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Factorization versus duality in nonleptonic decays:
A quark model approach
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We study in a quark model the contradiction between factorization and duality found in non-
leptonic decays at next to leading order in 1/N„c oncentr ati ng on the quark exchange mechanism.
The contradiction originates in the fact that the standard factorization assumption approximates
the asymptotic final states by a nonorthogonal set of states, thus leading to an overcounting of the
decay probability. We consider a system with two heavy quarks treated as classical color sources
with constant velocity, and two mass-degenerate antiquarks. Exploiting permutation symmetry in
an adiabatic approximation, we find that the final state interaction restores duality. Three O(1/N, )
effects are exhibited: (i) a proper treatment of orthogonality yields a global correction 1/N —+ 1/2N
within a generalized factorization in the manner of BSW (such a factor was present in an ansatz by
Shifman); (ii) the distortion of the meson wave functions at the time of the weak decay; (iii) relative
phases generated by the later evolution. The latter efFect becomes dominant for light antiquarks or
for a small velocity of the final mesons, and may thoroughly modify the factorization picture. For
exclusive decay it may interchange the role of class I and class II final channels (but it does not
influence the sum I plus II), and for semi-inclusive decay it may lead to an equal sharing of the
probability between the two sets of 6nal states. In the heavy antiquark and large velocity limit, the
replacement 1/N, —+ 1/21V, is the dominant correction.

PACS number(s): 13.25.—k, 11.15.Pg, 12.39.Jh, 12.40.Nn

I. INTRODUCTION

While some progress has been made during these last
years in our understanding of semileptonic and leptonic
decay mechanisms, our understanding of nonleptonic de-
cays is still semiquantitative. Not to speak of the AI =
1/2 mystery, the nonleptonic decays of D and B mesons
are most often studied with the help of the standard fac-
torization assumption [I], the theoretical basis for which
exists only in the N —+ oo limit, or of the generalized fac-
torization assumption in the manner of Bauer, Stech, and
Wirbel (BSW) [2] which is a phenomenological ansatz.

The nonleptonic decay channels of heavy mesons are
an important issue and will grow even more so, since they
provide the cannels in which the CP asymmetries will be
looked for at B factories.

A critical study of factorization assumption is an ur-
gent task, and has indeed been started [3], at a time
when increasingly accurate experimental results teach us
that our present understanding of R -+ gK(K*), based
on the factorization assumption among other hypotheses,
severely fails [4].

It is usually claimed that the corrections to factoriza-
tion are due to a final state interaction (FSI). In a sense
this statement is true, but the proper meaning of what
is understood needs clarification. One of our aims in this
paper is to pursue this clari6cation in a simple model in
which the dynamics is rather transparent.

Furthermore, little is known about the validity of fac-
torization except that it is violated in low energy K ~ mm

and D + Kvr, KK, znr [5,6] channels where strong FSI
phases are experimentally known to be present, both

&om the direct analysis of weak nonleptonic decays and
from scattering experiments. The study grows more dif-
ficult at larger energies when more channels are cou-
pled. This happens when multiparticle channels come
in, particularly multipion channels, and also when sev-
eral two-body channels communicate via a strong inter-
action through quark exchange or quark-pair annihilation
or creation.

We will concentrate on two-body channels communi-
cating via quark exchange. In a Tamm-DancoK-type ex-
pansion, quark exchange is dominant since it needs no
quark pair creation or annihilation. Furthermore, it has
been stressed by Donoghue [7] that such a mechanism—0
might explain the D -+ PK decay amplitude.

On the other hand, Shifman [8] (see also [9]) has made
the interesting remark that beyond leading I/%, order
the factorization assumption simply violates duality. As
we shall show at length in this paper, this eKect is fully
related to final state interaction via quark exchange.

Indeed this comes &om the fact that in color space a
qqqq color singlet can be decomposed in two ways into
two qq color singlets, but the two resulting states are not
orthogonal to each other [9]. At the time the weak decay
of the initial meson creates a qqqq color singlet, the four
quarks interact strongly with one another. It is impossi-
ble to tell that one qq pair is in one meson and the other
pair in another meson. However, the system evolves, and
eventually splits into two qq color singlets that are spa-
tially distant and hence orthogonal. During the entire
period of the interaction, one given quark does not know
with which antiquark it is paired. This is exactly the
situation which is expressed usually by the expression
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"quark exchange. " What is depicted by this expression is
not a simple and instantaneous exchange of a quark &om
one meson to another, but a period of overlap of the two
mesons, resulting finally in a nonvanishing amplitude for
an exchange of a quark.

The factorization assumption totally overlooks this
complex mechanism, as it simply computes the overlap
of the qqqq system resulting &om weak decay with the
final mesons. Two nonorthogonal states are taken as an
approximation of boo distinct final states which are ob
viously orthogonal. Once one realizes this, it is not a
surprise that one encounters some problems with proba-
bility conservation.

Our aim is mainly to understand better this interaction
mechanism in a simple model, to check that when the dy-
namics is correctly treated there is no contradiction with
duality, and to identify the difFerent efFects contributing
at next to leading order in 1/N .

We will work in the kinematical situation considered by
Shifman [8], in a Hamiltonian approach, namely, a quark
model one. In Sec. II we will rephrase duality in the lan-
guage of closure theorem and reexpress the contradiction
between factorization and duality. In Sec. III we will
present a quark model, with an adiabatic approximation
and mass-degenerate antiquarks, and we will exploit the
resulting permutation symmetry to compute the S ma-
trix and the weak decay amplitude. In Sec. IV we will
conclude.

II. DUALITY VERSUS FACTORIZATION;
REPHRASING THE PROBLEM

Let us recall the ideal process which is studied in [8].
There are three heavy quarks A, B,C and two light an-
tiquarks n, P. We will assume the latter to be heavy
enough to justify the use of the quark potential model
which will be our tool all along.

The process under study is the weak decay

Pg~ —+ Mg~ + M~p, M~p + Mg~

A. Relation between duality and the closure theorem

In [8] Shifman exhibits a contradiction between duality
and. the standard factorization hypothesis also encoun-
tered in [9] while studying AI' for the B, B,-system.
We will study this issue as a contradiction between the
closure theorem and the standard factorization hypothe-
sis. Indeed, duality is related to the closure theorem in
quantum mechanics as we will now recall.

Let us call generically ln) all hadronic states built up
with quarks B,C, A, P. Calling Hw the weak Hamilto-
nian, the state HwlP~ )is co-mposed of the four quarks
B,C, n, P. The decay width of the P~ meso-n is given
by

I'(P&-) = ):(P& IHwl~)(nlHwlP& )~(E @& )
n

= ) .(P&alHw lii)~(H @&a)(~IHw IP&-) (~)

where E~- is the initial energy, E is the energy of the
state ]n), H is the strong Hamiltonian (Hln) = E ln)),
and the sum is to be understood as a sum over discrete
states and an integral over continuum states. The set of
states ln) is a coinplete set. The sum could be expanded
on any basis, and in particular on the basis of the &ee
quarks B,C, n, P. This is where the closure of the Hilbert
space comes in.

Now, H = H + V where H, stands for the kinetic
energy and V for the potential. Whenever the contri-
bution &om V can be neglected in &ont of H„one re-
covers lowest order duality, i.e., the simple parton model
with no perturbative corrections or nonperturbative ones
&om higher dimension operators. We do not want to go
into the question of when this approximation is valid,
and how to get better approximations. We simply want
to rephrase the contradiction between factorization and
duality as a contradiction between factorization and clo-
sure, and then go into a simple model to show how the
dynamics solves this.

where P~- is pseudoscalar meson composed by A and n
and M~- represents any meson composed by B and a.

The following relations are assumed [8]:

M& —M& —=M, M& —2M+4, AcD «~ «M,

to which we add

Amoco (( m~, m&

to justify the use of the quark model.
We cannot find. a physical example of such a situation.

If the s quark was heavy, the ideal situation assumed in
[8] would be realized by the couple of decay channels:

Bg w D K,D+K

B. Contradiction between factoriration and closure

Let us consider, for example, the weak Hamiltonian

Hw = 2~2G[Ci(Bp„LA)(Cp" LPa) + C2(Bp„LPa)
x (Cp"LA)], (4)

where L = (1 —ps)/2 and Ci and C2 are coefficients that
we do not need to specify in this paper, although they
are reminiscent of the familiar coefBcients in the efFective
weak interaction Hamiltonian.

At the time t = 0 the weak Hamiltonian acts on the ini-
tial meson and produces a state that contains the quarks
C, P, a, B. Let us call this state

l f). We find it conve-
nient for later use to decompose

l f) into its color part
and the remainder:
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If) = II~I&~=) =
8~) Sp) C~)

8~) 8+) C~) C~

1
+Bi+ p) 2 +ci&p) &B|&s] I ) pc) c) CC) P) pp& sp) cp) B p)B s)B) cBj &)pa) sa) ca)) (5)

C

where pc, sc, cc (p&, s&, c~) labels the momentum, spin, and color of the (anti)quark C (P) and X, is the number of
colors. The function @ may be computed from the wave function of P~ an-d the operator II~ in (4). However, we
will skip this computation since the precise expression for 4 is not relevant for our argument.

lt is obvious that

with

dpcdppdpBdpa 4'(pc) sc) pp) sp) pB) B)pa) a)
8~) Sp) C~) Cp)

Spy ) 8))), ) Cgy ) C~

Let us also decompose the meson wave function into a color part and the remainder:

) J 4'cppp4'
p(

cp, cB, pp&p), p, l+ pp Bc ~ pppp, p, ~p)B
8~ ) Sp )C~ )Cp N.

and analogously for all quark-antiquark pairs. The vj -'s form a complete orthonormal basis of the spin-inomentum

CP Hilbert space. Let us now define the spin-space overlaps:

8~)Sp)S Sg

dpcdp&dpBdp @(pc sc -pp sp pB sB p s )

(m)x0 -(pc, sc, pB, sp)OB (pB, sB,p- -s-)

and analogously for the alternative grouping of quark-
antiquark pairs: Cc).;BP. Closure in the CP and Bn
spin-momentum subspaces implies that

Up to now all equations were exact. Now we shall for-
mulate in our formalism the factorization approximation
by assuming that the decay amplitudes are well approx-
imated by the overlaps:) K~P B—K~P B K

and analogously

(n, m) * (n, m)) z z =z.
A)m

(10)

T P~- —+ M "-MB M "-MB

T P~- —+ M "-;M~( M "-M~ (14)

(fiM' ';MB-.') =,Z'"-l,

(fiM("', Mc ) = a,Z'",-i,
with

C2
ag ——Cg + N '

Cg
a2 = &2+ N

From Eqs. (5), (8), and (9) it results that

(12)

(13)

More precisely, the standard factorization assumption
[1] uses Eqs. (12), (13), and (14) with Ci, C2 com-
puted from the electroweak theory complemented with
QCD radiative corrections. Bauer, Stech, and Wirbel [2]
have proposed a phenomenological factorization assump-
tion that keeps Eqs. (12) and (14) but with ai and a2
6tted to all known D, respectively B, decays.

Within standard factorization, summing over all two
meson final states and using Eqs. (5), (7), (10), (ll),
(12), (13), and (14) we get
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) ~T (P~- m M"-M~ ) ~*+ ~T (P&- -+ M"-M~ ) ~~ =
~ (C,*+C~~j(1+ ) +4

~

K. (15)

C2
ag ——Cg +

C

a2 = C2+
2N,

(16)

To leading order in 1/N„Eq. (15) gives the same result
as Eq. (6). In our present framework this refiects the
well-known fact that to leading order in 1/N, factoriza-
tion and duality are compatible. However, the O(1/N, )
corrections show a discrepancy, the contradiction stressed
in [8]. As suggested in [8], this discrepancy could be
cured, except for the 1/N, terms by using a phenomeno-
logical factorization with

Neither are these states eigenstates of the strong
Hamiltonian. Indeed, these states are built up &om two
asymptotic mesons combined via a plane wave for the
relative momentum between the two mesons. When the
two mesons lie far apart, the simple product of their wave
function is an eigenstate of the strong Hamiltonian. How-
ever, in the states we consider there is a non-negligible
contribution with the two mesons overlapping in space
where they strongly interact, leading to an important
distortion from the simple product of asyxnptotic Ineson
wave functions.

cp Bn xxp c~

in general. This overlap is O(1/N, ) as can be easily de-
rived from the color part in wave function (8):

1

k N; ) &c ic~,cn, cs

1
beg, cs ~cg, cg ~cp, cs ~cg,cg

C

(i8)

It is easy to check that (17) is at the origin of the dis-
crepancy between (15) and (6).

However, in our &amework it is easy to trace back the
origin of the discrepancy. The fact is that the set of states

~

M&~&) M&~ )
& ~M&~&~ M&~

&
is not an orthonormal basis

of the Hilbert space. The states are normalized, but they
are not orthogonal:

III. ADIABATIC QUARK MODEL
WITH DEGENERATE ANTIQUARKS

A. 8 matrix

Let us first consider an oversimplified model. We will
assume all quarks to be spinless and a and P to be degen-
erate in mass: m- = m& = m. Next, B and C being very
heavy, we will treat their motion as classical. They are
supposed to move head-on with velocity v". As a function
of time t the spatial coordinates of B and C are

r~ ———r~ ——vt.

From now on the mesons will be assumed to have their
center of mass localized in configuration space, at the
position of the heavy quark, and we will neglect O(1/M)
corrections. The fact that the heavy quarks meet at the
origin, i.e., that their impact parameter is zero, means
that our model will describe the S-wave channel.

Concerning the Hamiltonian for the antiquarks P and
6 we will use a color potential introduced in [10]:

I'- 2

H(t) = + + ) Ax3A V(r" —vt) + A&A V-(r +-vt) + AIBA&V(-rp —-vt)
2m 2m a

xA&A)V(r&+ vt) + A APV(rp —r"-) +-A&AxxV(2vt) (2o)

where A& is the Gell-Mann SU(3) Hermitian matrix applying to quark C, etc. , and where —V(r) is a rotation-invariant
confining potential, so that color-singlet xnesons are bound together (the A A factor is negative on a singlet). The
Hamiltonian is bounded from below when restricted to overall color-singlet states.

H(t) in (20) is invariant for the permutation P = a ++ P. It results that all eigenstates of H will be eigenstates of
P with eigenvalue +1. The asymptotic states, when T ~ +oo, are built &om simple products of the mesonic wave
functions whose center of mass are located at kvT:

~2~D+"-, T& = [M&",)(—~)& g ~M&:)(~)&+ ~M'".'(-~)& g ~M'-, '(~)&,

where the M& )(r) states are the mesons states defined
froxn Eq. (8) by a Fourier transform on the center-of-
mass variable. We will assume the evolution in time to
be adiabatic; i.e. , we assume that the state ~(D+' ', t)

I

evolves in tixne by remaining an eigenstate of H(t) for all
t. We will further assume that during the evolution the
fundamental states ~D+'0'O, t& never cross other states.
It results that the two-dimensional subspace spanned by
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~D+ ', t) is stable under the action of the strong Hamil-
tonian, i.e., that any state within this subspace evolves
into a state within this subspace at a later time. Con-
sequently, the 2 x 2 restriction of the S matrix to this
subspace has to be unitary. We will now restrict our-
selves to the study of the strong interaction scattering
process of these two fundamental states. At time t, the
eigenstates verify

H(t)]D+' ', t) = E+(vt)~D+' ', t), (22)

where we made use of the fact that H depends on t only
through the product vt. The interaction between the two
terms on the right-hand side (RHS) of (21) is O(1/N, )
as already argued; see (18). Hence

f 1 )
E+(vt) —E (vt) = Oi

(Nc]
(23)

Asymptotically it is also obvious that

E+(Woo) = E (+oo), (24)

since the two mesons do not overlap, implying that the
two terms in the RHS of (21) become orthogonal.

In fact the two energies dier &om zero only when the
two mesons overlap and the overlap falls ofF exponentially
when vt ~ oo. In the basis ]D+' ', koo), (21), the S
matrix is diagonal and, being unitary, its general form is
written as

OO

S++ ——exp —i dt [E+(t) —E+(oo) ] (28)

where the interaction Haxniltonian has been taken to be
the total Hamiltonian minus the energy of two noninter-
acting mesons.

In the meson-meson basis,

~M" (—VW)) g ]M~ &(vW)),

~M~ &(-v~)) N ]M&'&(VW)),

(29)

the S matrix is written as:

2ib 2i perp 2ib 24' ~ in 24'

~ isin2$ cos2$ )
'

This matrix is, as expected, unitary and invariant for
the permutation P which permutes the lines and the
columns of the matrix. When the angle P does not van-
ish, there is a quark exchange between the mesons which
becomes maximal for P = vr/4. Actually, P = O(1/N, )
from Eq. (23). From Eq. (26), we see that P oc 1/v. The
reason for this is clear: The lower the velocity, the longer
the mesons overlap and can exchange quarks. We will
now return in our model to the contradiction discussed in
the preceding section between duality and factorization.
We work out an illustrative example of these features in
the Appendix.

(25) B. Final state interaction in our model

where

+ dz E+(z) + E (z) E+(oo) + E (oo)
v 2 2

dz E+(z) —E (z)
V 2

(26)

Indeed, the S matrix is given by

OO

S = T exp i dtHI(t)— (27)

which in our case of a state, say, ]+), which remains an
eigenstate of a time-dependent Hamiltonian with energy
E+(t), simplifies to

In this section we return to the weak interaction.
We consider here the exclusive decay channels P~-
M& M&& and P~- —+ M& M&&. Thanks to the state-(o) (o) (o) (o)

ment made in the preceding section that the subspace
spanned by these two Anal states is stable for the weak
interactions, we can safely forget all other channels in our
study of the FSI.

We now assume that the weak Hamiltonian acts at
t = 0, creating the heavy quarks B and C at r = 0.
The weak interaction creates a state

]f) as defined in
(5). When t = 0 an additional symmetry is present in
the strong Hainiltonian H(0): Invariance under permu-
tation of color labels C~ ++ C~ and consequently under

Cp E+ C-. It results that the ]D+ s'0, 0) states are even
(odd) under the color permutation P, : Cc ++ C~. Re-
stricted to the color-even (color-odd) sector the Hamil-
tonian H(0) reduces to

pp~ p~ 2(N +2)(N, pl)
( ) (

)-, 2(N, pl)~( )
2 +2m

C C

where the upper (lower) sign corresponds to color-even
(color-odd) states.

It is important to notice that to leading order in N the
Hamiltonian (31) is the same for color-even and color-

I

odd states. It results that in the % ~ oo limit, the
two-color wave function multiplies the same spatial wave
function for t = 0. I"urthermore, to leading order in N
the Hamiltonian (31) is equal to twice the Hamiltonian
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for one heavy-light meson: project the state
i f), (5), into the subspace

(,)
p' 2(N —1)(N, + 1)
2 N,

(32)
We have

R, = iD+ ",o) @ iD- ",o).

where p and r are the light quark momentum and posi-
tion. This means that to leading order in N the Hamil-
tonian (31) corresponds just to the sum of two noninter-
acting mesons superposed at the origin. This corresponds
to the factorization assumption.

Equation (31) exhibits a symmetry for the exchange
of spatial variables r- —+ r&. This symmetry is simply
a product of the color permutation symmetry P, valid
at t = 0, and the global permutation symmetry P, valid
for all t. The eigenstates of (31) are eigenstates of the
spatial permutation r- ~ r&, and it is not difBcult to
guess that the ground states are symmetric under the
latter permutation. This is illustrated in the Appendix.

Hence, restricting ourselves to the subspace spanned by
the two fundamental states, which are symmetric states
for the permutation r- ~ r&, we have P = P and we

(Ci + C2)(1 + ~i )(D+, 0, Ooif)
(2+ m )'

where S+ is the spatial overlap. As stated above S+ =
So+ O(l/N, ) where So is the spatial overlap of

i f) with
the direct product of two noninteracting mesons located
at the origin, i.e. , @( ) (r:)g( ) (rp), g(i) (r) being the
ground-state eigenfunction of H(i), (32).

The evolution forward in time of the states iD+ o o, t)
is obtained by replacing in (26) the —oo lower bounds of
the integrals by 0. It results, thanks to time reversal, in
phase shifts which are simply divided by 2: e'~+'~.

The resulting T matrix for the decay of the initial me-
son P~- into the fundamental mesons is

~ $ (c +c' )(1+—)s+
2(1+—')

(Ca+Ca)(1+ N )S+

2(1+N ) &

(Cg —Cg)(1——)Se'~ + Nc

2(1—
N )2

(C1—Cg)(1—1 )Se'~— Nc
1

2(1——) 2
(35)

To perform a systematic 1/K, expansion, let us first define ES+ by

as+S+ =—S'+
N (36)

Then, from (35) we obtain to first order in 1/N,

T(Pa -e M~&MeI ) = e' S -( (Ce

+i C2+

T(Pe -e Me-M )= e'eS-e( (Ce-
+i C1+

Cg+ 2N,

C1
2N +

Ci+ 2N

C2
2N, +

C, (b,s++As )+C, (AS+ —b,s-)
2Ã, So cos Fp

c' (as++as-)+c' (as+ —zs-)
2Nc So sin gy,

+ c (as++as )+c' (&s+ —&s )
2N, So cos rp

c', (as++as- )+c', (as+ —as- )
2Nc So sin cpy. (37)

Comparing (37) with Eqs. (12) and (14) we see that if
we take, in (37), b,S+ = P = 0, we recover the factoriza-
tion corrected in the manner of Shifman, i.e., with Eq.
(16). The global phase h is not relevant here. Conse-
quently we learn that this factor 1/2 in the manner of
Shifman is completed by two other eKects at the same
order in 1/N, : (i) the AS+ which reflect the difFerence,
at the time of the weak decay, between the total qqqq
spatial wave function and the simple product of the two
asymptotic meson wave functions; (ii) the phase P which
reHects strictly speaking the final state interaction. The
latter phase P, although 1/N suppressed, may becoine
very large when v -+ 0. For P = m'/2 the factorization be-
comes grossly wrong since the role of the two final states
is interchanged: The operator multiplying C1 in H~ pro-

duces dominantly the Mc M& — instead of Mc-M& as(o) (o) . (o) (o)

suggested by factorization, and vice versa for C2. In other
words, the class EI decays become dominant over the class
I when P = m /2. Still it should be stressed that the phase
P disappears when summing the probabilities for the two
channels in (35).

Furthermore, the dynamical origin of the phase P and
of the factors LS+ is obviously strongly dependent on the
precise nature of the decay channels considered. This in-
dicates that the efFects of P and b,S+ cannot be incorpo-
rated in a phenomenological factorization in the manner
of BSW, which assumes a given pair of constants a1 and
a2 for all the decay channels of a meson.

In the Appendix we have performed an explicit cal-
culation of b,S+ and an estimation of P for an harmonic
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oscillator potential. As can be seen &om (A9) and (A12),
P is always the dominant 1/N, correction when n and P
are light quarks, and when they are heavy, P still domi-
nates as long as vms & 1.

Let us now consider a more general case by first intro-
ducing spin.

Dcp;J3a, T)

(v~)) + IVcp( ~W—)V~.(-
2 )

C. Final state interactions
of the fundamental pseudoscalar and vector mesons

From heavy quark symmetry (HQS) we know that vec-
tor and pseudoscalar mesons are degenerate. HQS also
tells us that the heavy quark spin is conserved. This is
of course a trivial consequence of (20), but it is quite
general. For example, in (20) we might add a term cou-
pling the light quark spins, such as op 0.—,but all terms
including the spins s~ and sc are 1/M suppressed.

Restricting ourselves to a 0 total quark spin, the
ground states combine into four possible asymptotic
states: PcpPg~, VcpV~~, P&pPc~, and V&pVc~ (where
P stands for pseudoscalar and V for vector).

It is then convenient to use states with a given sym-
metry for Ps = sB ++ Bc. The relevant combinations
are

l
&cp&s=) +

l

~—cp ~~ )

)SP
~ ~

a~

2

Dc@;B,T)

3IPc—p( vT)P—g (T)-) —IV p( vT)—V (vT)-)
2

(»)
the strong Hamiltonian is diagonal in the basis where
both Pp and P = n ++ p are diagonal:

~2I'D+' ', T) = I'D '
, T-) + I'D ' —,T),T-++~ Ccx;BP '

~2lsD+, O, o T) I&D( ) T) / IsD( ) T)T~+~ Ca;BP '

(40)

The four states in (40) evolve diagonally under the
strong Hamiltonian and lead to four phase shifts given
by formulas similar to Eq. (26).

Next we make the assumption that
I f) defined in (5)

is odd under Ps.

IPcpP~=) —+ IVcp&~=)
2

�

3l pcs&s;) —i&ay—&a;)
jS

2

3IPcp P&~) I Vcp V&~)
, (38)

where VV' stands for V V' —V+V' —V V'+ with
0, +, —labeling the polarization of the vector mesons.

In fact, the first combination in (38) corresponds to
S~c = 0 (total spin of B and ( ) and the second to
S~c = 1. Using for large ITI the notation

Pslf) = —If). (41)

(
~, , lf)

+ )(+ —.)
(2+ ~ )' (42)

leading to

Relation (41) is a consequence of Fierz symmetry
whenever H~ is built up of Fierz-invariant currents, as is
the case in Eq. (4). The fact that Fierz symmetry trans-
lates into a spin antisymmetry as in (41) comes from
the fact that the Fierz transformation contains an ad-
ditional minus sign &om fermion Geld commutation. It
results that only the states

I
D+ ', 0) are produced dur-

ing weak decay, i.e., SBc ——0. The arguments &om the
beginning of Sec. IIIB to Eq. (34) may be repeated,
except that due to the spin asymmetry, the liD+'o'0, 0)
(I D ' ', 0)) is color odd (color even),

T(P~. ~'D"' ) =."
T(P~ -+ D( ' )

) = e's-

(C1 —C2)(1—~ )S+
1

(Cg —Cg)(1—~ )S+
1

2(1—~1 ) ~

+ (C, +C, )(1+—')S-
Nc

2(1+~ ) 2

(Ca+Ca)(1+ ~ )S
2(1+~ )' (43)

and, to first order in 1/N„

T(p — ~ M M( i — 9 ~sgoI t + c~ + ci(&&++&& ) —c~(&s+ —as )A~ CP B~j = 2e 2N, SO

+ C, + C (aS++aS-)—C, (gS+
2N, So sin +y,
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T(P M(p)M(p)~ )) )sSp). C ct c)(tths++As )—c)(bs+ —As )
A ~ ~- ~@) —2& 2N So

C, (AS++AS-) —Cg (b, S+—AS-)
SP sin EPf ) (44)

where g = +1 for longitudinal vector mesons and g = —1
for transverse vector and pseudoscalar mesons. The dif-
ference between the RHS of (43) and the RHS of (35)
comes &om the interchange of color symmetric with color
antisymmetric combinations as apparent when compar-
ing (34) and (42).

It is to be noted that the relation between PP and VV
production amplitude is exactly given by the fact that
only the D combination is created. Indeed, this relation
is a consequence of HQS and would only be corrected if
we considered the O(1/M) corrections. This relation is
not a surprise when one realizes that the conditions (1)
and (2) imply an S-wave-dominated decay.

D. Semi-inclusive decay

We have found important channel-dependent correc-
tions to factorization. We may still wonder if these cor-

rections are not washed out when we sum up on one side
all the decay channels M&-M& for all m, n, and on the(n) (m)

other side all the channels M&& M& . This is the aim of
this section.

I et us call 'R+(t) ['8 (t)] the Hilbert space spanned
by the set of states ID+', t), Vn, m [ID "',t), Vn, m]
defined in Eq. (21). 'R+(t) [R (t)] contains the even
[odd] states under the permutation P = n ++ P. The
latter commuting with the Hamiltonian H(t), the evo-
lution does not mix the spaces 'R+(t) and R '(t). We
shall call U+(tt, tq) [U (tr, t j( thee evolution operator in
'R+(t) ['R (t)]. U (ti, t2) are unitary.

As already stated in Sec. IIIB, H(0) is also invariant
under the color permutation P: t ~ ++ C~. For t = 0
the permutation P = P P„where P„—:p-, s- ~ pp, sp
(remember rB = rc = 0 for t = 0). We then decompose
I f) both into eigenstates of P:

(C, + C,)(b. ..,b. ...+ b. ..b. .,) (C, —C, )(b. ..,b. ...—b. ...b. .., )

'' If+)+
(Ci —C2)(b, ,sb, , —b, , b, , ) (Ci+ C2)(b, , b, , + (I), , (I), )

(45)

where
I
f+) are eigenstates of P with eigenvalue 6 and

I fs) contains the spin-space part of the wave function (5):

If') =
e~, sp, c~) cp,
s~) s~) c~) c~

X IC pci sci cct P) pp& spi cpt +t pB) sBi cB)ot P~ & sn) ca) & (46)

which is expanded into the eigenvectors of P„, I fg) corresponding to eigenvalues P„Ifg ) = kI fg ).
The norm of

I f+) is

(f+If+) = — (Ci +C2)'
I
1+

I
(f+If+)+(Ci+C2)' I

1+ ~ I
(f'If-') .

2 ) + + (47)

If we define (fg I fg ) = K~, then K+ + K = K as defined in Eq. (7).
As stated above,

if+) c '8+. (48)

The evolution toward a large positive time T leads to

If+(T)) = &+(» o) If+).

By unitarity the norm of If+(T)) equals that of
I
f+).

We get

&2T(P~ ~ D+' ' ) = (Ci + C2)(1 + ) &K+' S+' ' e'~+ + (Ci ~ C2)(1 ~ ) &K' S ' ' e'~-
C C

(50)

where S+' ' and )))+' ' are real numbers defined by
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y+ «tA « t\

S+ e
1 D+, «««, ««

l{f+(T)If+(T))) ' (51)

with

(T) = U (T, o)lf+(o)), (52)

f+ (f+) being the first (second) terms in the right-hand sides of (45).
Prom unitarity,

) (S.- ) +(S-'--)
m«n

(53)

which leads to

) T(P~ mD-+'"' ) =
~

C, 4- C2 ~ 2
k,m, n c

(54)

as expected from (6).
Finally,

T(P~ mM~ --~M~~"~) =

T(P~. +M~-. 'M—-'"~) =

(C + C )(14- —)S+'
~
~~I I

~

2

NI~c

~
NIC

~
~II

~
~ t

~

~

1

t~

~

~n(Cg —C2)(1 —~ )S+'

nr )'
(C +C )(1+—'. )S+' '"

2(1 ~ ~~ )*

(Cg —C2)(l —~~ )S+'

2(1 —~~ )«

~ ~+ «FA « fi

~

4 + « lA «Ae'—

~ ~+ « f7' «W

~ y+ «~ «We'—

(C~ —C.)(1 —~ )S+' '

(Cg 4- C2) (1 y ~ )S
2(l ~ ~ ) ~

(Cg —C2)(1 —~~ )S~'
2(1 —

+p' )'
(Cg + C2)(l y ~ )S '

2(14- ~ ) ~

ei&

Duality is fully verified since, summing over all states,

2 2) T(P .~ M'-'M'".') + T(P .~ M( M("-l)
m «n

Let us now consider the partially inclusive sums

2) T(Pg~ w M& — M~ )= E~p.~~ &—

m) n
2) T(P~ MM~ — M —)— = Z~ —~p.

m «n

Nothing general can be said. In the N —+ oo limit,

(56)

~+,m, n ~—,m, n )+i«««p««P i«««)«l
(58)

Assuming that for finite N, we keep the relations (58), we recover Shifman's ansatz:

Zcp. gg~ —— Cg —C2 1 ——& + Cg+C2 1+ —~ =K C~ ~ ~ ' ~O ~,
C

1 1~C' Hp 4 C& C2 ~ C1 + C2 ~ + ~ —~ C2 + ~ + O

If we made the opposite assumption that the relative
phases P+' ' —P+' ' are random, which might be rea-
sonable at small velocity, the result would be

Cl + C2 C1C2~cp a- —~c- ap —~ +
C
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C
~cp.B ~ +1 + y

C
W

+O
I

/1't

Ci (1&
E~ —.gyp oc Cz + (1 g) + 0 ¹)' (61)

with y depending nontrivially on the masses. In the limit
M~ ——Mc studied by Shifman one recovers his value

y = 1/2 as can be immediately seen from a symmetry
argument when Ci ——Cq. It is seen once more from (61)
that the FSI restores automatically duality.

IV. CONCLUSIONS

We have used a quark model where the motion of heavy
quarks is treated as classical and where we assume two
mass-degenerate antiquarks. We have used the result-
ing permutation symmetry to simplify the problem. We
have restricted ourselves to the qqqq sector, and we have
shown that the contradiction between stapdard factor-
ization and duality stems &om the nonorthogonality in
color space of the two d.ecomposition of the qqqq singlet
into two pairs of qq color singlets. Taking care to use an
orthogonal basis that diagonalizes the Hamiltonian, the
dynamics of this sector shows very clearly how the final
state interaction corrects standard factorization such as
to satisfy duality.

Shifman [8] has proposed to correct factorization by a
replacement of 1/N, by 1/(2N, ) while keeping the phe-
nomenological factorization in the manner of BSW. We
have shown that this effect is indeed present. However,
we find two additional efFects to same order in 1/N, . One
is related to the spatial distortion of the meson wave
functions at the time of the weak decay: The two mesons
overlap in space and hence interact strongly. This has
been expressed by our parameter AS+. The second and
more important additional effect is the phase difference
P between the permutation-even and permutation-odd
states when evolving after the decay until the mesons

that is, an equal sharing of the total probability be-
tween the two sets of channels. In the latter case, even
though we consider an inclusive sum, the final state in-
teraction has a nontrivial effect: The quarks have been
redistributed at random between the final mesons. Of
course such a random phase equal sharing may only hap-
pen when phase space allows for many final states to add
up in a random way.

As a side remark we would like to mention another, not
yet published, study that we have performed on duality
versus factorization. We have considered a model with
nonrelativistic scalar quarks bound to color singlets by
a color harmonic oscillator potential [10] without assum-
ing heavy quarks or using an adiabatic approximation as
done in the present paper. This model does not assume
Mc ——M~ or m- = mp. This model also automati-
cally restores duality, i.e., the conservation of probability.
Summing over all mesons in the limit in which the radius
R m oo one should find the &ee quark result. This is
indeed the case:
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APPENDIX: AN ILLUSTRATIVE EXAMPLE

As an illustration of Sec. IIIB, let us take, for the
potential V in (20) an harmonic oscillator potential,

N
4(N. -1) R" (A1)

so that the ground-state solution of (32) is

(A2)

are spatially distant. The latter efFect is O(1/N, ) but
also O(1/v) where v is the final meson velocity in the
total rest frame, and also O(1/mR) where m is the light
antiquarks constituant mass and R is the wave function
radius. This phase shift effect should dominate in the
small velocity regime for light antiquarks. Notice that
the velocity is indeed small in the kinematics assumed in
(1): 4 « M. For large velocity (relaxing the condition
4 « M) and for heavy antiquarks, the phase shift effect
vanishes.

We have seen that in the exclusive case, restricting
ourselves to the ground state mesons, the phase shift P is
the dominant 1/N, correction for small velocity and light
antiquarks, and it may produce a total modification of
the factorization assumption, which could, for P = vr/2,
be large enough to totally interchange the amplitudes of
the two channels, and lead to a dominant class II decay.
In an illustrative example treated in the Appendix the
t = 0 wave function distortion LS+ turns out to be small.
We ignore it if this is a general feature. If it were so, it
would indicate the validity of Shifman's ansatz for large
velocity and rather heavy antiquarks. Furthermore, since
we have restricted our work to the final state interaction
generated by quark exchange, the result does not depend
anymore on P when we add up the decay probabilities
into channels related by quark exchange, as is obvious
&om Eqs. (35) and (43). On such suins, factorization
with Shifman's ansatz would be a fair approximation as
long as the terms LS+ and nonquark-exchange final state
interactions are small.

In the semi-inclusive case we compare the total de-
cay probability into two sets of channels that correspond
to the two possible pairing of qqqq into two qq. Again,
the small phase shift, small distortion limit amounts to
Shifman's ansatz, while the opposite, random phase shift
limit amounts to an equal sharing of inclusive decay prob-
ability into the two sets of final channels. Again the lat-
ter situation may be reasonable in the small velocity case
provided many final states are kinematically allowed.
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where r = ~r .
For the spatial part of the wave function

~ f) we take,
in configuration space,

e(~c, rp, ra, r:) = Gy( )(ra)bs(rc)hs(ra)bs(rp), (A3)

proportional to the Fermi constant.
To compute the spatial overlaps S+ in (34), we need to

know the ground-state solutions of the Hamiltonian (31)
with (Al) for V. Let us change variables in (31):

which expresses the fact that the weak operator is local
and that the quark 6 is a spectator coming Rom the
P~- meson, i.e., in the ground-state wave function. G is

1
rP ——B —2r,

PP
——2P —P)

leading to

r- =B+-r,
=1P- = 2P+P, (A4)

P p (N +2)(N, gl) -2 (N, +4)(N, pl)
m 4m 4(¹—1)mR4 (N2 —1)mR4 (A5)

The ground-state solution, i.e. , the spatial wave functions of ~D+'o'o, 0) is

(N, +2)s(N, +4)k f (N, +2)&(r +ip) l -( (N, +4)k(r —r-p)'l
(N, +1)4Rsn~ ( 4(N, 61)~R2 4(N, 61)~R2 (A6)

The overlap is given by

S+ = f d sad r G@ (r" )-b (x )v)+-(r r-)--
4~ (N, +2) ~ (N. +4) 8

1 1 3
(N +2) &+(N +4) & +2(N +1)& R& m4

(A7)

where we have in (A3) left aside the b functions related to
the heavy quarks, since the latter are treated classically.
One has also, for the factorization hypothesis result,

0 1S =G
B&K4

(A8)

ZS+ 3
N. 'SN. (A9)

which turns out to be rather small, mainly because the
normalization factor compensates for a large part the
modification of the integral.

From (A5) we also get the ground-state energy

which is the @( )(0) coming &om the overlap of b(x"p)

with @ (rp). The overlap of @&x&(x"-) with itself gives
obviously 1. S in (A8) is obviously the N, ~ oo lixnit
of S+ in (A7).

To next to leading order in 1/N, the calculation of
AS+ defined in (36) is now straightforward froxn (A7)
and (As):

leading to

E+(o) -E (0) = +OI, I

~

6 (11
(A11)

To compute P we need, (26), to know E+(z) —E (z)
for all z P 0. This is not so easy to compute. We will

simply use (All) to make an order of magnitude esti-
mate. We will assume E+(z) —E (z) to be equal by
E+(0) —E (0) as long as the hadrons overlap, i.e., for

]z~ & cR where c is some number of order 1. Then

3c
mnRN,

(A12)

Although purely indicative, this result, besides con-
firming that P oc I/vN, also teaches us that mR is the
dimensionless number that gives the scale. %'hen a and
P are light antiquarks, it is known that mR 1. Com-
paring (A12) with (A9) and to the 1/(2N ) correction
in the manner of Shifman, we check that in the exclusive
case the phase shift P is the dominant 1/N contribution.

Remember that me assume here spinless quarks.
zThe wave function radius for the wave function (A2) is

(r z) = 3/2B2. Hence one might think of taking c 3/2.
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