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We explicitly relate efFective meson-baryon Lagrangian models, chiral bags, and Skyrmions in the
following way. First, effective Lagrangians are constructed in a manner consistent with an underlying
large-N, /CD. An infinite set of graphs dress the bare Yukawa couplings at leading order in 1/N,
and are summed using semiclassical techniques. What emerges is a picture of the large-N baryon
reminiscent of the chiral bag: hedgehog pions for r & A patched onto bare nucleon degrees of
freedom for r & A, where the "bag radius" A is the UV cuto8' on the graphs. Next, a novel
renormalization group (RG) is derived in which the bare Yukawa couplings, baryon masses, and
hyperfine baryon mass splittings run with A. Finally, this RG flow is shown to act as a filter on the
renormalized Lagrangian parameters: when they are fine-tuned to obey Skyrme-model relations the
continuum limit A ~ oo exists and is, in fact, a Skyrme model; otherwise there is no continuum
limit.

PACS number(s): 11.15.Pg, 11.10.Hi, 12.39.Ba, 12.39.Dc

I. INTRODUCTION

A. Effective hadron Lagrangians versus Skyrmions

In the absence of reliable quantitative methods for
computing the low-energy properties of QCD, a wide va-
riety of phenomenological models of the nucleon have
emerged and flourished. One general class of models,
which predates QCD by some 30 years, starts from an ef
fective Lagrangian for the baryon and meson fields. The
hope in this approach is that the relevant physics is con-
tained in the complete set of hadron Feynman diagrams.
An orthogonal approach, pioneered by Skyrme in the
early 1960s, uses topology: the baryon is viewed as a
soliton, or Skyrmion, in the field of mesons [1,2].

On the face of it, the two approaches could not be
more opposite. Baryon number in an efFective quantum
field theory of hadrons is simply the Noether charge as-
sociated with a U(1) symmetry of the Lagrangian. In
contrast, in the Skyrmion picture, baryon number is not
associated with any continuous symmetry but is instead
a topological invariant: the minding number of a meson
Geld configuration. And the physics of Skyrmions is ex-
pressed, not in the language of Feynman diagrams, but in
a vocabulary more appropriate to solitons and other ex-
tended objects: collective coordinate quantization, sym-
metry classification of small fluctuations about the soli-
ton, and so forth.

In this paper, we exhibit a precise connection between
these two disparate approaches (see Fig. 1). The bridge
between them is built by combining in a new way two
important theoretical constructs: 't Hooft's 1/N, expan-
sion [3], N, being the number of colors in the under-
lying gauge theory, and Wilson's renormalization group
[4]. The parameter governing the flow of this so-called
Large N, renormaLiz-ation group [5] is an ultraviolet cutoff
A N, which regulates the divergences in the efFective
Feynman diagrams. Our main result is that soliton mod-
els and (suitably fine-tuned) effective Lagrangian models
are completely equivalent at leading order, in the "con-
tinuum limit" A -+ oo (to borrow lattice terminology). In
this section we introduce the key ideas behind the large-
N renormalization group; the remainder of the paper is
primarily devoted to exhibiting its solutions in a series of
simple models.

B. The large-N limit and semiclassical physics

In 't Hooft's original formulation, the 1/N, expansion
is studied directly in QCD; as N, ~ oo the physics is
dominated by the quenched planar quark-gluon graphs.
But the large-N limit is actually much more predictive
when the lessons of planar QCD are implemented not
at the fundamental quark-gluon level, but rather at the
level of phenomenological models such as above. Thus,
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From now on, "leading order" refers to the 1/N, expansion.
The need to fine-tune the renormalized Lagrangian couplings
is explained in Sec. ID below.
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FIG. 1. Three types of large-N, models of the strong in-
teractions, and the relationships between them. This paper
examines two of the three arrows, effective quantum 6eld the-
ory (QFT):- "chiral bags, " and "chiral bags" ~ Skyrmions.
The third relation, Skyrmions '.- effective QFT, is examined
in depth in Ref. [6].

on the one hand, in effective hadron Lagrangians, it im-
plies a set of large-N selection rules which place pow-
erful constraints on the allowed particle spectrum and
couplings contained in one's model. As examples of such
rules [7,8], whereas meson masses typically scale like N, ,
baryons (being made up of N, quarks) have masses that
grow linearly with N . And whereas Yukawa couplings
are strong, growing like QN„meson self-interactions are

weak, with n-meson vertices disappearing like N
The complete set of these large-N selection rules is
reviewed at the beginning of Sec. II below. On the
other hand, in Skyrmion physics, 1/N, plays an osten-
sibly diferent role, which is more easily summarized: it
parametrizes the semiclassical expansion about the soli-
ton. This is because 1/N, always enters into Skyrmion
Lagrangians in the combination h/N, .

In fact, this difference is illusory: the effective La-
grangian approach, too, becomes semiclassical in the
large-N limit (a key to the equivalence of the two pic-
tures). What we mean by this is twofold. First, in cal-
culating the leading-order contribution to meson-baryon
Green's functions, the naive, graph-by-graph, perturba-
tive method fails, and one is forced instead to sum an
infinite class of diagrams. Second, this sum may be ac-
complished by solving classical equations of motion for
the meson fields in the background of the baryon source.

In order that these two points be understood, let us be
very explicit at this stage, and in so doing introduce the
central Geld-theoretic problem of this paper. Consider
the bare Yukawa coupling gb „depicted in Fig. 2(a),
which scales like i/N as stated above. In principle, we
would like to sum all radiative corrections to this vertex
such as Figs. 2(b)—2(d), and thereby extract the renor-
malized Yukawa coupling g„„,to leading order in 1/N, .

The calculation of renormalized single-meson emission or
absorption from the nucleon is the simplest arena for our semi-
classical methods, which may also be applied to more com-
plicated processes such as meson-baryon and baryon-baryon
scattering [5,9].

FIG. 2. (a) A bare meson-baryon coupling gb „gN„
which we shall refer to generically as a "Yukawa coupling"
even if it involves derivatives. Henceforth, directed lines are
baryons and undirected lines are mesons. (b) A simple radia-
tive correction to (a). Since the three-meson vertex 1/gN,
this graph too gN . Therefore it is a leading-order contri-
bution to g„„. (c) A more complicated contribution to g„„
which is likewise leading order. The general rule is that the
leading-order graphs are the ones for which, if one erases the
baryon line(s), one is left with meson tree(s). (d) An example
of a subleading contribution to g„„.The purely mesonic loop
costs one power of N„so this graph 1/gN .

Focus first on Fig. 2(b). It contains two factors of gb „,
and therefore two factors of v N„as well as a three-
ineson vertex which goes like 1/gN, ; so this graph too
scales like QN„and is a leading order co-rrection to gb „.
Likewise Fig. 2(c) scales like QN„as the reader can check
by multiplying all vertices together. An example of a
subleading correction is Fig. 2(d). Unlike the others it
contains a purely mesonic loop (indicated by the arrow)
and, hence, two extra factors of 1/i/N, uncompeiisated
by extra Yukawa vertices. So Fig. 2(d) and the like are
1/N, corrections, and will not concern us further.

A moment's thought confirms the rule: the leading-
order dressings are the infinite set of diagrams which con-
tain only meson trees if the baryon line is erased. And
the sum of all trees, like a soliton, is given by the so-
lution to a classical equation of motion, which we write
down in Sec. III below. The role of the bare large-N,
baryon in this equation is that of a heavy, slow-moving
source, smeared out over a length scale A so as to cut
o8' the short-distance divergences in the original Feyn-
man graphs. Of course, in a generic quantum field the-
ory, diagrams of the type shown in Figs. 2(a)—2(c) cannot
normally be summed semiclassically; one needs the ad-
ditional strict requirement, satisfied by large-N hadron
models, that the baryonic sources commute with one an-
other as operators on the baryon Hilbert space [9].

As we shall see, the solution of this UV-regulated semi-
classical equation is a hedgehog cloud of pions and/or
other mesons for r & A, glued onto the bare nucleon
degrees of &eedom which are restricted to r ( A . The
energy of this cloud reDormalizes the mass of the baryon
(Mb „~M„„)while its large-distance behavior deter-
mines the physical Yukawa coupling (gb „~g, „).

C. Chiral bags and Cheshire cats

The resulting picture of the meson-dressed large-N
baryon is highly reminiscent of yet a third class of phe-
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nomenological models, the chirat bag models [10—13).
These, too, are hybrid descriptions of the dressed baryon,
in which explicit quark (rather than nucleon) degrees
of &eedom inside a bag of radius R are matched onto
an efFective theory of hedgehog pions outside the bag.
Even this presumably important distinction between
"nucleon" versus "quark" degrees of &eedom inside the
bag disappears as N —+ oo. For, in this limit, the N
quarks may be treated in the Hartree approximation, and
their individual wave functions efFectively condense into
a common mean-field wave function, which we Inay iden-
tify with the "wave function of the nucleon. " Outside the
bag, the analogy is closer still: the pion field configura-
tion is again determined by solving a nonlinear field equa-
tion coupled to a static source at r = R. The only sig-
nificant difference between our composite meson-dressed
large-N baryon and the traditional chiral bag is this:
our composite baryon follows solely &om large N and
has nothing mh, atsoever to do with chiral symmetry. For
this reason we shall refer to it as a "chiral bag" (Fig. 1
again), being careful to retain the quotation marks to
avoid confusion with the traditional chiral bag.

Associated with the traditional chiral bag in the recent
literature is the so-called Cheshire cat principle [15,13],
which states that physical quantities should be indepen-
dent of the size and shape of the bag. This proposal
is motivated by the success of bosonization in 1+ 1 di-
mensions, which provides an exact mapping between, for
instance, the elementary fermion of the massive Thirring
model and the soliton of the sine-Gordon equation [16].
In its most extreme form, it implies that R can safely be
set to zero, yielding a description of the nucleon purely in
terms of pion fields. One may conjecture that this limit
is nothing other than the Skyrme model [12,13]. How-
ever, since no equivalent of bosonization has been made
to work in 3+ 1 dimensions, the theoretical status of the
Cheshire cat principle has remained uncertain.

From our present large-N perspective, the bag radius
R is best reinterpreted as the short-distance cutofF A
of the large-N effective theory. It is then easy to see
the significance of the Cheshire cat principle: the cutoff
independence of physical quantities is usually referred to
as renormalization group invariance [4]. However, except
in special cases, renormalization group invariance of the
physical masses and couplings never comes for &ee; the
corresponding bare quantities must be varied simultane-
ously with the cutoff. As stated earlier, we will refer to
this program as the large-N renormalization group. To
our understanding, the concept of such a fIow is not only

absent &om the usual Cheshire cat philosophy, but is in
fact orthogonal to it; B in that scheme is nothing more
than a gauge-fixing parameter.

D. The large-N~ renormalization group as a "Alter"

The limit of zero bag size, R ~ 0 or A —+ oo, corre-
sponds to removing the cutoff completely. This contin-
uum limit, if it can be taken at all, is by definition a UV
stable fixed point of the renormalization group fIow. 4 In
light of the above discussion, it is natural to conjecture
that such a fixed point exists if and only if the homo-
geneous meson field equations (i.e. , with the baryonic
source set to zero) support a soliton solution. s Thus we
propose that variants of the Skyrme model describe the
possible continuum limits of effective Lagrangian theories
of mesons and baryons in the large-N, limit.

On refIection, there is an obvious counting problem
with this scenario: effective Lagrangians always con-
tain more &ee parameters than the corresponding soliton
models. Thus, in the former, the physical masses and
couplings are all independent, while in the latter there
exist nontrivial relations among them; for instance, the
Yukawa constant g, „ is completely determined by the
meson self-couplings [2]. (This feature, of course, is pre-
cisely the point of the Skyrmion approach. ) If our pro-
posal is correct, it follows that, unless the renormalized
parameters in the effective Lagrangian are tuned exactly
to those of the corresponding soliton model, there must
be some mathematical obstacle to taking the continuum
limit. In other words, we conjecture that the large-N,
renorrnalization group acts as a filter, blocking the path
to the continuum except for a measure-zero subset of the
space of renormalized parameters. This filter idea is the
central theme of this paper, and is explicitly realized in
the models to follow. The attentive reader will recog-
nize in the phrasing of this counting problem the classic
symptom of the existence of an "irrelevant operator" [4];
naturally this operator turns out to be the bare Yukawa
coupling itself.

E. The plan of this paper

The paper is organized as follows. Sections II and
III recapitulate our recent Letter [5], in soinewhat more
detail, and at a more leisurely pace. (Independently,
Manohar [17] has reached similar conclusions to Ref. [5];
other relevant precursors are Refs. [9] and [14].) In par-

This observation was originally made by Witten (Ref. [8],
Secs. 5 and 9), and exploited by Gervais and Sakita (Ref. [14],
Sec. V). These two papers are highly recommended back-
ground reading, as they too are concerned primarily with the
semiclassical nature of large-N, . In particular, Gervais and
Sakita were the first to study chiral-bag-type structures in
this limit, although not from our effective hadron Lagrangian
starting point.

Because we are implementing renormalization group invari-
ance strictly at leading order in 1/N, the limit A —+ oo is to
be taken after N, -+ oo. We suspect that these limits do not
commute.

The only exception we have found to this rule is a theory
of non-self-interacting mesons (Sec. IV).



2894 NICHOLAS DOREY AND MICHAEL P. MA I l'IS 52

ticular, Sec. II reviews the large-N selection rules men-
tioned above, and gives the recipe for constructing large-
N -compatible effective Lagrangians. Section III is de-
voted. to semiclassics: the problem posed in Fig. 2 is
solved completely at a formal level, the issue of meson
contributions to the baryon self-energy is examined, the
hedgehog structure of the meson cloud is revealed, and
the large-N, renormalization group is defined.

The reader already familiar with the contents of Ref. [5]
is encouraged to skip directly to Secs. IV—VIII in which
the large-N renormalization group is applied to a se-
ries of effective hadron models. What distinguishes these
models &om one another is our choice of the purely
mesonic piece of the action, 8, „. In Sec. IV, 8
is simply the &ee pion Lagrangian. Not surprisingly, one
finds essentially no running of the bare aN Yukawa cou-
pling: gb „(A) = g„. Much more interesting is the
model of Sec. V, in which 8 „„=(f /16)TrB„UtO" U,
the leading term in chiral perturbation theory. This is
a clean initial test of the "filter" idea conjectured above,
because this meson Lagrangian is known not to support a
soliton, thanks to Derrick's theorem [18]. And indeed we
discover a critical value of the cutofF, A„;q ——340 MeV,
beyond which the large-N renormalization group cannot
be pushed. In Sec. VI we construct an analytically sol-
uble (2 + 1)-dimensional model, in which the would-be
Skyrmion is simply the instanton of the O(3) cr model in
one lower dimension. In this model the physics is all that
one might have hoped: unlike Sec. V there is no ultravi-
olet obstruction to the large-N, renormalization group;
the bare coupling gb „(A) is irrelevant, fiowing to zero
like A; and a "toy" Skyrme model indeed lies at the
end of the large-N renormalization group trajectory, at
which point the explicit baryon number effectively trans-
mutes into the winding number of the meson cloud.

Finally, in Secs. VII and VIII we augment the nonlin-
ear pion Lagrangian of Sec. V with the four-derivative
"Skyrme term" and study the large-N renormalization
group, both in the measure-zero case when the physical
Yukawa coupling is tuned precisely to its Skyrme-model
value (Sec. VII), and in the generic case when they differ
(Sec. VIII). In a surprising way, involving essential singu-
larities in Skyrme's equation, and local instabilities that
develop in the pion cloud for A ) A„;t (see the Appendix
for technical details), our "filter" conjecture is borne out.

In light of this already long Introduction, we will spare
the reader a Conclusions section, and commend him in-
stead to keep the "large-N, renormalization group as fil-
ter" idea firmly in mind as he works his way through the
examples.

II. CONSTRUCTING LARGE-N, EFFECTIVE
LAG RAN GIANS

ferent approaches: not just a planar-diagrammatic anal-
ysis of large-N /CD [7,8,19,20] but also the Hartree
approximation originally employed by Witten [8], the
Skyrme model [2,14,21], the nonrelativistic quark inodel
[22—24], and finally the self-consistency of the effective
hadron Lagrangian [14,25] as recently einphasized in a
series of interesting papers by Dashen, Jenkins, and
Manohar [26,27]. The following rules (the first two of
which were already invoked in Sec. I) should be consid-
ered robust, model-independent features of the large-N
limit.

(i) As noted originally by Veneziano, purely mesonic

vertices with n external legs scale like N "
[7,8]. An

important example with n = 1 is that the pion decay con-
stant f QN„where sameson masses (n = 2) generi-
cally scale like N .

(ii) Vertices with two baryon legs and n meson legs

also scale like N, " so that baryon masses (n = 0)
and Yukawa couplings (n = 1) grow like N and gN„
respectively [8,14,19,20].

(iii) The two-favor stable baryon spectrum of large-
N, @CD (with N, odd) consists of an infinite tower of
positive parity states with I = J = 2, 2, 2, . . .. To
leading order these states are degenerate [2,14,19,20,26],
with bare mass Mb „N, (as baryons are inade of N,
quarks). Hyperfine baryon inass splittings have the form
J(J + 1)/2Zj, „where Vga„N, [2,19,20,27]. In the
Skyrme model these states correspond to (iso)rotational
excitations of the static hedgehog and the splitting term
corresponds exactly to the rotational kinetic energy of
the Skyrinion [2]. Similar degeneracies characterize the
meson spectrum: the p and u become degenerate, for
example, and the g' becomes degenerate with the pseu-
doscalar octet. This is because the quark-gluon diagrams
that split the Bavor singlets &om the nonsinglets are man-
ifestly Zweig's-rule (hence 1/N ) suppressed [8].

(iv) In contrast, the spatial extent of a baryon does not
grow but has a smooth N, -independent limit as N ~ oo,
as do the various baryon form factors such as electro-
magnetic charge distributions, and the baryon number
density itself [8,2].

(v) Yukawa couplings are constrained to obey the "pro-
portionality rule" which fixes the interaction strength of
a given meson with each member of the baryon tower as a
multiple of one overall coupling constant [2,14,21,23,26]
(e.g. , g~~~ oc g~~~ oc g~~~ ), up to corrections of
order 1/N2 [26].

(vi) Finally, the allowed couplings of mesons to the
baryon tower must obey the Iq ——Jq rule [21,23,25]. For
example the p meson must be tensor coupled to the nu-
cleon while the ~ meson is vector coupled at leading
order in 1/N, [25,20,24], in good agreement with phe-

A. Large-N selection rules

As mentioned in Sec. I, the large-N limit imposes sev-
eral stringent requirements on the allowed spectrum and
interactions of hadrons, which we now review. These
rules can be derived quite independently &om several dif-

In the Skyrme-model representation this tower is truly in6-
nite whereas in the quark-model representation it tops ofF at
N /2; see Ref. [24] for a detailed discussion of how to trans-
late Skyrme-model operators into quark-model operators and
vice versa in light of this difFerence.
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L'efF —~baryon + L'meson + IIYukawa + LIseagull (2.1)

In light of the above selection rules, let us discuss, in
turn, the proper construction of each of these parts.

B. Constructing Lb

We start with a relativistic baryon Lagrangian for the
tower described in (iii) above:

nomenology [28]. When crossed from the t channel to
the 8 channel, this rule also implies nontrivial model-
independent relations among meson-baryon S matrix el-
ements [29—31],which are tested against the experimental
data in Refs. [30,31]."

These selection rules must be ixnplemented in any
large-N -compatible efFective hadron Lagrangian. What
we stressed in our Letter [5] and will review below is
the consistency of these rules, meaning that once they
are incorporated into the bare Lagrangian they' continue
to hold for physical, renormalized quantities as well.
Thus, while the baryon mass spectrum is renormalized
at leading order by the interactions with the mesons, the
J(J+ 1) structure discussed in (iii) is preserved, and so,
too, the form of the O(QN ) Yukawa couplings of the
mesons to the baryon tower dictated by (v) and (vi).
And while the "bare" nucleon size (as given by the naive
ultraviolet cutofF A i N, ) is efFectively enlarged by
the meson cloud, it remains of order No as per (iv).
This is because the spatial extent of the cloud is dictated
by the parameters (i) of the xneson Lagrangian, for in-
stance m ~, or the product of Skyrme-model parameters
(esf )

i as we shall see in Secs. VII and VIII below.
In general, an efFective meson-baryon Lagrangian is a

sum of four parts:

N(ip~a& —MIv)N + (higher I = J baryons), (2.2)

(pb
where N means

~
~. We will need to recast this un-(n)

wieldy infinite sum in a more useful form. Since large-N
baryons are heavy, it is natural to split their propagators
in the usual way into forwards-in-time (U-spinor) plus
backwards-in-time (V-spinor) pieces. The latter account
for the so-called Z-graph contributions to Feynman di-
agrams, which turn out to be subleading as we review
momentarily (Sec. IIE). The remaining time-ordered di-
agrammatics is one in which Z graphs have been elim-
inated, and with them the higher components of the
baryon-antibaryon Fock space. In this way, baryon quan-
tum field theory collapses to baryon quantum mechanics.
But we can simplify the physics even further. For pro-
cesses involving one baryon only, interacting with an ar-
bitrary number of mesons, it is natural to work in or near
the baryon's rest kame, in which case, finally,

1 2
L'baryon Mbare + 2MbareX + +bare~+ + + '

(2.3)

the dots denoting 1/N, corrections. The first two terms
on the right-hand side are the usual nonrelativistic ap-
proximation to the relativistic mass-energy, X(t) being
the baryon's position.

The third term, the (iso)rotational kinetic energy, is
perhaps less familiar. It represents free motion on the
baryon's spin-isospin manifold (just as the previous term
denotes &ee spatial translation), with A(t) E SU(2) be-
ing the baryon s spin-isospin collective coordinate. The
full meaning of this term is revealed in the elegant path
integral identity due to Schulman [32]:

A{a&}=A2 (.
&A(&) exp

~

i d&( —Mb,.+ 2'b,.TrAtA)
~

=
A{&1}=Ay

J
) ) (A ~I=J) —i(tg tg)Mb „(I=—J ~A )
1 3 i,a =—J2'2'"

(2.4)

where

J(J+1)
Mbare Mbare +

bare
(2.5)

with the mass spectrum of a rigid rotor, exactly as re-
quired by rule (iii) given above. We will adopt Skyrme-
model nomenclature and refer to Xbar as the "bare mo-
ment of inertia" of the baryon [2]. The brackets

~ ~

In other words, Zb „TrAtA is convenient shorthand for
the free propagation of an infinite tower of I = J baryons

(A~I=I) —(2J + 1)i/&( )~ ~*D(I) (At) (2.6)

Rules (v) and (vi) are elementary examples of "large-N,
group theory, " the state-of-the-art phenomenological predic-
tions of which are summarized in Ref. [24]. The existence of
such group-theoretic relations may be traced to the fact that
SU(2N&) spinxflavor symmetry becomes exact as N -+ oo
[14,26]. This is one of the two main attractions of large-
N physics, the other being its amenability to a semiclassical
treatment.

in Eq. (2.4) are just the change-of-basis overlaps between
the usual spin-isospin baryon representation (the nucle-
ons with I = J = 2, the 4's with I = J = 2, etc. , with
spin and isospin z components s, and i ), and baryon
states ]A) sharp instead in the spin-isospin collective co-
ordinate. The ~A) basis too, while popularized by the
Skyrme model [2], is useful more generally in large-N,
physics [14,22,23].



2896 NICHOLAS DOREY AND MICHAEL P. MATTIS 52

C. Constructing L

As for the meson piece of the action, it is best to leaveL, „completely unspecified for the time being, subject
only to the scaling rule (i) discussed above. Importantly,
if one then rescales all meson fields by a mass param-
eter proportional to gN, (such as the pion decay con-
stant f ), a multiplicative factor of N, /h exists in front
of the meson action. So a leading-order analysis in the
1/N expansion is tantamount to a semiclassical (h ~ 0)
treatment of the mesonic part of the path integral. We
will exploit this feature shortly.

3g ~~,, 7r (x)D
&

(A(t'))b (x') . (2.8)

Here the primed space-time coordinate x' = (t', x.') is
the Poincare transformation of x into the center-of-mass
kame of the baryon, assumed to be moving with fixed
velocity X relative to the lab kame; when X (( 1 so that
Lorentz contractions are irrelevant, one simply has

I = J tower of baryons in a manner fixed by the propor-
tionality rule (v). As before, the IA) basis for the baryons
permits an especially compact representation of this set
of couplings: namely [2,6],

D. Constructing L~„i x' = x —X(t) . (2 9)

Next, consider L~„~ . For large N, the usual pseu-
dovector coupling of the pion to the nucleon,

~bare g K . 2V+p+5TÃ (2.7)

must be augmented by similar couplings to the entire

The rotation matrix D&~l(A) is an operator (hence the
caret on the A) on the spin and isospin quantum num-
bers of the single-baryon Hilbert-space. It is completely
specified by its matrix elements in the conventional spin-
isospin baryon basis:

('"=' ID.'~'(A) I'=.') = (,' =.
' ID.'&'(A)

U(2)
dAIA) (All=, ~)

dAD ( (A)(2J'+ 1) ~
(
—) '*D~ l* (At)

SU(2)

&& (2J + 1)'~'( )
—'*D~~~ (A&)

I(»+1)(»'+1)]"(—)' '+'*+'*
~'1 J J'l /1x a i, —i, ) 0 l —s, s j (2.10)

To obtain the first equality we have inserted a complete
set of IA) states on which D

&
(A) is sharp; the second(1) "

~

equality follows &om Eq. (2.6); and the third from the
textbook expression for the integral of three Wigner D
functions. The two resulting 3j symbols express conser-
vation of isospin and angular momentum, respectively,
while the overall square-root coefBcient embodies the pro-
portionality rule (v).

We have absorbed the normally explicit factor of (2M~)
into the pseudovector coupling constant g ~~, which there-
fore has dimensions of length. The reason that pseudovector
coupling is far preferable to pseudoscalar coupling in large-N
physics is that the latter involves an awkward cancellation: p
couples the "large" to the "small" components of the nucleon
spinor, the "small" components being down by 1/N„which
compensates the fact that the pseudoscalar constant grows
like K, as dictated by the Goldberger-Treiman relation.

It is easily checked that the terms in Eq. (2.7) invoiv
ing the spatial derivatives of the pion are correctly re-
produced by Eqs. (2.8) and (2.10), once one specializes
to "in" and "out" nucleons by inserting J = J' = 2. In
contrast, the time derivative of the pion has been dropped
in moving &om (2.7) to (2.8). This is because Be7r mul-
tiplies the Dirac matrix p p which couples the "large"
components of the baryon's Dirac spinor to the "small"
components, the latter being down by v/c 1/N, . As
often happens, the 1/N, expansion has broken apart a
Lorentz-invariant quantity.

Beyond the nucleons, the coupling (2.8) contains use-
ful phenomenological information about the higher I = J
baryons as well. Sandwiching it between nucleon and L
states using Eq. (2.10), one calculates a A -+ N7r de-
cay width within a few MeV of its experimental value of
120 MeV [2,6,33]. In the same way, one discovers that
the higher baryons have widths so large (I'5~& —800

2

MeV, I'7 5+ —2600 MeV, I'9 7+ —6400 MeV, etc.)
2 2+ 2 2+

that they cannot sensibly be regarded as "particles" at all
[6,33]. So these higher-spin states, the existence of which
is often considered a major failing of the large-N ap-
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proach, are actually not in conQict with phenomenology.
Like the pions, the allowed nucleon couplings of the p,

~, and/or o mesons (for example) must also be echoed
by couplings to the entire I = J tower [25]:

g NNa„P„No.

; 39p~xv e;zx, , pz (x)D I, (A(t')) b (x'), (2.11a)
(a) (c)

gbNN~„NP" N (2.11b)

g NNONN (2.11c)

again dropping Dirac structures that involve "small"
components. The N scalings are

bare bare bare bare4NN 9pNN 9~NN 9~NN V Nc (2.12)

The coupling (2.8) for the pions, and (2.11) for the p,
~, ~ have the important property that they all mutually
commute with one another, as operators on the Hilbert
space of I = J baryons. This feature is practically a
tautology in the ]A) basis, since the operator D(&) (A) in

(2.8) and (2.11a) reduces to the c number D & (A), but it
appears quite obscure and miraculous in the conventional
spin-isospin baryon basis. [The analogous Hilbert-space
operator in (2.11b) and (2.1lc) is just the unit operator. ]
The commutativity of these baryonic sources is absolutely
essential to our program, as it allows the relevant Feyn-
xnan graphs (Fig. 2) to be summed semiclassically, as we
shall see below; this would not be possible if the sources
were instead noncommuting q numbers. This important
property of large N was first noted in Ref. [14],exploited
semiclassically in Ref. [9], and has recently been revived
in Ref. [26].

Conspicuously absent &om the list of permitted
Yukawa couplings (2.11) are the vector coupling of the p
meson and the tensor coupling of the u meson, g NN p~ .
Np"v. N and g N'NB~~„Ncr""N. These alternative cou-
plings are forbidden by rule (vi) given earlier, meaning
that, in contrast with (2.12),

FIG. 3. (a) A "seagull" interaction, in which more than
one meson interacts with the baryon at the same space-time
point. The ellipses allow for yet more meson lines than shown
meeting at the vertex. (b) A Z graph, in which the baryon
runs backwards in time over an interval. These arise in the de-
composition of Feynman graphs into time-ordered diagrams.
Time runs upwards in this diagram. (c) An efFective seagull,
or "Z gull, " implied by (b). For Yulxawa couplings that obey
the Ii ——Jt, rule, (c) is suppressed by 1/N compared to the
bare seagull shown in (a).

and we can forget about them. For the same reason we
can forget about the g'. Even though the g' becomes
degenerate in mass with the pion in large N as per rule
(iii) (independently of the chiral limit), it couples to the
baryon in a P wave, violating the Iq ——Jq rule; there-
fore its baryon coupling must be 1/N suppressed just
like g NN and g"NN. Phrased another way, these large-
N -suppressed couplings correspond to baryonic sources
proportional to the spin or isospin operators, J and I, on
the Hilbert space of I = J baryons, and these are non-
commuting, q number sources in contrast with (2.8) and
(2.11).

The incorporation of any of these additional mesons
is deferred to future work; for simplicity the explicit
meson models analyzed below will be built &om pions
alone.

E. Constructing L,

vec tens
gpNN ANN

C

(2.13) Finally we discuss couplings such as Fig. 3(a), in which
more than one meson interacts with the baryon at the

The story of these unwanted large-N, baryons is much more
complicated in models with three ore more light Bavors. The
three-flavor Slxyrme model [34], for example, predicts exotic
baryons not just with high spin but also with low spin, for
instance a spin- ~ antidecuplet. In quark-model language such
exotics map onto baryons with N quarks plus extra qq pairs
[22]. Large-N counting implies that each such pair costs a
factor of 1//N to produce [3,8]. And indeed one can show
that matrix elements of physically relevant operators between

A:/~"normal" and "exotic" baryons are down precisely by 1/N
where k is the number of such qq pairs; see Ref. [24], Sec. XIII
for details.

A natural extension of the ideas in the present paper, and
one more in keeping with Wilson's original philosophy of the
renormalisation group [4], is to add more and more mesons to
the model as the cuto8' A is increased. This is consistent with
the spectral representation of large-N physics, which requires
not just an in6nite tower of baryons, but apparently also an
infinite number of mesons in each channel [8]. The smearing
of the baryon over a distance A can then be thought of
as being due to the interactions with mesons of mass greater
than A, which are omitted from the model, whereas all mesons
of mass less than A are explicitly kept.
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same space-time point. For want of a better word we
refer to these vertices as "seagulls. " From QCD one can

X —n/2show that n-meson seagulls generically scale like N
[rule (ii) above]. A familiar example from chiral per-
turbation theory is the coupling to the nucleon of the
pion's axial current, which is formed Rom the U Geld,
U = exp(2ivr . w/f ). Taylor-expanding U gives coeffi-
cients proportional to g~f " for the n-pion couplings to
the nucleon, where n = 1,3, 5, . . .. Since g~ N and
f gN, these indeed have the full-strength behavior
with N . An exception to this scaling rule is the set
of n-pion seagulls arising &om the vector current cou-
pling. These are proportional to gi f, n = 2, 4, 6, . . .,
and since g~ ——1 by vector current conservation they all
drop out as N ~ oo.

Quite aside from any "bare" seagulls that one may
choose to include in the bare Lagrangian, one must
also examine the effective seagulls that arise from the
backwards-in-time baryons (Z graphs), once a Feynman
diagram is decomposed into a sum of time-ordered dia-
grams. Inevitably, these approximately pointlike induced
vertices are termed "Z gulls. " As illustrated in Figs. 3(b)
and 3(c), they come from approximating the V-spinor
propagator by the constant i/2M„„up—to nonlocal
O(N, 2) corrections, where M„„ is the physical baryon
mass. Naively, the strength of the Z gull in Fig. 3(c) is
then g&2 „/M„NO; since this is the same order as
a full-strength two-meson bare seagull, it appears such
a vertex must be kept. However, this naive counting is
incorrect. The reason is easily seen by writing out the
Feynman rules for the U and V spinors directly. For pre-
cisely those Yukawa couplings (2.8) and (2.11) permitted
by the Iq ——Jq rule (vi), there is an extra suppression of
o p/M 1/N, at each of the two vertices in Fig. 3(b).
This is the cost of turning a U spinor into a V spinor
or vice versa, when the meson coupling is dominantly
block diagonal in the Dirac space. We conclude that
in self-consistent large-N models Z gulls are actually
suppressed by two powers of 1/N, compared with bare
seagulls, and may safely be dropped.

For simplicity, in the explicit models analyzed below,
we will choose to set to zero all bare seagulls as well. In-
stead we will focus on the renormalization of the Yukawa
interaction and show that, in many cases, it corresponds
to an irrelevant operator of the large-N renormalization
group. We conjecture that in these cases the higher-point
bare seagull couplings are also irrelevant operators, but
we will leave this interesting question for future work.

L
i Z3
IX

n=1 n! "tanglings" &Zy

FIG. 4. The complete set of leading-order corrections of the
type shown in Figs. 2{a)—2(c). The oval blob is understood
to contain all tree-level meson branchings (no loops). There
is an explicit sum over the n! attachments of the blob to the
baryon line.

III. LARGE-N, SEMICLASSICAL ANALYSIS

A. Formal summation of the leading-order graphs

We now return to the central problem posed in Sec. I,
namely, the summation of the leading-order contributions
to the renormalized Yukawa constants g„„.Recall &om
Fig. 2 that the leading-order graphs are those containing
no purely mesonic loops; in other words, those graphs
which would be meson trees if one were to erase the
baryon line. The complete set of such graphs is captured
in Fig. 4.

Not surprisingly, being treelike, Fig. 4 can be generated
as the solution to a classical equation of motion. As a
concrete example, with pions only, suppose that

~meson = ~s =
2 (p'7r) —2m~77 —V(ir), (3.1)

where V contains the quartic and higher pion self-
interactions. The pion trees with one external pion line
suin to a quantity we call Pr, i (the subscript "cl" standing
interchangeably for "classical" or "cloud" ) which solves
the Euler-Lagrange equation implied by Eqs. (3.1) and
(2.8):

OV(0 + m')m„(x, t) +
c1

= 3g~~ivD, (A(t')), , b (x'), (3.2)

x' referring to the center-of-mass kame of the moving
baryon as before. This equation is illustrated in dia-
grammatic form in Fig. 5. Comparing Fig. 5 with Fig. 4,

P(s,)

(X)

=y(zy
7(&,)

(Zs) + ~ ~ 4
FIG. 5. The graphical

Born-series solution of
Eq. (3.2). The line terrninat-
ing in a square is our notation
for m ~, the oval blob contains
all tree-level meson branchings,
and the Yukawa source g is
short for the right-hand side of
Eq. (3.2).

"We are indebted to Jim Friar for pointing out an error ln an earlier draft of this paper.



FROM EFFECTIVE LAGRANGIANS, TO CHIRAL BAGS, TO. . . 2899

'z
a-t

n=l n! "tanglings"

FIG. 6. An equivalent rewrite of Fig. 5, with the baryon ex-
plicitly drawn (it is implicit in the Yukawa source of Fig. 5).
The difFerence with Fig. 4 lies solely in the time-ordering up
the baryon line (a 1/2V, difFerence). Recall that the U-spinor
baryon propagator collapses to e ™~e(b,t)b (x) in the ex-
treme nonrelativistic limit.

Thanks to the rescaling argument of Sec. II C, the me-
son cloud, like a Skyrmion, is a nonperturbatively large
configuration, scaling like f /N, although its spatial
extent goes like N . Another general point is that it is
not sufBcient for the cloud to be a solution to the Euler-
Lagrange equation; it must actually be a local minimum;
in other words it must be locally stable against small de-
formations. This stability issue will reemerge in Sec. VIII
below. The interesting related question of what does an
unstable cloud collapse into is examined at the end of the
Appendix.

B. Baryon self-energy and baryon-meson vertex
corrections

we find apparent agreement, save for the missing" sum
over the n. tanglings. But this sum is already implicit
in Fig. 5. To see this, insert into the right-hand side
of Fig. 5 the resolution of unity into a sum over all nJ
(boosted) tiine orderings of the attachment points z~.

' = & - '("'(2) —"'(i))'("'(s) —"'(z)) " "
PE~n

I0 I0x 8(zd, („)—
zd („,)),

p being a permutation, and for each element in this sum
relabel zp~A. ~

—+ zp. In this way we recapture, not Fig. 4
precisely, but rather Fig. 6, which difFers &om Fig. 4
only in the time-ordering prescription up the baryon line.
This diH'erence is truly unimportant; backwards-in-time
baryon propagation is always a 1/N2 effect. i2

To suinmarize, Eq. (3.2) correctly accounts for the
leading-order contributions to the renormalized meson-
baryon coupling, up to 1/N, corrections. The answer is
conveniently expressed as a quantum mechanical path in-
tegral over the baryon's translational and (iso)rotational
collective coordinates:

112(t)1)X(t)xt(xt) exp i f dt,(Lt,

What is the meaning of the terms L „„[vr,~] +
[vr, &] in Eq. (3.4)'? Graphically, the answer can

be seen in Fig. 7. As Fig. 7(c) in particular makes clear,
these terms fully account for the meson-tree baryon self-
energy and baryon-meson vertex corrections that we have
neglected till now [19,27]. Taylor-expanding the expo-
nential of these terms produces an arbitrary number of
such insertions at all placements along the baryon line,
automatically with the correct combinatorics. Moreover,
since vr, ~ itself depends on the baryon collective coordi-
nates X(t) and A(t) through the Yukawa source on the
right-hand side of (3.2), I, „„[z,~] + LY„) [Pr,~] have
this dependence as well, and on general grounds must
have the form

Lmeson [z cl] + LYukawa[&cl]

= —M,(+ zM, )X +2',)TrA A+ . . (3.5)

Since Pr, ( vN, it follows that M, ~ and X,~ scale like
N„just like Mb „and Xb „.The ellipsis in Eq. (3.5)
indicates terms suppressed in the 1/N, expansion, such

+L „„[~.)] g LY„~ [Pr,)]), (3.4)

ignoring seagulls for simplicity as stated above. Our
progress to this point has been that the path integra-
tion over the Geld-theoretic variable m has been carried
out in semiclassical approximation. This simply means
replacing Pr by z, ~ everywhere in (3.4), the justification
being that 1/N always appears in the combination 5/N
as highlighted earlier.

In this particular instance the suppression of Z graphs is
even greater than that discussed in Sec. II E above; shrinking
a V-spinor propagator to a point here results in a meson loop,
which itself is 1/1V, suppressed [see Fig. 2(d)].

The third term on the right-hand side, taken together
with the identity (2.4), establishes for a/1 leading-order baryon
self-energy and baryon-meson vertex corrections, and for any
value of the pion mass, the self-consistency of the hyper-
fine baryon mass splittings originally noted by Jenkins for
the simplest such graph in the chiral limit [27]. As for the
first two terms on the right-hand side, the fact that the
same M, ~ appears twice, with a relative weighting of —~X. ,
follows trivially from Lorentz invariance (as Jim Hughes
has reininded us). So long as the Lagrangian density is a
Lorentz scalar, meaning that Z(x) -+ Z(x') as x ~ x',
then L(t)—:f d xl:(x) -+ f d xZ( )=xgl —XsL(t')

[1 —1Xz + 0(X )]L(t'), where 1(r/1 —X2 is the change-of-
frames 3acobian. One cannot ignore the Lorentz contraction
of the cloud, as the two masses would then be unequal.
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as XA cross terms.
The lesson of Eq. (3.5) is that the classical meson cloud

m, ~ (likewise p, ~, u, ~, cr,~, etc.) gives a form-preserving
and leading ord-er correction to the "bare" baryon ex-
pressions (2.3)—(2.5), so that efFectively

+ 2~ ~t t++ ~t t

3g~NN~s&at ' +~ (x)] (3.1O)

ties M, l and Z, l are explicitly given by

J
Mbare

J(J ~1)' Mren Mren +
ren

3.6) and

where the renormalized baryon mass and moment of in-
ertia are simply the sums~6

2 3 ~2
Xcl 3 d X+t t (3.11)

Mren Mbare + Mcl& ~ren +bare + +cl

C. Hedgehog meson clouds

(3.7)
What does vr, t t look like. An important hint is that

the index a exists in isospace on the left-hand side and
ordinary space on the right-hand side of Eq. (3.8). There-
fore, as in the Skyrme model, the solution can generically
be found in the maximally symmetric "hedgehog ansatz, "

We now examine more carefully the structure of the
classical meson cloud. Once again a helpful example is
the "pions-only" Lagrangian (3.1). A simpler recasting
of the Euler-Lagrange equation (3.2) comes from nailing
the baryon's center of mass at the origin and its (iso) spin
orientation at the north pole, X(t) = 0 and A(t) = 1, in
which case (3.2) becomes [9]

KQ +m -. y +

vr. ,(x, t) = D(', ) (A(t'))vr.', ,(x') (3.9)

(—~2 ™~)vr„~,(x) + ~
= 3g~~"tv ~b' (x) . (3.8)

Vrstat X

The solution is termed the "static pion cloud" vr, t t(x),
whereupon vr, l is approximated by

(a)

y
y

up to I/N, corrections, the primes denoting the baryon's
center-of-mass kame as always. So it will suKce to fo-
cus on Eq. (3.8) rather than the more complicated time-
dependent equation (3.2). In terms of vr, t t, the quanti-

To prove that such terms are suppressed one needs to an-
ticipate the 6ndings of Sec. III C below, and check that when
the classical meson 6elds are precisely hedgehogs the cross
terms vanish by symmetry upon spatial integration. They
are only nonvanishing to the extent that the cloud deviates
from the hedgehog ansatz, which it does at a higher order in
1/N, [6,35].

This contrasts with the quantum corrections to the mass
of the Skyrmion, which are only O(1V ). This is because the
Skyrmion, unlike the "bare" nucleon, is the solution to an
Euler-Lagrange equation.

The reader might be confused about the present de6nition
of mass renormalization, versus the use of a conventional mass
counterterm bM = Mb, —M„„. In fact, they are the same
thing. By definition, bM must be tuned to cancel the shift
in the pole of the propagator away from M, „ induced by the
interactions with the mesons. Since the nonrelativistic propa-
gator i/(ko —M+ie) Fourier transforms to 8(At)e ' ', this
simply means that —ibM&t must cancel the meson cloud con-
tribution —iM, ~At to the efFective action. But this condition
bM = —M, & is just a rewrite of Eq. (3.7). Q.E.D.

(c)

FIG. 7. (a) The left-hand side of Eq. (3.5), formed from
Eqs. (2.8) and (3.1), in the graphical language of Fig. 5. The
third summand stands for the sum of all the vertices in the po-
tential V(vr ~). Varying (a) with respect to vr, & gives Eq. (3.2).
(b) Born-series rewrite of (a) using the expansion shown in
Fig. 5, with combinatoric factors suppressed. (c) The mean-
ing of (b) as baryon self-energy and meson-baryon vertex cor-
rections, interpreted in the original Feynman-diagrammatic
language of Fig. 2. These corrections, shown to the right of
the baryon line, need to be inserted in all possible locations
up this line, as dictated by Eq. (3.3).
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which equates these two spaces [9]:

~„., (x) = x—I'(r),
2

(3.12)

p .t(x) = f-e'-»"&(r)
p.,'.,(x) =0, 0.„.,(x) = f II(r),
~:...(x) = 0, ~.'.,(x) = f.Z(r), etc. ,

(3.13)

where i and a label spin and isospin, respectively. Since
f gN, has been factored out explicitly, the profiles
E, G, H, and K each scale like N, . In general they
obey model-dependent coupled nonlinear radial ordinary
differential equations.

where r = ~x~ and x = x/r. In turn, the cloud profile
I'(r) solves a model-dependent nonlinear ordinary difFer-
ential equation in the radial coordinate r, obtained by
plugging (3.12) into (3.8).

Even if additional mesons are incorporated as per
Eq. (2.11), the coupled static equations (one for each
meson species) are still solved in the hedgehog ansatz,
suitably generalized in the manner familiar Rom vector-
meson-augmented Skyrme models [31,36]:

vicinity of its rest kame even after an arbitrary number
of interactions with the mesons. In fact, if instead one
were to permit meson momenta of order N„ in particular
above the NN threshold, it is plausible that the entire
efFective Lagrangian approach breaks down (see Ref. [8],
Sec. 8.3).

The simplest fix, with interesting consequences as we
shall see, is to smear out the b function in some manner,

8 (x) : 4(x) (3.15)

over a length scale A . While details of this regulator
should not matter for sufBciently large A, we will nev-
ertheless insist that h&(x) be spherically symmetric, so
that the hedgehog ansatz remains valid even for finite A,
an enormous technical simplification.

Now suitably regulated, Eq. (3.8) (returning to the
pious-only example) is easily solved numerically for I"(r).
The solution is shown schematically in Fig. 8. For r well
inside the classical cloud, whose radius is determined by
the parameters of V, the behavior of E(r) is highly model
dependent. But for r )) m i Eq. (3.8) linearizes, and one
finds

D. Ultraviolet divergences and the large-N,
renormalization group

3g N~ (1—+ e
27rf gr' r )

(3.16)

The above discussion contains something of a cheat:
as written, Eq. (3.8) only admits a mathematically well-
defined solution in the free-pion case V(Pr)—:0, in which
case obviously

(3.14)

For nonvanishing V, the lack of a solution to this non-
linear equation is due to the exact pointlike nature of
the b-function source. ~ So, too, the cloud parameters
M, i and 2', i introduced in Eq. (3.5) are actually ill de-
fined, diverging in the ultraviolet. An ultraviolet cutoff
is required. This should come as no surprise: in most
hadron models the need for such a cutoff arises as early
in the discussion as the first loop correction in the original
Feynman graphs [e.g. , Figs. 2(b) —2(c)]. But even if one
were to concoct a meson model &ee of this type of diver-
gence at the level of the original graphs, a cutoff A N
on the meson momenta would still be required for the
self-consistency of the subsequent formalism; specifically,
one needs to ensure that the baryon always stays in the

which follows from (3.12) and (3.14). Notice the new
parameter g'NN which measures the height of the expo-
nential tail. While its precise numerical value depends
sensitively on the choices of V(m) and A, its physical in-
terpretation as the renormalized pion-nucleon pseudovec-
tor coupling constant is pleasingly model independent.
To our knowledge this identification was first made in
Sec. 4 of Adkins, Nappi, and Witten [2], and has re-
cently been confirmed in Ref. [6] with a careful analysis

model-dependent region

model-independent
linearized region

This arcane technical point about the lack of a well-defined
solution is confirmed in the explicit examples of Secs. V—VIII
below, as the reader can verify by imagining the following
exercise. Hold g"&~ fixed (instead of g"~& as in the large-
N renormalization group) while taking the ultraviolet cutofF
A ~ oo, and confirm that in so doing m, t, ~ has either a sin-
gular limit or no limit at all.

FIG. 8. Typical hedgehog profile E(r). In the larger-
regime, all the complicated dependence on the meson poten-
tial V(vr) and on the form of the regulator bA(r) has been
reduced to the single parameter g'NN which measures the
height of the tail.
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of the Lehmann-Symanzik-Zimmermann (LSZ) amputa-
tion procedure. ~s The behavior (3.16) is equally valid in
the chiral limit:

3gren
(massless pions) .' 2%.r' (3.17)

In summary, for any given choice of Ineson La-
grangian, we have described an explicit numerical pro-
cedure, Eqs. (3.7) and (3.16), for extracting the physical,
renormalized parameters M„n, 2, „, and g'~~ as func-
tions of the Lagrangian input quantities Mb, , Zb „,and
g ~~ as well as the UV cutoB A. Alternatively, one
might wish to fix M„„,X„,and g"NN, say to their ex-
perimental values

I'"+ F—' — I—l = 6f 'g NN(A) —b~(~) . (4.2)

This being a linear equation, it is trivially solved using
the method of Green's functions:

G(r, r') = — 2, r& ——min(r, r'j, r& —— ma x(r, r'j .
3p)

I'(r) = 6f 'g NN(A) dr'r' G(r, r'), b~(r'),
0 DT

(4.3)

where the massless Green's function that is well behaved
at both r = 0 and r = oo is

3
Mren +:M~ = 939 MeV,

8&ren

15M„n+—:M~ = 1232 MeV,
S~ren

(3.1Sa)

(3.1sb)

(4.4)

The renormalized Yukawa coupling g"~~ is extracted
from the large-distance behavior of I" as per Eq. (3.17).
With the mild (and relaxable) assumption that bt, (r')
has compact support, Eqs. (4.3) and (4.4) imply

13.5
ANN (3.1Sc)

and then solve implicitly for Mbe„(A), 2'be„(A), and
g"N'N(A). This latter approach seems the most reason-
able to us, and will be our philosophy &om now on.
We call this novel program the large-N renormalization
group, and devote the remainder of this paper to explor-
ing its solutions in a variety of illustrative models.

g( )
ymNN( ) d I l2g ( I) gmNN( )

e-+~ f r2 o 2vrf r2

(4 5)

We have made use of an integration by parts, plus the
requirement that the volume of b~ be normalized to unity
(regardless of other details of this smearing function).
Comparing Eqs. (4.5) and (3.17), we deduce

IV. FREE-PION LAGRANGIAN AND ITS
CONTINUUM LIMIT

Our first example consists simply of &ee massless pi-
OIlS)

~meson =
2 (~@~) (4.1)

coupled derivatively to the I = J baryon tower as per
Eq. (2.8). In the hedgehog ansatz (3.12), the static Euler-
Lagrange equation (3.8) becomes

gmNN (A) ymNN (4.6)

for all A, admittedly not a surprising result for &ee Geld
theory, but a reassuring sanity check on our formalism.

This lack of any Bow is consistent with what might be
termed an "exact" Cheshire cat picture [15,13j (recall-
ing the discussion in Sec. I). In truth, this is the only
model we have found where this perfect equality holds.
For example, the mildest conceivable modiGcation to the
Lagrangian (4.1) is to add a pion mass term. In that case
the Green's function is, instead,

While both these references discuss this particular issue
in the context of the Skyrme model, the reader can verify
that the conclusions are equally valid for effective Lagrangian
models such as concern us here, with explicit baryon sources.
It should come as no surprise that the LSZ residue is sensitive
only to the asymptotic behavior (3.16), as this is a well-known
property of Fourier transforms. The fact that the renormal-
ized coupling is still pseudovector, like the bare coupling, is
simply because the Fourier transform of a hedgehog is neces-
sarily proportional to q. The only subtle feature is this [6]:
the existence of a LSZ pole precisely on the pion mass shell
depends crucially on a smail quadrupole [35] deviation of the
Skyrmion (or, in the present context, meson cloud) away from
the hedgehog ansatz, induced by the baryon's (iso)rotations.
This distortion is one of the 1/¹ corrections dropped in
Eq. (3.9), as it is tangential to our present purposes.

G(r, r') = 1 (1
2m'

—
I

—+

(4.7)

which properly reduces to (4.4) as m, -+ 0, and (4.6) is
amended slightly to

gmNN(A) [1 + O(~mlA )1ANN (4 8)

In either variation, massless or massive, the continuum
limit A —+ oo can be safely taken, and the "ultraviolet
Gxed point" that emerges is just what one started with:
a theory of &ee pions derivatively coupled to the baryon
tower. This is entirely expected, since as mentioned ear-
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lier V(vr) = 0 is the only case in which Eq. (3.8) as writ-
ten already has a bona fide solution, namely, Eq. (3.14),
and there is no actual need to smear out the 6-function
source. We now turn to more interesting examples where
these statements no longer hold, and where the break-
down of the "exact" Cheshire cat picture is much more
severe than Eq. (4.8).

V. THE NONLINEAR cr MODEL AND ITS LACK
OF CONTINUUM LIMIT

For our second example, consider the nonlinear 0.

model for pions,

entire one-parameter family of curves related by dilata-
tions, Fg(r) ~ Fr(Ar), thanks to the scale invariance of
Eq. (5.5). For any specified value of the cutoff A, the
scale parameter A needs to be tuned so that Ei(A ) =
Fii(A ). Note that Ei, unlike Eii, attains a inaximum
value E&~~ ——0.58m before dropping back down towards
m/2.

Let us discuss the qualitative behavior of the large-
N renormalization group as the cutofF increases kom
zero. In the infrared regime A (( (f~/g"NN) /, the
fiow of gbNN(A) necessarily approaches the free massless
pion case, Eq. (4.6). This is simply because the patched-
together profile E(r) is sinall everywhere, in which case
Eq. (5.2) reduces to Eq. (4.2) up to O(Es) corrections.

2„„=—TrB„U 8"U, U = exp(2iPr 7/f ), (5.1)16

again augmented by the bare Yukawa coupling (2.8). The
static Euler-Lagrange equation (3.8) now works out to

F"+ F' ———sin2E = 6f 'g NN(A) bA(r) —. (5.2)r r2 Br

Solving this nonlinear equation for E(r) requires that we
specify a smearing of the source. For convenience, we
follow Ref. [17], and choose a radial step function

Fii(~)

5 ~

3

2

(5.3) 0. 5 1.5 2. 5

which is properly normalized to unit volume. The tech-
nical advantage, which we exploit presently, is that the
right-hand side of Eq. (5.2) is now proportional to a true
b function, since

(a)

8 3As—bA(r) = — b(r —A ) .
Br 4m

There is also a conceptual advantage: the right-hand side
of (5.4) means that the baryon and meson degrees of
&eedom only interact at the "bag radius" A, which
sharpens the analogy to the traditional chiral bag [10—13].

With this convenient choice of regulator, the prescrip-
tion for satisfying Eq. (5.2) is transparent: First solve
the homogeneous version of Eq. (5.2), namely,

1.5
1.25

0.75

0.5

0.25

Region B

E + —E ——sin2E = 0,II I ~

r r2

NN (A) = s~f-A '[Er'(A ') —Er'i(A ')] (5.6)

This three-step graphical procedure is illustrated in
Fig. 9. The curves Fii(r) and Ei(r) are displayed in
Figs. 9(a) and 9(b), respectively. The curve Pyi(r) is
uniquely specified by g'~~ through the asymptotic for-
mula (3.17). In contrast, Ei(r) actually stands for an

for r ( A ("region I") and for r ) A ("region II")
subject to the boundary condition (3.17); next, match
the solutions in these two regions, Pi(r) and Eii(r), at
the point r = A i; and finally read off gbNN(A) &om
the slope discontinuity:

FIG. 9. Construction of the patched-together cloud
F(r) = 8(A —r)Fi(r) + e(r —A )Fii(r) for the model
of Sec. V. (a) The curve Fii(r), which is uniquely specified
by the asymptotic form Eq. (3.17). The x axis is in units
of the O(N, ) length (3g~NN/2mf ) . Fii(r) blows up like
1/r for small r. (b) The curve Fi(r). The cross indicates the
curve's maximum, Fi " = 0.58vr. [We have also marked by
a cross in (a) the point where Fii(r) = Fi " which defines
the critical scale r = A2 discussed in the text. ] In region
A its slope is positive and in region B it is negative; eventu-
ally the curve asymptotes to x/2. The scale of the x axis is
purposefully not displayed, because this curve stands for the
entire one-parameter family of curves related by dilatations
Fi(r) -+ Fi(Ar). For any given value of the cutofF A, this A is
to be adjusted so that Fi(A ) = F»(A ).
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This is precisely the regime studied recently by Manohar
[17], who correctly reproduced the O(m ) nonanalytic
correction to the baryon mass familiar &om one-loop chi-
ral perturbation theory.

But the behavior of the renormalization group for
higher A quickly diverges kom the &ee-pions example.
Notice that as A passes a first critical value Ai [the point
where Fii(Ai ) = n'/2] a second disconiiected solution
to Eq. (5.2) emerges, in which Fii intersects Fi, not in
the branch of the curve labeled "region A" but rather
in "region B." The 8ow in this branch is still dictated
by Eq. (5.6), but since for any given A the value of
Fi(A i) diff'ers between the two branches the solutions
are distinct. As A increases further, these two branches
of gb~~(A) gradually approach one another, until at a
new critical value A2, defined by Fii(A2 ) = Fi ", they
coalesce. This latter scale is indicated by a cross in Fig. 9.
From Fig. 9(a) one reads off Ai = 0 75(3g. "~~/2vr f )
and A2 = 0 68(3g".N~/27rf ) ~, or in conventional
units

310 MeV, A2 —340 MeV, (5.7)

using the physical values (3.18). We calculate
g aviv(A2) = 0 43g"~~. Cruci.ally, for A ) A2, if one
insists that Fi(0) = 0, then there is no way to match Fi
with Fii, and hence no solution to Eq. (5.2).

Thus we have exhibited two "phases" of the model
(for want of a better term), the first being defined for
A E [O, A2], and the second only for A E [Ai, A2]. The
critical "bag radius" A2 —0.6 fm is the UV scale be-
yond which the "chiral bag" cannot be formed from the
two-derivative pion action (5.1) alone; higher-derivative
terms must be added. Evidently this breakdown owes
nothing to soft-pion arguments as one is accustomed to,
but follows solely &om large-N reasoning.

To be honest, for A ) A2, one can patch together a
solution —if one allows the cloud to have nonzero wind-
ing number [cf. Eq. (6.5a) below]. For example, there are
four "phases" of the model with winding number unity,
which are constructed as follows. Leave Fii(r) the same
as above, but let Fi(r) -+ Fi(r) + x, exploiting a discrete
syinmetry of Eq. (5.2). There are two such solutions,
again depending on whether the intersection takes place
in "region A" or in "region B." The two remaining so-
lutions are generated, instead, by the discrete symmetry
Fi(r) ~ —Fi(r) + vr. Likewise there are four phases of
the model for any positive winding number n, generated
by F&(r) ~ +F1(r) + nor. Each such phase exists only
for a finite interval in the cutoff A. In particular, un-

Technically speaking, the two independent branches of
g aviv(A), which have coalesced at A2, leave the real axis and
bifurcate into complex conjugate pairs for A ) Az.

We suspect that these higher-winding-number clouds may
be, like the hedgehog Skyrmion in the B = 2 sector [1,37],
unstable to small deformations in the cloud away from the
hedgehog ansatz, but we have not looked for any such defor-
mations, either in the present model or in the ones to follow.

E[U.., ., I
= —"f d~x TrB,U~, ,B,U„, , (5.8)

rather than being stationary, can actually be lowered ar-
bitrarily by a homogeneous rescaling

Ustat(x): &stat (&x), &[&stat]
1
D, &[U.tat] i

(5.9)

therefore no such solution can exist. There are several
known ways to modify the nonlinear o model to prevent
such a "Derrick collapse. " One way, which we examine
in the following section, is simply to reduce the dimen-
sionality of space &om D = 3 to the "critical dimension"
D = 2, as Eq. (5.9) suggests. As a bonus, the resulting
toy model turns out to be analytically soluble. Alter-

This point was apparently missed by Gervais and Sakita
[14], whose Eqs. (5.19) and (5.20) admit no solution.

like the &ee-pions example, here there is no phase within
which one can take the continuum limit A —+ oo. In other
words, this model Lacks an ultraviolet fixed point.

Of course, there is no reason whatsoever that an effec-
tive Geld theory need have a continuum limit. It would
be perfectly reasonable to fix A at a finite value less than
A2 where the "chiral bag" still makes sense, and to cal-
culate, for example, the static properties of this hybrid
nucleon, in the manner of Adkins, Nappi, and Witten
[2]. Nevertheless, it is instructive to pose the question:
In a generic theory, if the continuum limit can in fact be
taken, what type of UV fixed point might one expect? In
the free-meson examples of Sec. IV, g ~iv(A) runs to a fi-
nite, nonzero value as A —+ oo. But this behavior must be
the exception rather than the rule. For a nonzero limiting
value of gbN'iv(A) suggests that a solution to Eq. (3.8) ex-
ists even for a nonvanishing right-hand side with an exact
b-function source. Except for the &ee-meson case V:—0,
we have yet to discover a differential equation where this
is possible. Instead, it is far more plausible that g"~~(A)
is the coupling constant of an "irrelevant operator, " and
vanishes in the ultraviolet [as suggested by the factor of
A on the right-hand side of Eq. (5.6)]. The resulting
continuum theory would then be completely independent
of the baryonic degrees of freedom, an interesting exam-
ple of "universality" [4]. In this event, Eq. (3.8) admits a
solution if (and only if'?) the meson Lagrangian supports
a nontrivial configuration in the absence of a baryonic
source, meaning a soliton or Skyrmion, either topologi-
cal or energetic.

Viewed in this light, it is no surprise that the non-
linear o model coupled to the baryon tower has no UV
limit, as we have just learned. Plausibly, this is because
Eq. (5.1) does not by itself support a Skyrmion. The rea-
son is Derrick's famous "no go" theorem (a variant of the
virial theorem) [18]: if one posits a static Euler-Lagrange
solution U, t t(x), then the energy functional



52 FROM EFFECTIVE LAGRANGIANS, TO CHIRAL BAGS, TO. . . 2905

natively, and more physically, in Secs. VII and VIII we
will augment the Lagrangian (5.1) by the four-derivative
"Skyrme term, " and explore the interesting, and unex-
pected, consequences.

versus

2 2 E
(6.4b)

VI. AN EXACTLY SOLUBLE
(2+ 1)-DIMENSIONAL MODEL WITH A

NONTRIVIAL UV FIXED POINT

respectively. But there is a major difference in the wind-
ing number formulas between the two models:

F' san E 1
w3D[s] = —f~s. , = —[p[0) —s[oo]] (6.58)

U = 'llp+2H 7, zip+ ll = 1, 7l = —ll (6 1)

in terms of which the nonlinear o xnodel Lagrangian (5.1)
is simply

Motivated by the above discussion, we would like to
construct a (2+ 1)-dimensional model which parallels as
closely as possible the nonlinear o model of the previous
section. To make the analogy as plain as possible, it
is helpful to recall an alternate parametrization of the
pion field to that given in Eq. (5.1). Rather than U =
exp(2ivr r/f ), take

versus

E' sin E
W2D [E] = — d x = —

2 [cos E(0) —cos E(oo) ] .
4vrr

(6.5b)

In other words, whereas in three spatial dimensions the
hedgehog ansatz is broad enough to encompass all integer
winding numbers, the same is not true in two dimensions
where winding number is restricted to the three values

{—1, 0, +I) as follows &om Eq. (6.5b).24 This caveat is
irrelevant for present purposes, and so we press on.

There is a well-known rewrite of the O(3) model in
terms of the "conformal variables" [39]

nl + in2 —= nl —in2
) tU=1+np 1+ np

(6.6)

(6.2a)

The natural (2 + 1)-dimensional analogue is then22

(6.2b)

np+n~+ n2 —1 .2 2 2

(up, u) = (cosE(r), x sinE(r)), (6.3a)

will prove equally applicable to the lower-dimensional
model:

(np, n) = (cosE(r), x sinE(r)) . (6.3b)

Evaluated on these ansatze, the Hamiltonians are quite
similar:

2 2E
(6.4a)

The mesonic sector of this toy model is a simplified version
of the "baby Skyrme xnodel" of Ref. [38].

Just as the choice of vacuum (up, ix) = (1 0) sponta-
neously breaks the O(4) chiral symmetry of (6.2a) down
to isospin O(3), so too the vacuum choice (np, n)
(1,0, 0) in (6.2b) breaks "chiral" O(3) down to "isospin"
O(2).

The hedgehog ansatz for the pion cloud,

These variables (canonically rescaled by a factor of f/2)
are closer in spirit to the "old" pion representation (5.1),
in that there are no extraneous fields such as up or np
that need to be eliminated with a spherical constraint.
Paralleling the previous section, we will therefore use the
ur's, not the n's, in constructing the Yukawa coupling.

Next we turn to the baryons. The obvious "toy" ana-
logue of the I = J tower is an infinite sequence of states

~
v) that transforxn as (v, v), v = j2, 6 2, + 2, . . ., under
"isospin" O(2)=U(1) and spatial U(1) rotations in the
x-y plane. A spin x isospin invariant Yukawa coupling
in the baryon rest kame then has the form

f Bxp

2 Bz
1 3m=+ 2,+2, ...

g„~v + 1)(v] + H.c. (6.7)

Winding number is given, respectively, by R'
—(1/24' ) f d x s,~],TrT, T~Tq in three dimensions, where

T, = UtB, U, and W = (I/8vr) f d xe„„n B„n x O„n in two
dimensions, where n means (no, nx, ns).

A mild extension of the hedgehog ansatz (6.3b) covers the
sectors with winding number n; rewrite x as (cos 8, sin 8) and
replace this by (cosn8, sin n8) instead.

Here the g are arbitrary complex constants, z = x +
iy, and the operator ]v + 1) (v~ simply means that the
difFerence of the U(1) (iso) spin charges between the initial
and Gnal baryons must be unity.

An intelligent way to generate such a coupling is to
work in the collective coordinate basis ~8), [9 EU(1), anal-
ogous to ~A) in 3+1 dimensions. The baryon Lagrangian
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analogous to (2.3) is

20 1 2 1 2
~baryon Mbare + 2Mbarex + 2+bare~ (6.8)

8(t&)=8&

178(t) exp
~

i Ch( —Mb „+zZj, „9 ) ~

8(t1)=81 )

1 3
(02~v)e '(" "&M"-.(v~8x) (6.9)

the last term representing free motion on the U(1) mani-
fold. Another of Schulman's path integral identities [32],

This follows straightforwardly from (6.4b), (6.11), and
(6.13), plus an obvious transcription of the b-function
regulator (5.3) to two dimensions.

After this long build-up, we remind the reader of the
original motivation behind this toy model: by recasting
the nonlinear o model in two spatial dimensions, we have
side-stepped Derrick's theorem, and increased the likeli-
hood of finding a nontrivial UV fixed point to the large-
N renormalization group equations. We will verify this
presently. But already our e8'orts have yielded a bonus:
unlike Eq. (5.5), the homogeneous variant of Eq. (6.14),
namely,

with
E + —E — sin2E = 0,II I ~

r 2r2 (6.15)

V2

Mbare Mbare +
2~bare

and (v]9) = e'"s, (6.10)

equates such motion with the propagation of an infinite
tower of energy eigenstates ~v), just like Eqs. (2.4)—(2.6)
for SU(2). The Yukawa coupling analogous to (2.8) is
then

—,'gb „f,e ' i')h'(x') +H.c. ,
19z

(6.11)

the primed space-time variables referring to the center-
of-mass frame of the moving baryon as in Sec. II. Note
that Eq. (6.11) is a special case of Eq. (6.7), with all the
g„'s equated to a single underlying Yukawa constant gb,
[to see this, copy the steps in Eq. (2.10)], This feature
too is just like the higher-dimensional example: recall
the proportionality rule (v) reviewed in Sec. IIA, and
exnbodied in the matrix elements (2.10).

We have assembled all the ingredients necessary to
write down the classical Euler-Lagrange equation for the
meson cloud. The solution, tu ~, automatically sums up
all contributions to one-meson absorption or emission
&om the baryon source, to leading order in the semi-
classical expansion. In solving for m, ~, it is convenient
as always to boost &om the lab &arne to the body-
fixed frame of the translating, (iso)rotating, Lorentz-
contracting baryon:

can be solved analytically. Indeed, switching indepen-
dent variables to lnr transforms this into the sine-Gordon
equation, the solutions to which are the "baby (anti-)
Skyrmions"

E(r) = 2 arctan pxr or m —2 arctaxi pxxr (6.16)

where pp and @pe are arbitrary scale constants.
Figure 10 displays the patched-together solution to

Eq. (6.14). In region II (r ) A i) we choose the solution
that decays to zero, Eix(r) = vr —2 arctan pxxr, and fxx

pxx by normalizing the large-r fallofF to g„„/(2m fr):

PII =
gren

(6.17)

2
grenVx=

4
(6.18)

The running of gb „is instantly read oK from the slope
discontinuity in Eq. (6.14):

EAg,.(A) =
A,

cos' [E,'(A ') —E,', (A ')]
gren

[1+ (Ag„„/4mf)2]z
(6.19)

As before, g„„ is the renormalized Yukawa constant of
the xnodel. zs Next, pick Ex(r) = 2 arctan pxr in region I
(r ( A ). Matching Ei to Eix at r = A i implies

to,x(x, t) = e' l' )to,t t(x') . (6.12) As anticipated, gb „(A) approaches g„„in the infrared,

In turn, the static xneson cloud to,t t(x) finds a solution
in the hedgehog ansatz, composed from (6.3b) and (6.6):

z E(r)~...,(x) = —tan, r = ~zz .r 2

Finally, the profile E(r) obeys

E + —E — sin 2Eil

r 2r2

gb- (A) 2E(r) &
( )

A2gb „(A) z E(A )
(srf 2

(6.13)

(6.14)

These (anti-)solitons in 2+ 1 dimensions are also the weli-
»own 0(3) (anti-)instantons in two Euclidean dimensions
[39].

The "N," scalings are g„„~f ~ gN in analogy with
the (3+ 1)-dixnensional case. Although in this model 1V, is
no longer identi6ed with the number of colors, it still usefully
parametrizes the semiclassical expansion. To get the factors
of vr, etc. , right in the de6nition of g„„, it sufBces to solve
with a Green's function (cf. Sec. IV) the linearized version of
(6.14), F"+ F'/r —F/r = (g„„/f)b/, (r), appropriate to the
weak-6eld regime I" &( 1. Alternatively, one can extract the
LSZ residue of the meson-mass-shell pole as per Ref. [6].
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0.5.

0 3 ~

~meson = ~skyrme

1
16

= —Trg UtB"U+ Tr[UtB U, UtB„U]
32e

(7.1)

0. 2

0.1.

10

FIG. 10. The patched-together solution to Eq. (6.14),
namely, I"(r) = 2 tan (A r)8(A —r) + (7r —2 tan P )
8(r — A ), where the dimensionless variables are
r = 4s fr/g„„and A = g„„A/47r f Show. n is the curve for
A-' =4.

while vanishing rapidly ( A 4) in the ultraviolet.
Note that for any finite value of the cutofF, baryon

number in this model is measured in the mundane way,
by the fermion number operator. Furthermore, the wind-
ing number (6.5b) of the patched-together meson cloud
is zero, since F(0) = E(oo) = 0. But at infinite A the
picture looks very difFerent: the baryons have entirely
decoupled &om the mesons thanks to (6.19), while the
envelope of the sequence of meson clouds with increasing
A is obviously a soliton or Skyrmion with winding num-
ber unity, namely, I"(r)—:Fyi(r). In this sense, baryon
number can be said to have transmuted to winding num-
ber at infinite A. And in sharp contrast to the previous
section the UV fixed point of our toy "chiral bag" model
exists and is nontrivial: a "baby Skyrmion" model.

As a more sophisticated alternative, one may choose
to define baryon number density as the sum of the usual
explicit fermion number density and the winding num-
ber density, which is more in the spirit of Refs. [11,12].
For small A, winding number density is negligible ev-
erywhere; the mundane definition is recaptured, and is
entirely concentrated inside the bag, r & A . But for
large A the situation is reversed: explicit fermion number
density is screened by negative winding number density
inside the bag, and the bulk of the baryon number is car-
ried, in the form of winding number, by the meson cloud
outside the bag. In the strict continuum limit, the bag
is gone altogether, and only winding number remains.
This is a greatly simplified variant (with nonrelativistic
nucleons, rather than spectrally flowing valence and sea
quarks) of the scenario put forward by Goldstone and
Jaffe [12].

We now exit toyland, return to 3+ 1 dimensions, aug-
ment the nonlinear 0 model (5.1) by the well-known
"Skyrme term" to overcome Derrick's theorem, and ex-
amine under what circumstances the statements of the
preceding paragraph can, or cannot, be made.

We continue to assume that the pions are coupled to the
I = J tower of explicit baryon fields through Eq. (2.8).
Since the two terms in (7.1) scale oppositely under dilata-
tions (5.9), Derrick's theorem is avoided, and Zsky,
supports a soliton: the original hedgehog Skyrmion
(Fig. 11). In their Skyrme-model treatment, Adkins,
Nappi, and Witten take f = 129 MeV (vs 186 MeV
experimentally) and es = 5.45 in order to fit the nucleon
and A masses [2]. In the present non-Skyrme-model ap-
proach, with explicit nucleons and Feynman diagrams
rather than topology, our above-stated philosophy sug-
gests instead that we peg these parameters to their exper-
imental values (although es is not very well determined
by arm scattering). However, since our present aims are
formal rather than phenomenological, it is actually best
to leave them unspecified. What we do care about are
their N, assignments:

2 1f
es

(7.2)

2. 5

1.5

0. 5 ~

Thus N /5 factors out of the action, which justifies our
usual semiclassical manipulations.

Given that the Lagrangian (7.1), like the toy model
(6.2b), supports a soliton, what might we guess about
the large-N, renormalization group (RG)? Reasoning by
analogy with the preceding section, we might expect
g ~~(A) to vanish in the continuum limit, with the
Skyrmion emerging as the UV fixed point of the fam-
ily of meson-baryon "chiral bag" models. But this naive
Scenario cannot generally be right.

To see why not, let us return to a discussion &om
Sec. ID, and think about what does, and does not,
Qow in our program. What fiow are the bare baryon
mass and hyperfine mass splitting parameters Mb „(A)
and Zb „(A), as well as the bare Yukawa couplings
gbiv~(A), gbiv'~(A), etc. What do not fiow are the purely

VII. THE SKYRME LAGRANGIAN, WITH THE
ADKINS-NAPPI-WITTEN VALUE OF g ~~

10

Finally, and most physically, we take for the pion piece
of the action the massless Skyrme Lagrangian [1,2]:

FIG. 11. The original Skyrmion [1,2]. The a axis is in
O(N, ) length units (es f„)
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( 8 sin E~ „2, sin 2E /' 4 sin E 4E'2 )1+ El 1+ Ef
esf~r ) r r ( esf~r esf~)

gmNN( ) P( A
—i) (7 4)

2Ã

FIG. 12. (a) A generic bare three-meson vertex. (b) and (c)
Radiative corrections to the vertex, both of which are down by
I/N compared to (a), thanks to selection rule (i) in Sec. II A.
Hence, unlike Yukawa couplings, purely mesonic vertices do
not run in the large-N renormalization group at leading or-
der. It is therefore reasonable to 6x the bare mesonic param-
eters to the experimental data at the outset.

mesonic Lagrangian couplings [f and es in Eq. (7.1),
f in Eq. (6.2b), and so forth; see Fig. 12 for a discus-
sion], as well as the renorrnalized parameters M„„,X„„,
g'NN, etc. These latter quantities, then, are indepen-
dent variables at our disposal in the efFective I agrangian
approach, and remain so even at the supposed end point
of the large-N renormalization group fIow. Now con-
trast this to the Skyrmion approach. Assume that f
and es have been specified once and for all, and look
again at the resulting Skyrmion, Fig. 11. Notice that
g'NN, rather than being an additional tunable parame-
ter as we have just argued, is instead fixed by Eq. (3.17)
in terms of these meson parameters, as originally shown
by Adkins, Nappi, and Witten [2]:

ren ANW r
~7rNN = ~mNN 2 ges

(7.3)

The puzzle can now be stated very clearly: If the Skyrme
model is in fact connected to an efFective Lagrangian
model by RG fIow, then where, why, and how has the
supposedly tunable Yukawa degree of freedom in the lat-
ter disappeared. 7

The complete resolution of this paradox is the topic
of this section and the next, and goes as follows. When
g'NN is tuned to g NN precisely, then the Skyrme model
does indeed emerge as the UV fixed point of the "chiral
bag" models, just as in Sec. VI. But for all other choices of
g'NN, the physics is closer to that of Sec. V: the large-N
renormalization group only makes sense up to a critical
value of the cutofF A„;q, and admits no continuum limit—
neither the Skyrme model nor anything else.

We now fIesh this out explicitly. In the hedgehog
ansatz (3.12), the Euler-Lagrange equation (3.8) implied
by (7.1) reads

We have again adopted the regulator (5.3). As above, we
construct solutions Ei(r) and Eii(r) to the homogeneous
variant

8sin E) „21+ Erlf + El
e2sf2r2 ) r

sin2E ( 4 sin E
r2

q
e2 f2r2I

I+ 4E"). , I=o, (75)e', .')
match them up at r = A, and extract the running of
g NN &om the slope discontinuity:

gmNN (A)
2vrf f 8A sin E(A ) t

9A' q esfl
1+

[E'(A-') —E' (A-')] (7 6)

Ez(A ')- c2A~

es
(7.8)

Fi(~) ':
2-

0 5 ~

For the remainder of this section, we focus on the
"measure zero" case when g"NN is pegged to its Adkins-
Nappi-Witten value (7.3). In that event Eii(r)
Esker, ,(r), the Skyrmion profile of Fig. 11. For Ei(r),
we take the family of solutions to Eq. (7.5) that start
at the origin and have increasing slope as A itself is in-
creased (Fig. 13).

We can now evaluate Eq. (7.6). For small r, the
Skyrmion profile may be Taylor expanded:

Espy, .(r) = ir —ciesf r+O((esf r) ) . (7.7)

Therefore, the first term in parentheses in (7.6) is 1+Sci+
O(A ) in the ultraviolet, where the numerical slope ci
may be read ofF Fig. 11. The second term in parentheses
is dominated for large A by

10

This paradox never came up in the toy model of
Sec. VI because of scale invariance: the Skyrmion vr—
2 arctan(47r fr/g„„) exists for any independently chosen val-
ues of f and g„„.

FIG. 13. Family of curves F&(r) that solve Skyrme's equa-
tion. When g"iv~ = g iv&, Fii(r) is just the Skyrmion profile
shown in Fig. 11.
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where c2 is another numerical constant. Combining
these expressions then gives

A NN (A) esA
(7 9)

Thus, just as in the toy model, the baryons decouple
&om the pions in the ultraviolet limit, at which point
the ordinary baryon number P, , (NtN + AtA + . )
efFectively transmutes into the winding number of the
pion cloud, Eq. (6.5a), in the manner discussed at the
end of Sec. VI.

VIII. THE SKYRME LAGRANGIAN, WITH AN
INCORRECT CHOICE DF g ~~

Finally, we analyze the "generic" case when g'~~ dif-
fers &om its Skyrme-model value g ~N . In what way
is the solution to Eqs. (7.4)—(7.6) affected? Consider
how, in practice, one constructs Fjj(r) numerically. One
first sets Fjj 3g NN/(27r f r ) in the asyxnptotic regime
r )) (e~f ), then integrates inwards towards the ori-
gin, and in so doing encounters a surprise: rather than
intercepting the y axis at m' as in the previous case with
g'N. & ——g &&, or diverging for small r as in the nonlin-
ear o model of Sec. V, EIp invariably hits the y axis at
a half integral m-ultiple (n+ 2)xr, as shown in Fig. 14(a).
This behavior can be con6rmed analytically. Linearizing
Eq. (7.5) about such half-integral values forces

Q const x (ez f A) cos ln p2A
/ ~a

A —woo

+O(A') . (8.2)

Therefore, for fixed g"NN g gANNN and sufficiently large
A, the model exhibits alternating "phases" of local stabil-
ity and instability along a large-N renormalization group
trajectory. Mathematically, this behavior is traceable to
the short-distance essential singularities (8.1) in the so-
lutions to Eq. (7.5). Each such phase lasts half a period
of the sinusoidal oscillation; thus, we have the unstable
phases

bizarre oscillatory behavior of this essential singularity is
verified in Fig. 14(b).

Of course, the family of Fp curves is still given by
Fig. 13, and g NN(A) is again read off &om the slope
discontinuity (7.6) at r = A, so one can still patch to-
gether a bona fide solution to Eq. (7.4). But, as always, .

this solution is only physically relevant if it is locally sta-
bte against small deformations of the meson cloud.

We have carefully investigated this issue of local stabil-
ity (albeit only within the hedgehog ansatz), and identi-
fied one dangerous mode, described in Fig. 15. Since we
are perturbing about an Euler-Lagrange solution, first
variations necessarily vanish. Instead, our stability anal-
ysis focuses on the sign of the coefficient Q of quadratic
variations in this mode, a positive (negative) value indi-
cating (in)stability. We have calculated (see Appendix A
for details)

Ej(r) - (n+ -')~ + const x r('+'~)~'
r-+O 2

2 . 3A c [A.„.„KA.„,], A e [r. A.„.„r. A.„.,],

+const x r( '~)r + O(r ~ )

(n+ 2)xr —(pxr) ~ cos in@,r1 (~3
)

A E [r A„;t, r A„;t],

and the stable phases

A 6 [KAgpjt 1 K Agx jt] A E [K Agpjt 1 K A~pjt] 1

(8.3a)

+O(r'r') .
(8.1)

A E [K Agxjty K Agpjt]~ (8.3b)

The fact that there are two independent constants here,
pz and p2, shows that this is indeed a generic family
of solutions to the second-order equation (7.5).2 The

This A behavior is surprising, since generically along
curve 1 Fx'(r) A instead, as is easily argued. However, very
near the point where Fi crosses vr, its slope changes over to
a A behavior. An interesting way of proving this statement
(which we first observed numerically) is with the calculus of
variations. Specifically, if one performs a small deformation
of the cloud analogous to that shown in Fig. 15 below, and
demands that the first variation vaxush (as it must), one de-
rives Eq. (7.8), including an explicit expression for cq in terms
of c~ and a definite integral of the Skyrme Hamiltonian.

The only other self-consistent solutions at small r start at
integer multiples of xr, and are of the form nor —lxr + O(r ),
e.g. , the Skyrmion itself. Unlike Eq. (S.l), these are only one
parameter families (parametrized by p), so one never "ac-
cidentally" stumbles upon them when numerically integrat-
ing inwards. Amusingly, the same phenomenon holds true
at large r as well [40] [cf. Fig. 9(b)]: there are generic two-
paraxneter families asymptoting to (n+ z)xr, and special oue-
parameter families (again, including the Skyrmion) terminat-
ing at n7r. So the (3+ 1)-dimensional Skyrmion is "special"
both at r = 0 and at r = oo; hence, it has no free parameters.
Of course, finiteness of the energy requires integer, not half-
integer, boundary conditions at both ends, which we enforce
on our patched-together "chiral bags. "
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2

0. 5

(a)

10

Here e = exp(2'/~3) is the constant whose logarithm
equals half a period, and A„;& is defined as the first ap-
pearance of this instability as the large-N renormaliza-
tion group is pushed into the ultraviolet. A„;q is anal-
ogous to the Landau pole in quantum electrodynamics:
it is the scale beyond which one cannot push the cutoK
while requiring that the theory be stable. Of course, the
value of A,»t depends sensitively on g"N~, zn general, the

r the latter is to ~ ~~, the greater we exp
to be. In this language, the results of the previous sec-
tion may be understood as the statement that A„;q ~ oo
(stability regained) as g"aviv —+ g aviv .

As in the nonlinear o model of Sec. V, one can also
patch together pion clouds with nonzero winding number,
but each of these is again locally stable only for finite
ranges in A (and potentially locally unstable against small
deformations titvay from the hedgehog ansa&z). While
the nature of the mathematical obstruction is somewhat
diR'erent, the conclusion here is the same as for Sec. V:
the Skyrme Lagrangian, coupled to the baryon tower,
admits no continuum limit when g"aviv difFers from its
canonical Skyrxne-model value g+iviv. In this interesting
way the "large-N renormalization group as filter" idea
is realized.

(b)

FIG. 14. (a) A typical curve Fii (r) when
0 & g"~~ & g~~~. As explained in the text, rather than
approaching rr for small r, this curve spirals into rr/2. The
x axis is in units (es f ) . (b) The short-distance behav-
ior of (a) in logarithmic variables, confirming the oscillatory
behavior of Eq. (8.1). The variable plotted on the x axis is
1n(es fer), while the y axis is (esf r) ~ (Fii —rr/2) as sug-
gested by Eq. (8.1).
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APPENDIX A: CLOUD COLLAPSE IN THE
SKYRME EXAMPLE WHEN g„'~~ g g~~~~~

Derivation of the local instability

1.5

0. 5

The primary goal of this Appendix is to derive the os-
cillatory expression (8.2) for the Gaussian coefficient Q
of the mode shown in Fig. 15. For this purpose, we need
to construct the total energy of the cloud, IIt t [E], keep-
ing only the terms of O(N, ). The usual Skyrme-model
Hamiltonian density is the sum of the contributions &om
the two-derivative and four-derivative terms:

10

FIG. 15. A dangerous small deformation of the
patched-together pion cloud. For alternating regions in A,
the cloud energy proves to be quadratically unstable against
this deformation, and the cloud instantly collapses to another
configuration closer to the Skyrmion. The deformation is de-
fined as follows. Hold the matching point fixed at r = A
but raise the value of Fi(A ) = Fii(A ) infinitesimally,
while letting the entire curve Fi(r) relax to a new solution
of Eg. (7.5) for r ( A . For r & A, raise Fii(r) by a con-
stant amount so that the curves stay matched, then merge
this curve smoothly to an r falloff at large distances (the
details of this merging are irrelevant for sufficiently large A).

+Skyrme +2 deriv + +-4 deriv-

1 (sin E E' sin E)
)~

(Al)

~t.i[E] = ~r[E]+ IIir[E]+ Hv. k .[E], (A2)

where

Hq t is itself the sum of three distinct parts, the contri-
butions &om region I and region II, plus the negative-
definite energy of the Yukawa interaction with the bary-
onic source:
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through order g . The effect on HY„ka is immediate:
2 dr +Skyrme &

H, [E] = 4~
0

Hii[F] = 4vr r dr 'Rsi, y.
A —1

(A3)
+Yukaw'a

1 2 —2 I]
2 f—Ag tv'~(A) Fi —rIA Fi + , rl—A Fi'

and
—3——&'A-'Ei"'+ O(&') (A6)

Hv„k [F] = —
2 f Ag N'~(A)F(A ) . (A4)

b
Ht t[E] = 0 .

The pointlike form of the latter is due to our special
choice of smearing, Eq. (5.3). The defining equation for
E, Eq. (7.4), is precisely the Euler-Lagrange equation

Next, we examine Hi. By design, Ei(r) is supposed to
remain a solution to Eq. (7.5) as we perform the deforma-
tion. For large A (and therefore small r), the important
terms in this equation are those that derive &om varying
'R4 ger;v. namely)

8 sin' Ei(r)

Suppose that F(r) is a patched-together solution to
Eq. (7.4), and consider the effect of the small deforma-
tion of Fig. 15 on each of the three parts in Eq. (A2). As
constructed, the deformation keeps the matching point at
r = A always, but changes the value of E at this point
from Ei(A i) to Ei((1 —i7)A i). With this sign con-
vention, a positive value of g lowers the patched-together
cloud so that it is closer to the vacuum E(r) = 0, whereas
a negative value of g raises the curve so that it is closer to
the Skyrmion of Fig. 11. We will treat g as an infinitesi-
mal parameter, and will find it &uitful to keep all terms

sin2Fi(r) (4 sin Ei(r)
r2 r2

The key observation here is that this (approximate) equa-
tion is scale invariant, so that the solution in region I
which satisfies the new perturbed boundary conditions,
Ei"' (0) = 0 and Ei"' (A ) = Ei((1 —rI)A i), is just
Ei"' (r) = Ei((1 rj)r) for —all r in this range. A straight-
forward Taylor expansion then yields

; 4~ r dr'R4 g„;„[Fi((I—rI)r)]
0

(X—~)A-'
4vr (1 —rl) P'dr Q4 ~„;„[Ei(P)]

0
A

4'(1 —rl) P dr 'R4 ~.„„[Ei(r)]—,(2Fi' »n' Fi + A' in Fi)
0 2es

2 —2

+—, 2 (2Ei' sin 2Ei + 4Ei'Ei" sin Ei + 2A Ei' sin 2Fi sin Fi —2A sin Ei)
2. 2eg

3 —3
[Fi' (4 —8 sin Fi) + 10Ei Fi" sin2Fi+ 4(Ei'Ei'"+ Fi' ) sin Fi+ A Ei (12 sin Ei —16 sin Ei)3! 2e2s

-i(2A p&" —SA E& )sin2pqsin Fg+'6A sin pq]+O(g )I . (A8)

In the first equality we have changed integration variables to r = (1 —rj)r, and exploited the scale cova»ance of
+4-deriv-

This cumbersome expression simplifies considerably if one discards all terms of order A, keeping only those of order
A and A ~ . At the point r = A where E~ ——Eyr, the relevant scalings are

From now on, Fi is short for Fi(A ) and likewise for its derivatives. Note that this equation is a perturbative expansion in

q, not in A: generically along the solution curve in region I, Fi'(r) = O(A), F,"(r) = O(A ), F,"'(r ) = O(A ), and so forth, so
that the terms in brackets are each nominally O(A ). [Two important exceptions to this generic behavior along curve I: when

Fi(r) is near vr then Fi'(r) A rather than A as explained earlier, and also when Fi(r) is near x/2 then F,",(r) A ~ rather
than A as implied by Eq. (A7).] Another possibly confusing point: g ~~(A) does not vary under this deformation; it is just
a Lagrangian parameter like any other for the purposes of the variational calculus.
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~ sin2Ei (n+ 2)m —Fi A /
) sin Fi = 1, Eii A, Ei A,

thanks to Eqs. (8.1) and (A7). Equation (A8) collapses to

A —1
% = 4m(1 —g) ( r dr 744 q„;„(Pq(F)]— (2' +A~)

2es
2 —2

+—
2 (2Ei sin2Fi+ 4EiEi'+ 2A Fi'sin2Ei —2A )
s

3 —3

( 4Ei —+ 4Fi'Fi"' —4A Ei —8A Fi sin 2Ei + 6A ) + O(rI ) + O(A )3. 2es

(A9)

(A10)

Finally we consider region II, for which the deformation at short distances consists of adding the constant Fi((1—
(7)A ) —Fi(A ) to the right-hand side of Eq. (8.1). The dominant contribution to the energy in this region comes
Rom the sin4Eii(r)/(2e2&r4) piece of Eq. (Al), which is the only term whose integral diverges as A -+ oo. Another
short exercise in Taylor expansion gives

&max r 2
: 4m 2 dr sin [Fii(r) + Ei((1 —rI)A ) —Fi(A ))2e~sr4

—A —4rIA Fi'Fii + 2' A Fi —,(12AEiEi" + 4EiiEi" —4Fi'iFi ) + O(rl ) + O(A ) . (All)
eS 30

The details of the upper limit of integration R are
unimportant, as they do not conceivably involve diver-
gent terms in A.

Assembling Eqs. (A6), (A10), and (All) yields the se-
ries expansion in the small-deformations parameter:

F(A')

II...(rI) = Z+ gL+ q'Q+ (7'C+ O()7') . (A12)

Focusing 6rst on the quantity of greatest interest, the
quadratic coeKcient Q, we find

tfoa "A"

Q =
2 (A Ei + Ei) sin2Ei+ O(A ),

eS
(A13)

using Eq. (7.6) to eliminate gb~iv. Notice that Q is only
O(Ai/2), the O(A) pieces having canceled between (A10)
and (All). This confirins Eq. (8.2).

The energy of this patched-together cloud is given by
the zeroth-order coeKcient Z:

Z 47c r dr R4 g~rj» [Fi(r)]
0

2 (A —4FiEi + 4EiEii)
2' I I

eS

= —(2A Ei —4FiEi + 4EiEii) + O(A ) . (A14)
es

The appearance of El'& on the right-hand side is due to the
observation that f, " -rr" = z

r"~„z-i + O(A ) precisely
when A = (1 + i~3)/2 as per Eq. (8.1).

SoIuthm "C"

FIG. 16. Total cloud energy Ht t, as a function of the
matching-point value Fi(A ) = Fii(A ). For large A,
the existence of nearby solutions "A" and "8" follows from
the cubic polynomial, Eq. (A12), remembering that L = 0,
q = O(A ), and C = O(A), and that the sign of q depends
on whether E(A ) is greater or less than s /2. As A increases
further, "A" and "B" exchange relative positions every half
period in the sinusoidal oscillations of Eq. (8.1). Numeri-
cal evidence for the global minimum solution "C," nearer the
Skyrmion, is presented in the text.
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To eliminate the integral in the second equality, we
have used the fact that, since the cloud is a solution to
Eq. (A.5) at g = 0, the linear term I must vanish:

O=I =
2 (2Ei —A )A

4"deriv +I r + +
(A15)

Numerically, Z turns out to be negative definite for the
important case n = 0 in Est. (8.1J, corresponding to the
coupling range 0 & g'~& & g &&, as Z is then domi-
nated by the attractive Yukawa contribution (A4).

A nontrivial consistency check

Finally, the cubic coefEicient is

(A17)

H, h(g, A) = Z(Ei(A '), E,'(A '), . . . )
+rPQ(Ei(A '), E,'(A '), . . . )
+ '&(Ei(A ') Ei'(A ') "). (A18)

Thanks to Eq. (A9), this is indeed satisfied by Eqs. (A13)
and (A16).

To understand the source of this consistency check,
look at Fig. 16. It shows that, for every patched-together
solution of the type we have been discussing, there must
be another nearby solution, labeled A and B, respec-
tively. Algebraically, this follows &om the cubic polyno-
inial (A12), which can be rewritten more explicitly:

C =, , (E,"+A'E,")+ O(A'~') .
S

(A.16)

The reason C is interesting is that there is a stringent
consistency check on our calculations in terms of the ratio
R = Q/t, which reads

Aside &om the starting solution "A," which is at g =
0 by definition, Eq. (A18) implies a new solution "B"
which stationarizes Ht~t(g)t at g, = —2R/3 A
Alternatively, one could start one's Taylor expansion at
CC ~)) ~

Ht. t(g, A) —= Z(EI((1 —n. )A ') Ei((1 —& )A ') " )

+n'Q(Ei((1 —&.)A ') Ei((1 —& )A ') " )

+~'&(Ei((1 —n. )A-'), Ei((1 —~.)A-') ) ~

and demand that the original solution "A" be recovered
at i7 = i1„.Consistency between these alternative start-
ing points forces 1 —g„= (1 —g, ) i. When A )) 1 so
that g, and g„(& 1, this in turn implies g„=—g„or,
in other words,

R(E,((1 —~.)A-'), S,'((1 —~.)A-'), . . . )

= —R(Ei(A '), E,'(A '), . . .), (A20)

whereupon Eq. (A17) follows from a Taylor expansion in
g+ ~

A numerical example

Finally we describe a numerical example which bears
out the above picture of "twinned" solutions "A" and
"B," and is further instructive in answering the question:
What does the locally unstable cloud "A" collapse into?

Specifically, we have patched together a solution to
Eq. (7.4) by fixing g"~iv ——0.65g ~~, and integrat-
ing Skyrme's equation for Eii(r) inwards from infinity,
to a xnatching point at r = A where we fix A

6.5es f . The "region I" curve Ei(r) is then the solution
to Skyrme's equation with boundary conditions Ei(0) = 0
and Ei(A ) = Eii(A ) = 0.68m. From the slope dis-
continuity one finds g ~~ —8.2es, f = 0.46g ~~,
while the total cloud energy (A2) is —183f /es, which
is within a few percent of the large-A approximation
(A14). Since at the matching point E(A i) ) n/2, we
expect this to correspond to the locally unstable config-
uration "A" in Fig. 16. Can one then uncover a solu-
tion with E(A i) ( m'/2, corresponding to the nearby
locally stable (but still globally unstable) configuration
"B"?Sure enough, for the same Lagrangian parameters
A and g"~iv(A), one finds a second solution m
E(A ) = 0.41vr, whose renormalized coupling turns out
to be tiny, g'~N ——0.062g ~N~~, and whose total cloud
energy is 205f /eg—, a little lower than that of "A" as
Fig. 16 suggests.

Figure 16 further suggests the existence of a third so-
lution, labeled "C," which is energetically much more fa-
vorable than either "A" or "B." We can argue for the ne-
cessity of such a solution by noticing that for sufFiciently
negative g eventually the cost in gradient energy must
overwhelm the gain in the Yukawa interaction; therefore
there must be a new minimuxn for some finite, negative g.
One naturally guesses that this new solution looks more
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like the Skyrrnion, meaning that the value of P(A ~) is
closer to vr than z/2, and that the asymptotics of the
tail is closer to Fig. 11. And indeed, for the same La-
grangian parameters, we have found a solution for which
+(& ) = 1.18m, g"~~ ——1.08g ~~, and the total bag
energy is 33—8f /eg

While we believe that, for this fixed. choice of A, so-
lution "C" is both a local and global minimum of the
energy, certainly if it is extrapolated far enough into the

ultraviolet with the large-N, renormalization group, it
too eventually develops an instability. Although we have
not pushed the numerics, it is tempting to conjecture
that the cloud then collapses to one whose renormalized
coupling is closer still to g ~~, and that by continuing
in this way, alternating RG How with cloud collapse to a
new renormalized coupling, followed by renewed RG How

to still higher A, and so forth, one iterates one's way to
g~NN prec»e y
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