
PHYSICAL REVIEW 0 VOLUME S2, NUMBER 1 1 JULY 1995

Baryon mass splittings in the 1/1V expansion
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The I = 0, 1, 2, 3 mass splittings of the spin-1/2 octet and spin-3/2 decuplet baryons are analyzed
in the 1/N, expansion combined with perturbative flavor breaking. We show there is considerable
experimental evidence that the baryon masses satisfy the hierarchy predicted by this expansion.
Since Qavor symmetry-breaking suppression factors alone are not sufBcient to describe the observed
hierarchy, we conclude that there is firm evidence for the 1/K, expansion in the baryon masses. Our
analysis difFers from nonrelativistic SU(6).

PACS number(s): 12.40.Yx, 11.15.Pg, 11.30.—j, 14.20.—c

I. INTRODUCTION

The 1/N expansion has led to new understanding of
the spin-flavor structure of baryons in QCD [1—15]. In
the large N, limit [16,17], it has been shown that the
baryon sector of QCD possesses a contracted spin-flavor
algebra [1,18]. Corrections to the large N, limit can be
parametrized by 1/N, -suppressed operators with definite
spin-flavor transformation properties [1,2]. By studying
the spin-flavor structure of these 1/N, corrections, it is
possible to obtain new symmetry relations which are sat-
isfied to nontrivial orders in the 1/N, expansion, where
the accuracy of these relations is predicted by the expan-
sion. In the cases studied thus far, the 1/N, expansion
has yielded predictions for static properties of baryons
which agree with the experimental data at the level of
precision predicted by the expansion.

The study of baryon masses using flavor and spin-
flavor symmetry has a long history dating back to the
1960s [19—25]. In this paper we analyze the mass split-
tings of the spin-1/2 octet and spin-3/2 decuplet baryons
in the 1/N, expansion, with isospin symmetry breaking
treated perturbatively. SU(3) flavor symmetry break-
ing is treated first perturbatively, and then nonpertur-
batively through the use of SU(2)I x U(l)y flavor sym-
metry. We find that there is evidence for the pattern of
mass splittings predicted by the 1/N, expansion and fla-
vor symmetry breaking. A number of our predictions are
not tested by the experimental data because they involve
baryon mass splittings which are poorly measured; more
accurate measurements of these splittings would test the
validity of the expansion. The analysis we perform in this
work illustrates that the predictions of the 1/N, expan-
sion are difFerent from the standard SU(6) predictions of
the nonrelativistic quark model [23,24,26].

The analysis of the isospin mass splittings in the 1/N
expansion is organized as follows. Section II presents
the relevant operator analysis. 1/N, expansions are
constructed for the SU(2) xSU(3) representations (0, 1),
(0, 8), (0, 27), (0, 64), and (0, 10+ 10). In Sec. III, we
give the complete set of linearly independent operators
which spans the baryon masses for N = 3. Each op-
erator occurs at a particular order in 1/N, and flavor

symmetry breaking. Mass relations for the octet and de-
cuplet baryons are derived in Secs. IV and V, where we

separate the relations into isospin channels I = 0, 1, 2,
and 3. In Sec. IV we present the analysis with pertur-
bative SU(3) flavor symmetry breaking; Sec. V repeats
the analysis using SU(2) x U(1) flavor symmetry. We
contrast the results of the two analyses and comment on
their relation to SU(6) formulas. Our conclusions are
presented in Sec. VI.

II. OPERATOR ANALYSIS

The lowest-lying baryons for N colors transform ac-
cording to the completely syinmetric spin-flavor SU(2F)
representation shown in Fig. 1. This baryon represen-
tation decomposes under (spin flavor) into a tower of
baryon states with spins J = 1/2, 3/2, . . . , N, /2, with
the respective flavor representations displayed in Fig. 2.
In the following analysis, we consider the special case of
E = 3 light flavors. For three light flavors, the flavor
representations of Fig. 2 for N, large and finite differ
from the flavor representations for N = 3. The weight
diagrams for the flavor representations of the spin-1/2
and spin-3/2 baryons are given in Figs. 3 and 4, respec-
tively. These flavor representations reduce to the baryon
octet and decuplet for N = 3. For arbitrary N, the
familiar spin-1/2 and spin-3/2 baryons can be identified
with states at the top of the flavor representations, for
which the number of strange quarks is of order 1 [not
O(N, )]. In the following analysis, we are only interested
in the masses of baryon states which continue to exist
for N = 3; we call these states the physical baryons.
Focusing on these baryons results in a number of simpli-
fications in the analysis. We caution the reader that the
1/N, analysis we perform here for arbitrary N, is valid
only for the physical baryons in Figs. 3 and 4, not the

FIG. 1. SU(2P) spin-flavor representation for ground-state
baryons. The Young tableau has N boxes.
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FIG. 4. Weight diagram for the SU(3) flavor representation
of the spin- — baryons. The long side of the weight diagram
contains —(N, —1) weights. The numbers denote the multi-

plicity of the weights.

~ ~ ~ ~ ~

FIG. 2. SU(E) Ilavor representations for the tower of
baryon states with J = —,—,. . . , —.Each Young tableau
has N boxes.

entire flavor representations. The results are also valid if
the number of colors is set equal to 3.

We construct an operator expansion for the mass split-
tings of the baryon octet and decuplet using quark oper-
ators [1,4—6,12] as the operator basis. Equivalent results
can be derived in the Skyrme operator basis [1,4]. The
complete classification of quark operators for three fla-
vors was performed in Ref. [12]; in this work we use the
same notation. The sole zero-body operator is denoted
by S., and the complete set of irreducible one-body oper-
ators is denoted by

J' = qt (
J' C3 Il) q

T =qt(IIT )q
G' = qt (J' g T ) q

(1 1)

(o, s),
(1 S)

0=) c„ iO„,
1

(2.2)

where the n-body operators 0 are of the generic form

where J' are the spin generators, T are the flavor gener-
ators, and G' are the spin-flavor generators. These op-
erators transform as irreducible representations of SU(2)
x SU(3), which are denoted in Eq. (2.1) by the spin J
and the dimension of the SU(3) flavor representation.

The I/N, expansion of any operator transforming ac-
cording to a given SU(2) x SU(3) representation is given
by an expansion of the form

1 1

1 2 1

1 2 2 1

1 2 2 2 1

1 2 2 2 2 1

1 2 2 2 2 2 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 2 1

1 2 2 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1 1

FIG. 3. Weight diagram for the SU(3) flavor representation
of the spin-~ baryons. The long side of the weight diagram
contains —(1V, + I) weights. The numbers denote the multi-
plicity of the weights.

+ g(CX1 CX2 ) + + T(CX1 g Ck,'~ )
(P1P2) (PiP2. - PX. ) ' (2.4)

where T&~&'&
'

& )) is a traceless tensor completely sym-(o1o. e )
metric in its m upper and lower indices. Reference [12]
proved that the spin-flavor representation T(&'&

'
&

consists of purely m-body quark operators, since all n-
body quark operators (n ) m) transforming according
to this tensor representation can be reduced to m, -body
operators using nontrivial operator identities. The ex-
pansion (2.4) terminates at N;body operators, since no

and the c are unknown coefficients. The number of oper-
ators participating in the expansion (2.2) can be reduced
to a finite set using operator identities. The operator
classification of Ref. [12] showed that the complete set
of linearly independent quark operators for the baryon
representation in Fig. 1 transforms according to the irre-
ducible spin-flavor representations
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higher than N -body operators are required to describe
any spin-Bavor operator acting on an N -quark baryon.

The above analysis implies that the complete 1/N,
expansion of any operator transforming according to a
given SU(2) x SU(3) representation can be written in
terms of pure n-body operators, which transform accord-
ing to definite SU(6) representations. This set of oper-
ators is not the natural basis which arises in an expan-
sion in flavor symmetry breaking, however. Instead, the
natural basis consists of operators which are associated
with de6.nite powers of Bavor symmetry-breaking param-
eters; such operators have no contracted Qavor indices.
The operators in this new basis are not pure n-body op-
erators, but contain components which can be reduced
to lower-body operators using nontrivial operator identi-
ties. Thus, the operators which are natural with regard
to the Bavor-breaking analysis do not always correspond
to definite SU(6) representations, and the results we ob-
tain differ from SU(6) formulas in some instances. The
precise relationship between the Havor symmetry break-
ing and SU(6) operator bases of the 1/N, expansion is
explained in Sec. III.

In the following analysis, we are only interested in the
predictions of the 1/N, expansion for the baryons that
exist for N, = 3, namely, the spin-1/2 octet and spin-
3/2 decuplet baryons. When the set of baryon states
considered for large N is restricted to these physical
baryons, all n-body operators with n ) 3 are redundant
and linearly dependent on 0-, 1-, 2-, and 3-body oper-
ators. Thus, the complete set of independent operators
acting on this restricted set of baryon states for any %
is given by the spin-Qavor representations

A. (0, 1)

The complete set of (0, 1) operators has been classified
previously. There is only one 0-body operator transform-
ing as (0, 1) under SU(2) x SU(3),

Op ——]l., (2.6)

and only one 2-body operator

O2 ——J' . (2.7)

In general, there is a single n-body operator for each even
n )

(2.8)

which transforms as (0, 1). Thus, the general 1/N, ex-
pansion for a (0, 1) operator is of the form [2,4—6,12]

(0, 8), (0, 27), (0, 64), and (0, 10+ 10). Furthermore, the
1/N expansions can be truncated at 3-body operators
when one considers only physical baryon states. The set
of 0-, 1-, 2-, and 3-body operators in the 1/N, expansions
spans all of the mass splittings of the physical baryons.
Only if one is able to truncate the 1/N, expansions be-
fore the occurrence of 3-body operators does one obtain
any nontrivial mass relations which are valid to a given
order in the 1/N, expansion. 1/N, operator expansions
up to 3-body operators are obtained for the (0, 1), (0, 8),
(0, 27), (0, 64), and (0, 10+10) representations in the fol-

lowing subsections.

( I s ) I I I) = 1 q T q z') ' ') q T( ' ' ')
(p, p. ) (p.p.v. )

= 1+35+ 4OS+ ZOOS, (2.5)

Nc —1

0= ) c„,Q„,
n=0, 2

(2 9)

where the dimensions of the SU(6) representations are
given in the last line of Eq. (2.5).

To analyze the mass splittings of the octet and decu-
plet baryons, we need the spin-zero SU(2) x SU(3) repre-
sentations of the quark operators contained in the SU(6)
representations 1, 35, 405, and 2695. As is well known,
the 1 contains a (0, 1); the 35 contains a (0, 8); the 405
contains (0, 1), (0, 8), and (0, 27); and the 2695 contains
(0, 8), (0, 27), (0, 64), and (0, 10+ 10). If we were inter-
ested in n-body operators for n ) 3, there would be ad-
ditional SU(3) representations to consider. For example,
the purely 4-body SU(6) representation contains (0, 1),
(0, 8), (0, 27), (0, 27), (0, 64), (0, 125), and (0, 35 + 35).
All of these quark operators either vanish or reduce to
0-, 1-, 2-, and 3-body operators when one restricts the
set of baryons of interest to the physical baryon states

Thus, in the analysis of the mass splittings of the octet
and decuplet baryons, we need to construct 1/N, expan-
sions only for the SU(2) x SU(3) representations (0, 1),

B. (o, s)

The 1/N, expansion for a (0, 8) operator appears in
Ref. [12]. Operator reduction identities imply that only
n-body operators with a single factor of either T or G'
need to be retained. There is only one 1-body operator

Oq ——T (2 1o)

and only one 2-body operator

~a (Ji Gia) (2.11)

for N odd, where c are unknown coeKcients. Since the
matrix elements of J are order 1 for baryons with spins
at the bottom of the tower [1], each succeeding operator
is suppressed by relative order 1/N, , and so it is possible
to truncate the 1/N, expansion (2.9) at any desired point
in the expansion.

The representation (0, 10 —10) is not allowed by time re-
versal invariance.

allowed after operator reduction. In general, there is only
one independent n-body operator for each n. All of these
operators can be generated recursively from Oz and O2
by anticommuting with J:
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0„„=(J', 0„) . (2.12)

Nc
ga ga

NA —i
n=l 2

(2.i3)

where c are unknown coefBcients. Since J is of order 1,
the operator 0 +2 in Eq. (2.13) is suppressed by 1/N2
relative to 0„. Thus, it is valid to truncate the expan-
sion (2.13) for arbitrary a after the First two terms, up to
corrections of relative order 1/N, . Since for N, = 3, the
expansion Eq. (2.13) ends with the 3-body operator

0, =(J', T ), (2.i4)

The set of operators 0, n = 1, 2, . . . , N, forms a com-
plete set of linearly independent spin-zero octets. Thus,
the 1/N, expansion for a (0, 8) has the forin

(const) x N x 0 /N, (2.i7)

and can be absorbed into the operator 0 . We therefore
do not need to worry about the O(N, ) contribution to
the matrix elements of T, and we conclude that for the
special case a = 8, it is possible to truncate the expan-
sion (2.13) after the First term, T, up to a correction
of relative order 1/N, arising from (J', G' )/N, . The
situation for a = 3 does not simplify since the matrix
elements of T and (J', G' }/N, are both order 1. The
first truncation of the expansion for a = 3 retains these
two operators.

same for all the physical baryons, and so it cancels in
any mass difFerence. Furthermore, consider any opera-
tor 0 /N, i. Then the part of (T,0 }/N, which
originates in the O(N, ) piece of T is of the form

this truncation amounts to the neglect of one operator.
There are two different (0, 8) operators which are rel-

evant for the analysis of the baryon mass splittings: 0
with I = 0 and 0 with I = 1. It is important to fur-
ther analyze the implicit N, dependence of the matrix
elements of Qz and 0& for the physical baryons in these
special cases. The matrix elements of the 1-body opera-
tors T and G', a = 8 and a = 3, can be rewritten in
terms of quark number and spin operators:

C. (0, 27)

The 1/N, expansion for a (0, 27) operator can be de-
termined using the operator reduction rule of Ref. [12].
There are three 2-body operators which transform as a
flavor 27: spin-zero ((T,T )), spin-one ((G', T ) +
(O', T }),and spin-two ((O', G~ )+(O', G~ )). Spin-
zero 27 operators can be obtained from the latter two by
forming tensor products with factors of J to saturate spin
indices. Thus, there is a unique 2-body (0, 27) operator

T8 (N, —3N, ),
2 3

G*' = (J' —3J:),
2 3

T = —(N„—Nd),
2

G" = —(J„' —J;),

(2.i5)

0~~=(T T ). (2.18)

0 = (J' (T",G'))+(J', (T', G"))
= (T" (J' O'})+(T',(J', O-)) (2.ig)

There is one 3-body (0, 27) operator, which is the tensor
product of the spin-one 27 2-body operator and J':

where N = N„+ Nd + N, and J' = J„'+J&+ J,'. Using
Eq. (2.15), one finds the matrix elements

(J' O*')=

(J', G")=

(2J' —3(J*,J:})
2 3

(—J'+ 3I' —3J2),
2 3

—((J,J„*}—(J', J„})
—(V —U + J„—J~),

(2.i6)

where I, U, and V are the isotopic spins of SU(3). The
baryon states of physical interest are those with spin,
isospin, and strangeness of order unity. Thus, these
baryons have matrix elements of Ts, (J', G' ), Ts, and
(J', G' }which are O(N, ), O(1), O(1), and O(N, ), re-
spectively. The N dependence of T is trivial; the co-
efFicient of the O(N, ) piece in T matrix elements is the

where the second equality follows since J' and T com-
mute. The tensor product of the spin-two 27 and the
spin-2 combination (J', J~) yields the 4-body (0, 27) op-
erator

04'= ((J' J') (O" O")) (2.20)

where projection of the spin-2 pieces of (J', J~) and
(O', G~~) in Eq. (2.20) is implied. It is also to be un-
derstood that the flavor singlet and octet components of
the above three operators are subtracted o6', so that each
of the three operators is truly a (0, 27). Note in all these
cases the symmetry of operators under exchange of fIavor
indices, as required for Bavor-27 operators.

In general, the complete set of linearly independent
(0, 27) operators consists of three operator series, namely,
the three operators Q&, D3, Q4 and anticommutators
of these operators with J . Note that this implies that
there are two different n-body operators for n even, n )
4, since (J2, 0&s) and 04 are both 4-body operators.
Thus, the 1/N, expansion for a (0, 27) operator has the
form

From Figs. 3 and 4, it is clear that the physical baryons have
J„,Jq, fJ spin, and V spin of O(N, ). The O(N, ) contribution
to (J', G' j cancels exactly, but the O(N, ) piece does not.

N N —1
g+b + X d gab

fLN~ ] ~ / AN~n=2, 3 n=4, 6
(2.21)
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where c and d are unknown coeKcients, and the d
operators are the series of operators generated from O4 .
Since the matrix elements of J are order 1, the expan-
sion (2.21) can be truncated for arbitrary a after the first
three operators (O2, Os, O4 ) up to corrections of rel-
ative order 1/N, . For N, = 3, one only retains the two
operators Oz~ and O3~. Truncation after O3 is valid for
any N, up to a relative correction of order 1/N2 only if
one restricts the set of baryons of interest to the physical
bar yons.

There are three different (0, 27) operators which are
relevant for the analysis of the baryon mass splittings:
O withI=0 0 =O withI = 1, andO3 with
I = 2. For the special case a = 6 = 8, it is possible to
truncate the expansion (2.21) after the first operator in
the expansion, O2, up to a correction of relative order
1/N, arising Rom Os /N„since the matrix elements of
(J', G' ) are order 1. The truncations for O and O 8

cannot be simplified further.

D. (0, 64)

The 1/N, expansion for a (0, 64) operator begins with
a single 3-body operator

Oabc (Ta (Tb Tc)) (2.22)

where it is understood that the singlet, octet, and 27
components of the above operator are to be subtracted ofF
so that only the Havor-64 component remains. For N
3, this is the single operator which enters the analysis.
For arbitrary N„ there are three additional operators:

Oabc (Ta (Tb (Ji Gic)))
Os' = (T ((~' (-"') (J' G"))) (2 23)
Os'=((J' G") ((1' G') (J* G"))).

E. (0, 10+ 10)

The 1/N, expansion for a (0, 10 + 10) operator begins
with a single 3-body operator

Os' = (T" (~' (-"')) —(T' (J' (-"")). (2.24)

For N = 3, this is the only operator which enters the
analysis. For arbitrary N, there are additional opera-
tors generated by anticommutators of J with the above

All other operators of the expansion are generated from
the above four by anticommuting with J . Truncation of
the 1/N, expansion after the first operator Os ' is valid
for general N, up to a relative correction of order 1/N2
only if one restricts the set of baryons of interest to the
physical baryons.

There are four difFerent (0, 64) operators which are rel-
evant for the analysis of the baryon mass splittings: O
withI=0, O withI = 1, O withI =2, and O
with I = 3.

operator. Thus, the truncation of the general 1/N, ex-
pansion of a (0, 10+ 10) operator after this first operator
is valid up to a relative correction of order 1/N2.

There is one (0, 10 + 10) operator which is relevant
for the analysis of the baryon mass splittings: O3 with
I = l.

III. COMPLETE SET OF OPERATORS

In this section, we present the complete set of operators
which parametrize the baryon masses for N = 3. The set
of operators given here are also the operators required for
an analysis for arbitrary N when one restricts the baryon
states of interest to the physical baryons. There are 19
Hermitian operators which span the space parametrized
by the 18 baryon masses and the single oK-diagonal mix-
ing mass AZ = Z A. Since AZ = Z A by Hermiticity,
we refer to the oB-diagonal mass as AZ in this work.
The 19 operators that we require are obtained by truncat-
ing the general 1/N, expansions derived in the previous
section at 3-body operators.

The baryon mass operator M can be written in terms
of mass operators MI, which belong to SU(3) represen-
tations B with isospin I:

M =).Mr".
R,I

(3 1)

For the restricted set of baryon states, the most general
mass operator is given by

M1 + MS + M27 + M64 + M10+10

+ M' + M" + M" + M" + M" + M" (3 2)

1 10 1)0
Mo =c(o') N ~+&(')

C

Mo = c(i) T + c(2) (J', G' ) + c(s) (J , T ),

M27 27,0 (Ts Ts) + 27,0 (Ts (Ji Gi8))1 1
(2)

C C

M =c ),(T (T,T ))
C

(3 4)

Each of the mass operators MI in Eq. (3.2) may be ex-
panded in a 1/N, expansion of the form

3
R,I OR, I
(n) Nn —1

n=o

where the summation is over all n-body operators O
with the same transformation properties under SU(3)
and isospin as MI . The unknown operator coeKcients
are denoted by c~ ') . The explicit expansions for each of
the representations appearing in Eq. (3.2) are obtained
from the results of Sec. II and are given below. The op-
erator expansions divide into the I = 0 expansions

Subtraction to obtain operators with a unique value of
isospin is understood.

A (AZ —Z A) mass difference, corresponding to the repre-
sentation (0, 10—10), is disallowed by time reversal invariance.
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the I = 1 expansions

M, =c(,)
T +c() (J', G' )+c(') (J,T ),

C

M = ' (T T)(2)

, ((T, (J', G' )}+(T', (J', G' ))),

(3.5)

M10+10 10+&o,l ((T3 (Ji Gi8)) (T8 (Ji Gi3)))
C

the I = 2 expansions

C

C

(3 6)

and the I = 3 expansion

M = ' (T, (T,T )).
C

(3.7)

Note that, as in the previous section, the 19 operators
appearing in Eqs. (3.4)—(3.7) are to be regarded as sub-
tracted operators, so that each operator transforms ac-
cording to the SU(3) and isospin representations stated.
Thus, the flavor-27 operators require subtraction of sin-
glet and octet components, the 64 operators require re-
moval of singlet, octet, and 27 components, and 10+ 10
operator requires removal of an octet component. One
further level of subtraction diagonalizes the operators
into channels of unique isospin I = 0,1,2,3.

It is easy to incorporate flavor symmetry breaking into
the 1/N, analysis by associating powers of symmetry-
breaking parameters with each of the coefFicients appear-
ing in Eqs. (3.4)—(3.7). There are two sources of flavor
symmetry breaking. The first source is the quark mass
matrix, which introduces the perturbations

QCD, so we must carefully keep track of all powers of
~ in the perturbative analysis. The isospin-breaking pa-
rameter satisfies e' « e. A typical isospin mass splitting
is order several MeV, whereas the overall O(N, ) mass
of the baryons is about 1 GeV. Thus, e' is comparable
to an efFect of order 1/N, in QCD. The 1/N, expan-
sions we have constructed contain only a few orders of
1/N„so we only need to consider isospin-breaking ef-
fects to linear order in the isospin-breaking parameter

The second source of flavor symmetry breaking is
the quark charge matrix. Electromagnetic mass split-
tings are second order in the quark charge matrix and are
suppressed by n, /4vr. These splittings are typically of
order a few MeV in magnitude, which is comparable to
the isospin mass splittings arising from the quark mass
matrix, but is negligible compared to SU(3) mass split-
tings. We introduce the symmetry-breaking parameter
~" for the electromagnetic mass splittings, where 6 E'.
The electromagnetic efI'ects can occur in the I = 0, 1, 2
channels; the I = 0 contribution can be neglected, and
both the I = 1 and 2 contributions are suppressed by

The symmetry-breaking parameters associated with
the mass operators at leading order in flavor symmetry
breaking are listed in Table I.

Finally, we describe in more detail the relation be-
tween the 1/N, expansion when it is combined with a
perturbative analysis in flavor symmetry breaking and
a pure SU(6) analysis. Not all of the mass operators
of the 1/N, expansion Eqs. (3.4)—(3.7) with perturba-
tive flavor breaking transform according to unique SU(6)
representations. Thus, it is not possible to identify the
n-body label n = 0, 1, 2, 3 of the coeKcients c~ '& with the
1-, 35-, 405-, and 2695-dimensional representations of
SU(6), respectively. This subtlety occurs because some
of the n-body operators written in Eqs. (3.4)—(3.7) are
not pure n-body SU(6) operators; the operators contain
components which reduce by the identities of Ref. [12j to
lower-body operators in difFerent SU(6) representations.
An upper-triangular matrix summarizes the relation be-
tween the pure n-body SU(6) (rows) and n-body flavor
symmetry-breaking (columns) operator bases of the 1/N,
expansion:

EH +&A ) (3.8)

where e is an SU(3)-violating parameter and e' is an
isospin-violating parameter. The magnitude of these
symmetry-breaking parameters is governed by quark
mass differences divided by the chiral symmetry-breaking
scale, which is of order of 1 GeV. The symmetry-breaking
parameter e 0.25 is comparable to a 1/N, efFect in

0 1 2 3

35 0
405 0 0

2695 (0 0 0 *)
(3.9)

where * indicates an entry which is not necessarily zero.

TABLE I. Flavor symmetry breaking of MI .

M1 M8 M27 M64 MS M27 M10+10 M64 M27 M64 M64
0 0 0 0 1 1 1 1 2 2 3

E E E'E

Note that the true flavor suppression of M~ + comes from terms of O(e m, ,) [27] and is hence e"e. In Table I we list the
naive factor e'e, which is equivalent because e"
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From this matrix, one Ands, for example, that 3-body
flavor operators transform as 1 + 35 + 405 + 2695, but
that pure 3-body 2695 operators only appear in 3-body
fiavor operators.

IV. MASS RELATIONS

We now study the mass relations which can be ob-
tained using the operator expansions of the previous sec-
tion. In Table II, we compile the mass combinations as-
sociated. with the neglect of each of the 19 operators of
Sec. III, and with the irreducible representations of SU(6)
whenever the two do not coincide. The mass combina-
tions are divided into isospin sectors I = 0, 1, 2, 3. The
definitions of the baryon isospin mass combinations used
in the table are presented in the subsections which follow.
The mass combinations associated with the 19 operators

in Eqs. (3.4)—(3.7) are labeled by their coefflcients e

The 1/N, suppressions and the flavor-breaking param-
eters associated with each mass combination are tabu-
lated. The 1/N, suppression factors assigned to each
mass combination include the implicit N dependence
of operator matrix elements as well as the explicit 1/N,
factors displayed in Eq. (3.4)—(3.7). The flavor-breaking
suppression factors are obtained &om Table I. Mass com-
binations which also correspond to single SU(6) represen-
tations appear with a check in the column with heading
label SU(6); otherwise, a "No" appears. The SU(6) mass
combinations which difFer Rom the above combinations
are listed in the subsequent blocks of the table. These
combinations are labeled. by coeFicients c&' where the
subscript denotes the dimension of the SU(6) representa-
tion. The 1/N, and the leading flavor-breaking suppres-
sions for the SU(6) combinations are listed. Note that
the flavor suppressions for the SU(6) combinations fol-

TABLE II. Mass combinations: The isospin mass combinations appearing in the table are defined in Sec. IV. Orders of 1/N,
and flavor symmetry breaking are given for each combination. Experimental accuracies appear in the 6nal column.

1,0

(2)
8,0

I',f
(3)

27,0

a2)

as)
'(3)

1,0C1'
8,0

C35
8,0

C405
27,0

C405

8,1
(1)
871
(2)
Sil
(3)

27 i 1
(2)
27, 1
(3)

10+10,1
(3)

64, 1
(3)
8,1
35
8,1

C405
27 1

C405

27 2

g)
(3)
64, 2
(3)
27 2

C405

I=o
25(2Np + 3Zp + A + 2 p) —4(4Ap + 3Zp + 2 p + 0)
5(2Np+ 3Zp+ A+ 2 p) —4(4&p+ 3Zp + 2 p+ 0)

5(6No —3Zp + A —4:-o) —2(2ho —-o —0)
Np —3Zp+ A+ =0

(—2Np —9Zp + 3A + 8 p) + 2(25p —
p

—0)
35(2Np —Zp —3A + 2 p) —4(4Ap —5Zp —2 p + 30)
7(2Np —Zp —3A + 2 p) —2(46p —5Zo —2 o + 30)

Ap —3Zp + 3:-0 —0
(2No + 3Zo + A + 2:o) + 2(4&o + 3Zo + 2:-o + 0)

(No —- p) + 2(2&o —"o —0)
(7No —6Zo + 2A —3:-o) —2(2Eo —-p —0)

(2No —Zo —3A + 2=o) + 4(46o —5Zo —2:-o + 3A)

I =1
5(Ni + 5Zi + 4:-i + 2~3 AZ ) —(Ai + 2Z; + ",*)

—3Ni + 3:-ij4i/3 AZ

(—7Ni —5Zi + 2:-i + 6+3AZ ) + (Ai + 2Z,* + ",")
35(Ni —=i + 2i/3 AZ ) —2(&i —3Z,* —4:-;)

7(Ni —-i + 2v 3AZ ) —(Ei —3Z; —4:-,*)

N1 —Z1+ ™1
A1 —10Z1 + 10"1

(Ni + 2Zi + =i) + 2(Ai + 2Z,* + "*,)
(—Ni + 10Zi + 11:"i+ 8v 3 AZ ) —2(ki + 2Zi + =-i)

(Ni —-i + 2~3AZ ) + 2(&i —3Z; —4:",*)
25(Zi + "i) —3(4Z*, —3:-,*)

N1 —-1
5(2Ni + Zi —=i) —3(4Zi —3=i)

Z' —2=*

I =2
35Z2 —2(3&2 + Zo)

7Z2 —(3A2 + Z2)
A2 —2Z2

Z&+2(32, + Z, )

1/N,
N

1/N
1

1/N
1/N,
1/N,
1/N
1/N,

Nc
1

1/N
1/N

1

1

1/N,
1/N,
1/N
1/N,
1/N2

1
1

1/N,
1
1

1 N

1/N,
1/N,
1/N,
1 N,

Flavor
1

2

E2

2

E'

I
E'

6 E
I

I

SU(6)
No

No

No

No

No

No

No

No

Expt.

(18.21 6 0.03)'%%uo

(20.21 + 0.02)%
(5.94 + 0.01)'%%uo

(1.11 + 0.02)%%uo

(0.37 + 0.01)%
(0.17 + 0.02)%%uo

(0.09 6 0.03)%

(27.44 + 0.04)%
(5.27 + 0.02)'%%uo

(0.48 + 0.03)%%uo

(0.01 + 0.02)'%%uo

(0.08 6 0.05)%
(0.08 + 0.13)%%

(0.36 + 0.02)%
(0.23 + 0.03)'%%uo

(0.005 + 0.018)'%%uo

(0.04 + 0.03)%

(0.12 + 0.03)'%%uo

(0.16 + 0.06)%
(0.20 + 0.09)'%%uo

(0.26 + 0.15)%%uo

64,3
(3) 1/N.' 0% (fixed)
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low Rom the perturbative flavor-breaking operator anal-
ysis and are not consequences of the analysis in terms of
operators with definite SU(6) transformation properties.

We can understand which mass combinations in Ta-
ble II coincide with SU(6) mass combinations. The mass
combination associated with the neglect of each opera-
tor in the basis Eqs. (3.4)—(3.7) is broken by this oper-
ator alone; i.e., all of the other operators in the basis
vaiush on this mass combination. Recall (3.9) that the
3-body flavor operators are the only operators in the ba-
sis which contain components transforming according to
the 2695 representation of SU(6). Since all of the other
SU(6) representations occur in lower-body operators as
well, the only mass combination which vanishes for all
lower-body flavor operators are mass combinations in the
2695. Therefore, all of the 3-body mass combinations in
the first block of Table II correspond to mass combina-
tions in the 2695 representation of SU(6). In addition,
for the SU(3) singlet expansion Moi involving only even-
body operators, neglect of the 2-body operator J re-
sults in a mass combination in the 405 representation of
SU(6). In general, neglect of the highest-body operator
in any perturbative flavor symmetry-breaking expansion
leads to a mass combination corresponding to a definite
SU(6) representation. None of the mass combinations
following &om the neglect of other n-body operators ap-
pearing in Eqs. (3.4)—(3.7) has this property.

The last column of Table II presents the experimen-
tal accuracy of mass relations obtained by setting each
mass combination equal to zero. These percentage ac-
curacies are determined by evaluating the given mass
combination and then dividing by one-half the sum of
the absolute values of all of the terms in the same
mass combination. Stated another way, the combina-
tion is organized as left-hand side (LHS) = right-hand
side (RHS), where LHS and RHS possess only baryon
masses with positive coefficients, and then we compute
~
(LHS —RHS) /[(LHS+RHS) /2] ~. The purpose of this nor-

malization is twofold: First, this expression is invariant
under multiplication of all baryon coeKcients by the same
constant, and second, the resulting number is dimension-
less. Because the denominator is a sum of baryon masses
with the same size coefBcients as in the numerator, the
ratio represents a scale-invariant measure of how much
the numerator mass difference is suppressed. The exper-
imental accuracies listed in Table II are obtained using
the measured baryon masses and mass differences of the
Particle Data Group [28], although there is controversy
over isospin splittiiigs in the decuplet (see, e.g. , [29] for
further discussion of this point). The 4 mass is unmea-
sured; we eliminate this mass &om all of the I = 0, 1, 2
L mass combinations using the sole I = 3 mass relation
(see Sec. IV D), which is satisfied to high orders in the
1/N, expansion and flavor symmetry breaking. Never-
theless, large experimental uncertainties remain in the
I = 1 and 2 isospin splittings of the 4, and this prevents
a meaningful comparison of the predicted theoretical hi-
erarchy of many of the I = 1 and 2 mass relations with
experiment.

The experimental accuracies in Table II are to be com-
pared with the the combined 1/N, and flavor symmetry-

breaking suppressions of a given mass combination. Note
that the singlet baryon mass proportional to the opera-
tor IL is order N„and so the 1/N, suppression of each
mass combination relative to this singlet mass contains
one more power of 1/N, than what is listed in the table.
In the following four subsections, we analyze the mass re-
lations arising in the I = 0, 1, 2, 3 channels, respectively.

A. I = 0 mass relations

There are eight linear combinations of the octet and
decuplet masses which transform as I = 0: A, B, and

1
Np ———

2
1

Zp ———
3
1

~p
2
1

Ap ———
4
1
3
1

~p
2

(4.1)

—(Ao —320+ 3:-0 —0) = 0,
2

(4.2)

The experimental accuracy for this mass combination is
order 1, as expected.

The eight I = 0 mass combinations in the first
block of Table II correspond to the eight operators in
Eq. (3.4). Each mass combination is assigned definite
1/N, and SU(3) flavor symmetry-breaking suppression
factors. The SU(3) flavor symmetry-breaking assign-
ments are easy to understand: The octet combinations
arise at first order in e, the 27 combinations at order
c, and the 64 at order e . The experimental accura-
cies in the last column of Table II allow us to compare
the relative suppressions of each operator in the 1/N,
expansion; values are given for all of the mass com-
binations except the singlet combination c~p&, which is

not suppressed. The experimental accuracies exhibit
the hierarchy predicted by the combined 1/N, and fla-
vor symmetry-breaking suppressions; mass combinations
which are more highly suppressed in the 1/N, and e ex-
pansions correspond to proportionally smaller numbers
in Table II. In addition, comparison of the experimental
accuracies of the mass combinations c~2~ and c(z) indi-

cates that the flavor symmetry-breaking parameter e is
indeed comparable to one factor of 1/N, .

I = 0 mass relations are obtained by successively ne-
glecting operators in the mass expansion. The most
highly suppressed operator is the unique 64 operator oc-
curring at order e /N, in the coinbined 1/N, and flavor-
breaking expansions. Neglect of this operator yields the
mass relation
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with an expected relative accuracy af e /IiI . The naive
estimate of the quantity e /N is consistent with the ex-
perimental value (0.09 + 0.03)%. At next subleading or-
der O(e2/K, ), the operator clsi is neglected, resulting
in the mass relation

t'3
2

~

—A+ —Zo ——(Ko + =o)i4 4 2

masses in a 1/K, expansion alone, in contrast to the com-
bined 1/K and Ravor symmetry-breaking expansion of
this work. In the 1/N, expansion, the most highly sup-
pressed I = 0 operators are O(l/%, ), namely, the op-
erators with coeKcients c 3, c 3', and c 3' . Neglect of8,0 27,0 64,0

these operators yields the three mass relations in Table II
corresponding to these three coeKcients. An equivalent
set of mass relations is

= ——(4Ao —5Zo —2:-o + M).
7

(4.3)

Note that the left-hand side of Eq. (4.3) is proportional
to the Gell-Mann —Okubo formula, whereas the right-
hand side is one linear combination of the two decuplet
equal spacing rules [Eq. (4.2) is the other]. The pre-
dicted e /N, accuracy of relation (4.3) is consistent with
the experimental value. To next order in the combined
1/% and e expansions, one neglects the two mass oper-
ators c(3) and c(2) occurring at the comparable orders8,0 27,0

O(e/K, ) and O(e /N, ), respectively. The two mass rela-
tions listed in Table II are satisfied at the expected level
of accuracy. Note that mass relation c(2) is satisfied
to a somewhat greater level of accuracy than mass rela-
tion c(3), although both are consistent with the canonical
values from the combined e and 1/N, expansions with
natural-size coeKcients. By neglecting the c(2) opera-
tor, one obtains another mass relation at O(e/K, ), with
canonical accuracy af 3% as compared ta an experimental
value of 6%. The two final mass combinations ci'i and

cI&i arise at the comparable orders 1/N, and e, respec-
tively, and so neither operator can be neglected relative
to the other, and no additional mass relation is obtained.
It is valid, however, to neglect the c(2) operator relative

to the cIoi operator when considering the 1/K, expan-
sion in the singlet channel. The mass relation following
from the neglect of the cI&i operator J /%, in the singlet
mass expansion is the trivial relation which equates the
average octet and decuplet masses:

1—(2'+ 3Zo+ A+ 2:-o)
8

10
(4Ao+ 3Zo+ 2:-o + 0). (4 4)

1, , 1 (15 3 3
~, [(J')s)2 —(1')i(2] = ~, I 4

—
4

= ~, (45)

which is consistent virith the experimental value of 18%.
Finally, we consider how our results relate to previ-

ous analyses. It is possible to analyze the I = 0 baryon

The predicted accuracy of this relation, which is a mea-
sure of the size of decuplet-octet mass splittings, is of
order

~o —Zo = =o —=o [(0 88+ 0.02)%],
3 1 1 1—A + —Zo ——(No + o) = ——(n —Zo —-o + Ao)
4 4 2 4

[(0.16 + 0.01)%], (4.6)
1—(~o —&o) —(=-o —~o) + —(~ —=-o) = o2. ' 0 0

where the first relation is a linear combination of the
c 3, c ', and c 3' mass relations; the second is a lin-8,0 27,0 64,0

ear combination of the c(3) and c(3) relations; and the270 64,0

third is the
cist'

mass relatian (4.2). Equation (4.6) is

the set of mass relations obtained in Refs. [4,12] using

SU(2)xU(1) symmetry. Since the cist, cist', and
cist'

operators are the I = 0 operators associated with the
2695 of SU(6), these relations also were obtained in
the SU(6) I = 0 analysis af Refs. [23,24,26]. The ex-
perimental accuracies of these relations clearly exhibit
the hierarchy e/N, :e /N, :e /K, , and so there is evi-
dence for both the 1/K, and flavor-breaking suppres-
sions. In a second analysis, Ref. [12] obtained I = 0
mass relations valid at linear order in the Bavor symme-
try breaking c and neglecting operators suppressed by
1/N, . This analysis corresponds to the neglect of the

8,0 27,0 27,0 64)0
c(3) c(2) c(3), and c(3) operators, all of which are sup-

pressed by 1/K, and/or e . The four resulting mass rela-
tions [see Eqs. (10.11)—(10.14) of Ref. [12]] are the Gell-
Mann —Okubo formula, the two decuplet equal spacing
rules, and E0 —E0 = 0

— 0. In our analysis, the same
set is obtained by truncating at order e/%, e /N, in
the combined 1/N, and flavar symmetry-breaking expan-
sions. The analysis of this work, however, exhibits the
complete 1/K, and symmetry-breaking structure of these
relations, and obtains the one additional relation at order
e/N, . From our analysis, we are able to conclude that the
1/K, and flavor symmetry-breaking suppression factors
are both required to describe the observed hierarchy of
the I = 0 sector.

H. 5 = 1 xxxass relations

There are seven I = 1 mass combinations: six I = 1
mass splittings

(4.7)

This relation is also satisfied by one-loop diagrams in chiral
perturbation theory [30].
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and one oK-diagonal mass AZ .
The most highly suppressed I = 1 operator in the com-

bined 1/N, and flavor-breaking expansions is the unique
64 operator occurring at order e'e /N, . Neglect of this
operator yields the mass relation

10Z1 + 10 1:0 (4.8)

N1 —Z1+ =1 ——0, (4.9)

which is known to be very accurate; the experimental ac-
curacy for this relation is consistent with zero. The cen-
tral value, however, is completely in line with the naive
estimate of the quantity e'e/N, , where e' is numerically
about 1/N, in QCD. More accurate measurements of Zi
and:"1 are required to fully test this relation at the level
predicted by our analysis. Notice that the two combina-
tions c~~& and c s' are exactly the same order in 1/N,27) 1 27)1

and flavor breaking, and exhibit the same combinations
of octet and decuplet masses. Thus, an equivalent, sim-
pler pair of mass relations at order e'e/N, is

Ni —=i + 2~3AZ = 0,

4, —3Z,*—4=-*, =0.
(4.10)
(4.11)

Relation (4.11) is satisfied to an experimental accuracy
of (0.27 + 0.10)%%uo. Again, the large uncertainty in Ai
prevents a meaningful comparison of this value with the
theoretical accuracy of e'e/N, . The other two relations
at this order in the expansion, c~sI and Eq. (4.10), involve

the unmeasured AZ mass, and cannot be compared with
experiment. Finally, the two remaining mass combina-
tions c~1) and c~z) both appear at order e' in the combined

1/N, and flavor symmetry-breaking expansions, and so
neither operator can be neglected relative to the other,
and no additional mass relation is obtained.

Comparison of our I = 1 mass hierarchy with experi-
ment is limited by the large experimental uncertainty in
the splitting L1 and the presence of the unknown param-
eter AZ . It is possible to extract additional information
about the I = 1 mass hierarchy by eliminating these un-
certain parameters. One may add to a given mass combi-
nation any other combinations which are of the same or
higher order in the combined flavor and 1/N, expansions.
Such a linear combination remains at the same order in
the combined expansions as the original one, although it
no longer necessarily corresponds to a single SU(3) rep-
resentation. We use the c~sl mass relation Eq. (4.8) to
eliminate L1 &om all other I = 1 mass combinations,
and Eq. (4.10) to eliminate AZ . In its own right, this

with a predicted accuracy of ~'e /N, = 10 . A mean-
ingful comparison of this suppression factor with exper-
iment is not possible at present because of large exper-
imental uncertainties in decuplet I = 1 splittings, par-
ticularly L1. At next subleading order in the combined
1/N, and flavor symmetry-breaking expansions, one ne-

8,1 27, 1 27,1 10+10,1glects the four operators c~3), c~2), c~3), and c~3)
occurring at comparable orders e'/N, and e'e/N, The.
c(3)

' mass relat1on is the Coleman-Glashow relation10+10,1

equation predicts

AZ = —1.47 + 0.17 MeV. (4.12)

We now analyze the results of these substitutions. The
c

(3)
' mass combination does not invo 1ve eit her 41

or AZ, and so is unafFected by this procedure. With
these substitutions, the four remaining mass combina-
tions c~i, c~~, clsl, and Eq. (4.11) reduce, respectively,8)1 8)1 8)1

to the four mass combinations given in the third block
of the I = 1 sector of Table II. Note that the 1/N, and
flavor symmetry-breaking assignments of these combina-
tions are identical to those of the original SU(3) combina-
tions. The assignments for the third combination do not
appear in the table; it is the linear combination of c~3) and

Eq. (4.10) which eliminates AZ, and so combines order
e'e/N, and e'/N~ contributions, which are comparable in
the combined 1/N, and flavor-breaking expansions.

From experimental values for these four mass combi-
nations, we conclude that our predicted flavor-breaking
and 1/N, hierarchy is also evident in the I = 1 splittings.
The first two combinations are expected to work at the
level e /N„and their experimental accuracies are similar
and consistent with e' = 1/N, . The last relation

Z*, =2=*, (4.13)

has an expected accuracy of e'e/N, . The central value
of the experimental accuracy is consistent with a sup-
pression of e/N, relative to the first two mass combina-
tions. The error on this experimental accuracy is large,
however. The central value of the experimental accuracy
of the third relation is surprisingly small, but its uncer-
tainty puts it into the same range as that of the fourth
relation. Likewise, the central value of the experimental
accuracy for the c~3)+

' relation lies within this same
range. However, none of these last three relations is mea-
sured accurately enough to test our predicted hierarchy
conclusively. Reasonable improvements in the measure-
ment of I = 1 mass splittings would enable a substantive
comparison.

C. I = 2 mass relations

There are three I = 2 splittings:

Z, = (Z+ —2Z'+Z ),
~, = (~++ —~+ —~'+ ~-),
Z~ = (Z*+ —2Z* + Z' ).

(4.14)

The most highly suppressed I = 2 operator in the com-
bined 1/N, and flavor-breaking expansions is the unique
64 operator occurring at order e"e/N, . Neglect of this
operator yields the mass relation

L2 ——2Z*, (4.15)

with a predicted accuracy of e"e/N, 3 x 10 . A
meaningful comparison of this suppression factor with
experiment is not possible because of large experimental



292 ELIZABETH JENKINS AND RICHARD F. LEBED 52

uncertainties in the decuplet I = 2 splittings. The two re-
maining mass combinations c

2&
and c~3' are both order272 272

e"e/N, and so neither operator can be neglected relative
to the other, and no additional mass relation is obtained.

The hierarchy of I = 2 mass combinations is com-
pletely consistent with the predictions of the combined
1/N, and Havor-breaking expansions. Recall that the
I = 2 Havor symmetry-breaking parameter e" is compa-
rable to the I = 1 parameter e'. Notice from Table II
that all I = 2 combinations (and hence any linear com-
bination of them) are suppressed by one factor of 1/N,
relative to the largest I = 1 combinations. The experi-
mental accuracy of the c~z~ combination is suppressed at
this level relative to the two measured O(e') I = 1 mass
combinations in Table II. The c~3~ combination may also
be suppressed at this level, but its experimental accuracy
is too poorly known. In ad.dition, these two I = 2 combi-
nations are predicted to be suppressed by e" = 5 x 10
relative to the largest I = 0 mass combination c2', and
consistency with this prediction is also borne out in Ta-
ble II. Unfortunately, however, the uncertainties of the
experimental accuracies for the I = 2 mass combinations
are substantial compared to their central values, and so
one cannot draw definitive conclusions about the accu-
racy of the observed hierarchy &om the I = 2 masses.

D. I = 3 mass relations

The lowest-lying baryons admit only one I = 3 split-
ting:

(4.16)

This mass combination corresponds to the single I = 3
operator, with coefFicient c~3~, which arises at order
e"e'/N, in the combined 1/N, and Havor-breaking ex-
pansions. Neglecting the c~3~ operator yields the mass
relation

(4.17)

The suppression factor e"e'/N is second order in the
isospin-breaking parameters, and so is much smaller than
any of the other suppression factors in our analysis.
Thus, we expect violations of Eq. (4.17) to be quite small.
A naive estimate of the size of Lq gives of order 10 MeV
at most. A calculation [29] of this quantity in chiral
perturbation theory, including loop effects, does not alter
this conclusion. We have used the extreme accuracy of
the mass relation (4.17) to eliminate the unknown 4
mass in the I = 0, 1, 2 L mass splittings.

V. COMPLETELY BROKEN SU(3) SYMMETRY

The analysis of the I = 0, 1, 2, 3 baryon mass split-
tings can be performed using only SU(2) x U(1) Havor
symmetry. Such an analysis yields mass relations which
are valid to all orders in SU(3) symmetry breaking. In
this section, we reanalyze the baryon isospin mass split-

tings using SU(2) x U(l) Havor symmetry, treating isospin
breaking as a small perturbation. The relevant spin-
Havor symmetry group is SU(4) x SU(2) x U(1), where
the SU(4) factor is the spin-Havor group of the two light
Havors u and d, the SU(2) factor is strange quark spin,
and the U(l) factor is the number of strange quarks. The
analysis of the I = 0 sector was performed in Refs. [4,12],
and so we restrict the analysis here to I = 1, 2, 3 mass
combinations.

The SU(2) x U(1) operator analysis uses 1-body op-
erators with definite isospin and strangeness instead of
operators with definite SU(3) transformation properties.
In particular, this implies that the 1-body operators
J„'& ——J„' + J& and J,' are used instead of J' and G',
and that the strange quark number operator N, is used
instead of T . An I g 0 operator has the generic form

(5.1)

c(l)I +c(2) (J,G ))
C

(5.2)

at leading order, 0(e'), in the combined 1/N, and
isospin-breaking expansions, and four operators at next-
to-leading order, O(e'/N, ) or O(e" /N ),

gl ~Is dl 8 (Ji Gis)
C C

+ d(2) (I,I j + d(s) (I, (J,', G' j).
C

(5.3)

The operators in Eqs. (5.2) and (5.3) are understood to
possess a single value of isospin as indicated by the coefIi-
cient superscripts; the subtraction of smaller isospin rep-
resentations than the one indicated is implicit. The I = 2

where I = p + q, times polynomials in N, /N„ I /N, ,
and 1 /N, (see Ref. [12]). In analogy with Sec. II, we
will restrict our analysis to the 11 isospin mass split-
tings of the physical baryons. For N ) 3, we identify
the physical baryon states with states at the top of the
weight diagrams (Figs. 3 and 4) that have strangeness,
isospin, and spins J, J„g, and J, of order 1. The op-
erator (J,', G's) has nontrivial matrix elements of order

for the physical baryons, and so the matrix elements
of I and (J,', G' )/N, are both order 1 for these states.
When we restrict our set of baryon states to the physical
baryons, we only need to retain operators up to 3-body
operators; 4- or higher-body operators are either redun-
dant or vanish on this set. For N ) 3, we 6nd a total of
11 independent 0-, 1-, 2-, and 3-body operators. These
same 11 operators also result &om immediate specializa-
tion to N = 3.

The ll I g 0 operators which span the I = 1, 2, 3
isospin splittings of the baryon octet and decuplet are
generated using Eq. (5.1) and truncating at 3-body oper-
ators. In the following, we treat isospin symmetry break-
ing perturbatively. Because the isospin-breaking param-
eters e' and e" are both comparable to effects of order
1/Ns, it is sufHcient to work to linear order in these pa-
rameters. There are two operators
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operators appearing at next-to-leading order originate
in electromagnetic interactions, as discussed in Sec. III,
with comparable coefficients [O(e")] to those of I = 1
operators [O(e')]. Note that there is one additional oper-
ator which must be included for N & 3 if one does not
restrict to physical baryons, namely, the 4-body operator

C

(5.4)

Finally, there are four additional 3-body operators
at O(e'/N ) or O(e /N ), (I,I ), (J,I ), N I,
and N, (I,I ), and one additional 3-body operator
(I,(I,I )) at O(e"e'/N, ). This last operator is second
order in isospin-breaking parameters. Note that there are
additional higher-body operators at these orders which
must be included if the set of baryon states is not re-
stricted to the physical baryons.

Mass relations are obtained by successive neglect of
1/N, suppressed operators. At leading order in the com-
bined 1/N, and isospin-breaking expansions, one retains
the two operators Eq. (5.2), which implies five mass re-
lations amongst the seven I = 1 combinations. One ob-
tains this same number of mass relations in the pertur-
bative SU(3) analysis of Sec. IV, but the spaces spanned
by these two sets of relations are not equivalent, because
the operator bases are not exactly the same. Specifically,

10' = Ay [(0 19 + 0.10)%],
—3' + (Eg —=g) + 2(Z~ —:-~)= 0

[(0.002 + 0.016)%],

2(Zg —Z*,) —(:-j —=*,) = 2+3AZ .

(5.8)

(5.9)

(5.10)

The Anal relation predicts

AZ = —1.20 + 0.43 MeV. (5.11)

In addition to the I = 1 operators, two I = 2 operators
appear at O(1/N, ), and so there is one I = 2 relation at
this order,

2Zg —3Ag+4E~ = 0 [(0.20 + 0.08)%], (5.12)

remain. This counting seems to be at odds with the 1/N,
factors given in Table II for the perturbative SU(3) case.
In the SU(3) analysis, one forms symmetric and anti-
symmetric combinations of an O(1/N, ) and an O(1/N~)
operator to obtain the pure SU(3) 27 and 10+10 repre-
sentations, so that one finds instead two O(1/N, ) com-
binations. In the present analysis, these two operators
remain unmixed. We find that none of the combinations
associated with the pure SU(3) representations survive
at this order [because SU(3) is completely broken, this
result is perhaps not surprising]. A convenient choice for
the set of three I = 1 relations at O(l/N, ) is

(5.5)

where

(J„'~,G' j = —(N, —N, + 2)I (5.6)

by the operator identities [12], and so the SU(2) xU(1)
case introduces a higher-order piece (the N, I ) than
present at the same order in the SU(3) case. Never-
theless, four of the five relations coincide; they may
be written as the combinations c~3~, c~&&, c~3~+ ', and

c~zl from Table II [the combination c~zl is broken by
64, 1 271

Eq. (5.2)]. However, there is no reason to single out
combinations corresponding to unique SU(3) represen-
tations in the completely broken SU(3) analysis. We in-
stead choose linearly independent combinations with the
smallest possible experimental uncertainties, so that one
obtains the most stringent test of the 1/N, hierarchy.
From Eq. (5.3), one sees that two new I = 1 operators
appear at next-to-leading order. Thus, two of the Ave

O(1) relations are broken at O(l/N, ); we choose them
to be the Coleman-Glashow relation (4.9) and the com-
bination

3N1 —-1 —2:-1 = 0 [(0.12 + 0.02)%], (5.7)

where the number given is the experimental accuracy of
the relation as defined in Sec. IV. Furthermore, since the
two leading-order operators (5.2) are I = 1, no I = 2
or I = 3 splittings are produced at order 1 in the 1/N,
expansion.

At next-to-leading order (5.3), two new I = 1 opera-
tors appear, and so we expect three I = 1 relations to

and one I = 3 relation (4.17). All of these relations are
violated at order 1/N, ; the I = 3 relation also requires
an additional factor of isospin breaking.

The immediate conclusion we obtain from the anal-
ysis of this section is that the SU(2) x U(1) analysis
does not produce as good a hierarchy as the perturba-
tive SU(3) analysis of the previous section. If we believe
only in completely broken SU(3), then the O(1) I = 1

relations, Eqs. (4.9) and (5.7), should display accura-
cies of O(e'/N, ) 0.15%, and the O(1/N, ) I = 1 rela
tions, Eqs. (5.8)—(5.10), accuracies of O(e'/N~) = 0.05%.
In the SU(2) x U(1) analysis, we cannot explain why
Eqs. (4.9) and (5.9) work so well experimentally. This
fact provides additional evidence for the perturbative
SU(3) flavor-breaking analysis of Sec. IV: Not only are
the perturbative results consistent with experiment, but
the accuracy of some mass relations cannot be explained
otherwise. This conclusion is most obvious in the I = 0
sector; the analysis of this section shows that there is also
evidence for it in the I = 1 sector.

VI. CONCLUSIONS

In summary, we conclude that there is striking evi-
dence for the mass hierarchy predicted by a combined
expansion in 1/N, and SU(3) favor symmetry breaking,
with Qavor breaking treated perturbatively. Neither a
1/N, nor a ffavor expansion alone explains the observed
hierarchy. In addition, a 1/N, expansion treating only
isospin breaking perturbatively fails to explain the hier-
archy of the I = 0 and I = 1 mass combinations, and
so it is clearly better to treat SU(3) as a perturbatively
broken, rather than completely broken, symmetry.
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Our analysis explicitly shows that the combined expan-
sion differs &om the old nonrelativistic SU(6) analysis,
which neglected only mass combinations in the 2695. In
the 1/N, expansion, 2695 combinations are usually sup-
pressed by a factor of 1/N, , which accounts for the fact
that many of the 1/N, mass relations coincide with SU(6)
combinations. There are additional relations obtained in
the combined 1/N, and flavor expansion satisfied at the
same level of accuracy, however, which are not members
of the 2695 and are therefore missed in the old SU(6)
analysis.

Finally, it is important to emphasize that improved
measurements of baryon mass splittings (particularly de-
cuplet isospin splittings) are needed to test a number
of our mass relations at the level of accuracy predicted

by the combined expansion. Even a modest decrease of
experimental uncertainties in some mass combinations
would be enough to permit one to distinguish conclu-
sively between the predictions of this method and those
of other possible hierarchies.
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