion. The spin independence is justified by the heavy-
quark limit. The instantaneous interaction approxima™
tion is a limitation of the model. Duncan, Eichten, and
Thacker have shown [30] that the spinless Salpeter equa-
tion produces wave functions that are very similar to
those obtained kom lattice calculations.

If the substitution of the relativistic kinetic energy is
the only change made to the model of the preceding sec-
tion, the potential in Eq. (28) is

4o.,V= — '+ar.
3r (29)

4 - (2mo.r)+'

for small r. While the divergence in Eq. (30) is very weak,
the divergence of the solution to the spinless Salpeter
equation with the potential in Eq. (29) is much stronger:

—4', /3m
) (31)

as can be seen with the methods of Ref. [31].
The singularity in the wave function is clearly related

to the singularity of the 1/r potential. If we instead con-
sider the one-loop single-gluon exchange potential [32,33],

Unfortunately, the resulting solution to Eq. (28) diverges
at the spatial origin, which results in an infinite value for
I' when calculated with Eq. (16). One might be tempted
to ascribe this divergence to the phenomenological part of
the potential. However, the divergence depends only on
the Coulombic part of the potential; it is independent of
the phenomenological linear term. Wave-function diver-
gence at the spatial origin is actually a general problem
afI'ecting relativistic wave equations. For example, the
solution to the Dirac equation for the Coulomb potential
behaves as
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the net effect is to replace the constant value of a, in
Eq. (31) with the one-loop running value of o, (l/Ar).
Leaving the phenomenological linear term unchanged,
the potential is now

Q4
0.45

Q g I I I
~ %a@

4o., (1/Ar ) jar,3r (32)

0.3
U

0.2

4'.( / ) p
(33)

which has a much milder singularity at the origin. The
resulting wave function still diverges, but only logarith-
mically. Again following a derivation similar to that in
Ref. [31], one can show that the small-r behavior of the
solution to the spinless Salpeter equation with the po-
tential in Eq. (32) is

PsR(r m 0) - [—in(Ar)]4~ ~' . (34)

The physical decay constant is a product of a pertur-
bative coeKcient, which depends on a scale p, with the
low-energy parameter F(p), as is shown in Eq. (6), which
is correct to leading-log order. The logarithmic behavior
of the wave function in Eq. (34) is of the right form to
cancel the ln(y, ) dependence of the perturbative coeffi-
cient that would be obtained if we had only considered
single-gluon exchange (i.e., the vertex correction) in the
perturbative coefficient in Eq. (6). This is as it should
be, since the solution to the wave equation can be con-
sidered an infinite series of single-gluon exchanges. The
full one-loop perturbative calculation also includes the
propagator corrections for the light and heavy quarks,
but these effects are not present in this model. A better
model would produce the full ln(p) dependence of F (y).

In the present case, the correct quantity to compare
with the nonrelativistic wave function at the origin is
the semirelativistic wave function at the origin without
the logarithmic divergence, which should cancel with the
p dependence of the perturbative correction in the full
calculation. Then the quantity

0.1

0.0
0 4 6

r [GeV ']
8 to

FIG. 4. Semirelativistic wave function calculated using
(dotted line) 10, (dashed line) 15, and (solid line) 20 pseu-
dohydrogenic basis functions. The inset shows that the nu-

merical calculation fails to converge at the origin, where the
wave function diverges logarithmically.

ues of mq and a are the same as in the preceding section.
There is a subtlety in choosing mq in this model. In
one picture the constituent quark mass arises from the
relativistic "jiggle" of the light quark in the hadron. In
another picture, the constituent quark mass arises &om
chiral symmetry breaking. Although these schemes are
not necessarily mutually exclusive, the former requires
using the current light quark mass in this model, while
the latter requires using the constituent mass. Here I
have chosen the latter option. It should be noted, how-

ever, that the results do not depend very strongly on the
light quark mass, so choosing the former option would not
qualitatively change the results. I have chosen A = 237
MeV so that the one-loop potential [Eq. (32)] is the same
as the original potential [Eq. (29)] at r = 1 GeV . Fig-
ure 5 displays the sensitivity of resulting value of Ep to
the model parameters. The central value, Ep = 0.67 GeV,
is only about 20% higher than the value of I" obtained
in the nonrelativistic model.

Calculating the subleading terms A, Gq, and G2 is
quite similar to the nonrelativistic calculation. The A
term has to be included by hand, just as before. The

ysR(
~o ln(1/Ar )

(35)
0.8-

should be compared to E as calculated in the nonrela-
tivistic model.

A subtlety arises in the one-loop potential because
a, (1/Ar) diverges for r A ~. This unphysical behav-
ior arises from the unperturbative nature of /CD at long
distances, and, as such, should be swept into the phe-
nomenological part of the potential. I have followed the
procedure used by Strassler and Peskin [34] to smoothly
turn off the running of n, at long distances. The pre-
scription is to make the substitution Ar + r tanh(Ar/K)
in the running of o., The results are insensitive to the
precise value of the parameter e, which I set to 0.5 for
the results I present here.

Figure 4 shows the numerical solution to the spinless
Salpeter equation with the one-loop potential. The val-

0.7-
0.6-

t-) 0S--
0.4-
0.3

0 I I I I 1 I I

0

0.4 0.6 0.8 1.0 1.2 1.4 1.6

FIG. 5. Paraxneter dependence of I'0 calculated using the
semirelativistic model. The nominal values (xo) are (solid
line) A=0.237, (dashed line) m~=0. 33 GeV, and (dotted line)
a = 0.18 GeV .
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hyperfine effect, G2, which was problematic in the non-
relativistic model, is also problematic in the semirela-
tivistic model. Even though the one-loop potential, with
its milder r ~ 0 singularity, helped deal with the di-
vergence at the origin of P, it does not alleviate the
additional singularities in the hyperfine potential. The
one-leap hyperfine potential [32,33]

07-
-0.8-

32~ n, C 5 11~.(p) 1 + —'
~

Po———
3 vr i 12 3

a, 621 Po) 1 1
+—'

I

——
l

——,+»~~'(~) ),m q8 4) 2vrrs (36)

V. DISCUSSION

contains terms just as singular as the tree-level hyper-
fine potential. This means that even after the origi-
nal divergence at the origin is regulated, the hyperfine
potential will introduce a new divergence. This result
can be anticipated from the perturbative calculation in
the efFective theory, where G2(p) gets a perturbative co-
eKcient in Eq. (11) beyond that of I'(p). As a rule,
terms that have renormalization coeKcients with non-
trivial ln(p)-dependence diverge in the semirelativistic
model. G~, which is protected &om renormalization
by reparametrization invariance, does not diverge in the
model calculation.

Although the semirelativistic model G2 calculation
seems to be more tractable than the similar problem in
the nonrelativistic model, the calculation is extremely
sensitive to the small-r dependence of the wave function.
This is precisely where the numerical method breaks
down, so the calculation is not technically feasible. Nei-
ther the nonrelativistic nor semirelativistic models in the
present form give definite predictions for G2. Fortu-
nately, as argued in the preceding section, indications
are that G2 is negligibly small compared to Gq.

The kinetic energy term Gq can easily be calculated
by treating the p /2m' term as a perturbation. [The
interpretation as a reduced mass efFect mentioned for the
nonrelativistic model does not translate to the semirela-
tivistic model, so Eq. (26) no longer holds. ] The result
is displayed in Fig. 6, once again showing dependence on
the various parameters.

Here the two models give dramatically different results.
Gq is several times larger in the semirelativistic model
than is the nonrelativistic model. Also the parameters
are correlated such that the two models cannot be made
qualitatively similar by changing any combination of the
parameters.

-1.2-
0.4 0.6 0.8 1.0 1.2 1.4 1.6

x/xo

FIG. 6. Parameter dependence of Gq calculated using the
nonrelativistic model. The parameters (x) are (solid line) A,
(dashed line) m~, and (dotted line) a.

In Table I I have summarized the results of the two model
calculations, including gM for pseudoscalar mesons, g~.
(In general, the pseudoscalar meson's g~ will be difFer-
ent &om the vector meson's g~ because of the effects of
the hyperfine operator, G2. Since the model calculations
neglect the hyperfine contribution, gM ——g~ ——g~ for
these calculations. ) I have used A = mz ——0.33 GeV to
calculate g~. Note that g~ in the nonrelativistic calcu-
lation is equal to the naive guess from the Introduction.
This is actually fortuitous because the contribution of
the A term, which accounts for half of the value, is not
included in the naive model. As stated in the Introduc-
tion, lattice calculations indicate that g~ = 1 GeV. The
semirelativistic calculation is consistent with that result,
but the nonrelativistic calculation is not. The difference
is due to the Gq contribution.

The nonrelativistic and semirelativistic values of Gq
differ not just quantitatively, but qualitatively. This
qualitative difference would be completely obscured by
a model comparison done in the traditional way, i.e., by
calculating only the decay constant and including the
heavy quark mass effects to all orders. The heavy quark
mass suppresses the effects of the Gq term in the de-
cay constant itself. The (heavy quark suppressed) large
difference at subleading order also tends to compensate
the smaller difference between the two models at leading
order.

The origin of the discrepancy between the two mod-
els can be understood as follows: For small p, the two
Hamiltonians are the same. For large p, however, the
kinetic energy term grows as p~ nonrelativistically, but
only as p relativistically. This means that the semirela-
tivistic Hamiltonian is less confined in momentum space
than the nonrelativistic Hamiltonian, i.e. , the semirela-
tivistic wave function is more spread out in momentum
space than the nonrelativistic wave function. Because the

It is convenient to define a quantity gM, such that
TABLE I. Comparison of the nonrelativistic and semirela-

tivistic models.

fM = +
~

1+
I
+ 01'

m~) (m~~

Nonrelativistic
8emirelativistic

P(FO) (GeV ~ ) Gq (GeV) g~ (GeV)
0.55 —0.14 —0.31
0.67 —0.95 —1.12
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wave functions are normalized, an increase of the wave
function at large momentum must be compensated by a
decrease at small momentum, so the di8'erence between
the wave functions tends to cancel for vP(r = 0), which
can be written in p space as

Gq, however, is proportional to PKE(r = 0), which can
be written as

alization shows how the nonrelativistic quark model can
work reasonably well overall, yet fail to describe impor-
tant details. This calculation shows that the nonrelativis-
tic quark model does con8ict with lattice and QCD sum-
rule predictions for the size of heavy quark symmetry-
breaking e8'ects in heavy-light decay constants. However,
this conHict can be removed by going to a similar model
with relativistic light quark dynamics. Comparing the
two models shows that the nonrelativistic quark model
should be expected to fail for calculations that are sensi-
tive to the large-momentum tails of wave functions.
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The p2 factor in the integral emphasizes the large-p differ-
ences in the wave functions, making Gq a sensitive probe
of the large-momentum tail of heavy-light wave functions.
This, in turn, leads to the following rule: Quantities that
are sensitive to the large-momentum shape of wave func-
tions are dramatically underestimated by the nonrela-
tivistic quark model.

This rule has implications for other processes. In par-
ticular, it indicates that nonrelativistic quark model cal-
culations of processes at large momentum transfer seri-
ously underestimate the overlap of meson wave functions.
An important example that has received much interest
lately is the process B + K*p. In the B meson's rest
frame the K* has —1.3 GeV of momentum, which is large
compared to the typical widths of meson wave functions
in the nonrelativistic quark model. This means that the
overlap is dominated by the tails of the wave functions,
which I have just shown to be poorly described by the
nonrelativistic quark model.

This work not only provides an explanation for the con-
Qict between the nonrelativistic quark model and other
estimates for the heavy quark symmetry-breaking behav-
ior in decay constants, it also suggests a qualitative solu-
tion to an earlier conflict: In Ref. [28], I calculated heavy
quark symmetry-violating corrections to form factors in
B ~ D&*~lv transitions. The predictions for the egects
of the heavy quark kinetic energy operator in were an
order of magnitude smaller than a QCD sum-rule calcu-
lation [35] of the same effect. This work shows that the
nonrelativistic quark model dramatically underestimates
the eKect of the kinetic-energy operator, in this case by a
factor of 6. In the meantime, Neubert [36] has derived a
theorem showing the sum rule used in Ref. [35) overesti-
mate the eÃects of the same operator. While an explicit
calculation is needed for both, it appears that the two
different types of models should now be in qualitative
agreement.

VI. CONCLUSIONS

The nonrelativistic quark model provides a very sim-
ple picture of hadronic physics. While the picture is
clearly too simple, it does yield insight into the structure
of hadrons. Calculating decay constants in the nonrela-
tivistic quark model and. a simple semirelativistic gener-
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APPENDIX

E„,= (Ai'RiA) (AI)

with respect to A. For reasonable choices of ~A), E
and ~A '") form good approximations to the eigenvalue
and eigenket, respectively. In the RRG method, one
chooses an orthogonal set of n vectors, ~A, i) i = 1, . . . , n,
then minimizes

(A2)

where
~
@) = c,.

~
A, i) . One can calculate wave functions

and energy eigenvalues arbitrarily well by choosing suf-
ficiently large n. The problem is reduced to the numer-
ically straightforward problem of calculating integrals
and solving a matrix equation for the c s.

The difficulties with the spinless Salpeter equation can
be avoided in the RRG method by breaking up the expec-
tation value of the Hamiltonian into kinetic and potential
pieces,

This appendix describes the method I used to obtain
the numerical results in the text. While the Schrodinger
equation can easily be solved with a wide variety of
numerical techniques, the spinless Salpeter equation is
much more difBcult. The position-space representation
of the spinless Salpeter equation contains the problem-

atic —V' + m operator, while the momentum-space

representation contains a complicated convolution inte-
gral &om the potential.

These problems can be avoided by using the Rayleigh-
Ritz-Galerkin (RRG) method [37], which easily handles
both the Schrodinger and the spinless Salpeter equa-
tions. RRG is an extension of the elementary variational
method. In the variational method, one chooses a state
parametrized by A, then minimizes
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and then writing Eq. (41) as

z»G = (elp)(» [Tip)(pie) + (el*)(*lv[*)(*[e). (A4)

The resulting integrals are straightforward as long as the
representations of the [A, i)'s are known in both position
and momentum space.

For the calculations in this work I used two different
bases: the harmonic oscillator basis and the con6ned
pseudohydrogenic basis. The former is standard; the lat-

ter was developed in Ref. [38] and used for the spinless
Salpeter equation in Ref. [39]. All convergent results are
independent of basis. The two different bases act as a
cross-check. Since the spinless Salpeter wave function di-
verges at the origin, the two methods do not agree in
a small region around the origin. The inset in Fig. 4
shows the failure to converge in the pseudohydrogenic
basis. The same plot with the harmonic oscillator basis
is different in the vicinity of the origin. Nevertheless, the
limiting procedure in Eq. (35) provides a finite quantity,
which is basis independent. All the results in the text
are independent of basis.
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