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Breakup of hadron masses and the energy-momentum tensor of +CD
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Hadron masses are shown to be separable in +CD into contributions of quark and gluon kinetic
and potential energies, quark masses, and the trace anomaly. The separation is based on a study of
the structure of the @CD energy-momentum tensor and its matrix elements in hadron states. The
paper contains two parts. In the 6rst part, a detailed discussion of the renormalization properties
of the energy-momentum tensor is given. In the second part, a mass separation formula is derived
and then applied to the nucleon, pion, and the @CD vacuum. Implications of the results on hadron
structure and nonperturbative +CD dynamics are discussed.
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I. INTRODUCTION

For any physical system, a good knowledge about its
mass structure is helpful in understanding the underlying
dynamics of the system. The ground state energy of nu-
clei as a function of the mass number reveals the nuclear
shell structure and the saturation property of nuclear
force [I]. An organized pattern of hadron masses led to
the speculation of the quark substructure of hadrons [2].
Likewise, any knowledge about the structure of hadron
masses in terms of its underlying constituents, quarks,
and gluons, can be useful to unlocking the physics of
quantum chromodynamics (QCD) in the strong coupling
region.

At the classical level, the Lagrangian of chromodynam-
ics is invariant under scale transformation if quark masses
are neglected, and thus hadron masses necessarily van-
ish. Radiative quantum efFects break the scale symmetry
[3] and introduce a dimensional parameter AQCD through
dimensional transmutation [4]. (For a classical discussion
on the scale anomaly, see Ref. [3]., ) Although AQCD is well
determined through scale-breaking efI'ects in high-energy
processes [5], the physical mechanism for generating the
scale at low energy is not quite clear. (It is encouraging,
though, that the scale determined from hadron spectrum
using lattice QCD is consistent with that determined at
high energy [6].)

In the past, scale generation at low energy is largely
understood in two seemingly unrelated pictures, and so
are masses of hadrons. The erst picture emphasizes the
aspect of color confinement, through which quarks in
hadrons are confined to a cavity of radius 1 fm. A sim-
ple, representative model is the MIT bag, in which the
mass of the nucleon is generated from the quark kinetic
energy and vacuum pressure [7]. A dimensional analysis
shows that the quark kinetic energy accounts for 3/4 of
the mass and the vacuum pressure accounts for the re-
maining 1/4. In some loose sense, the vacuum pressure
models efFects of long-wavelength gluons. The second
picture for scale generation emphasizes chiral symmetry
breaking. Through such phase transition in the QCD

vacuum, light quarks acquire a constituent mass of or-
der 300 MeV. Masses of hadrons are then approximately
the sum of the constituent masses and quark kinetic and
potential energies [8]. Both pictures work quite well for
hadron spectra and other physical observables. It is not
known, however, which picture or which combination of
the two is closer to reality.

In a recent Letter [9], this author showed that in-
sight into the mass structure of hadrons can be obtained
through a study of the energy-momentum tensor of QCD.
The result is a separation of hadron masses into contri-
butions 'from quark and gluon kinetic and potential en-
ergies, the current quark masses, and the trace anomaly.
The last part is a direct result of scale symmetry break-
ing, and is analogous to the vacuum pressure empirically
introduced in the MIT bag model. Though the scale of
other contributions is determined by the anomaly, rel-
ative magnitudes reffect important aspects of the low-
energy quark-gluon dynamics. The separation here is
analogous to the virial theorem for a simple harmonic
oscillator and the hydrogen atom.

The goal of this paper is to provide more field theo-
retical basis for the mass separation and to extend its
application to other hadrons in addition to the nucleon.
The field theoretical discussion mainly answers questions
such as the following: Why is the QCD Hamiltonian fi-
nite? Why can it be separated into gauge-invariant and.
finite pieces? How does the renormalization scale depen-
dence afFect the separation? Why is there an extra term
in the Hamiltonian from the trace anomaly? An applica-
tion of the mass separation to a specific hadron requires
knowledge of two matrix elements: the momentum frac-
tion of the hadron carried by quarks in the finite mo-
mentum frame and the quark scalar charges. The matrix
elements are known to a good accuracy in the nucleon
and pion. However, there is no firm estimate of these
for other hadrons. Nonetheless, a plausible assumption
leads to a crude picture for a general mass partition.

The paper consists of two main sections. In Sec. II, we
start with the separation of the QCD energy-momentum
tensor into the traceless and trace parts. Then we con-
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sider renormalization of both parts in dimensional reg-
ularization and covariant gauge fixing. Vile present a
derivation of the trace anomaly &om the point of view
of operator mixing. We also discuss the structure of
the mixing matri~ for the traceless part of the energy-
momentum tensor. As a by-product, we derive the dilata-
tion current in QCD and study its anomalous Ward iden-
tities (Callan-Symanzik equation). For a phenomenology
oriented reader, this section can be skipped. In Sec. III,
we study the hadron matrix element of the tensor and
derive a separation of the QCD Hamiltonian and hence
hadron masses. For the application to the nucleon, we
focus on discussing physical significance of the diferent
contributions. The result for the pion strongly supports
the concept that the pion is a collective vacuum excita-
tion. Finally, comments are made about general features
of the mass separation for other hadrons and the QCD
vacuum.

II. RENORMALIZATION OF THE
+CD ENERGY-MOMENTUM TENSOR

In this section, we discuss renormalization properties
of the QCD energy-momentum tensor. A similar but
less extensive discussion was Grst made by Freedman,
Muzinich, and Weinberg [10] for non-Abelian gauge the-
ory. Since then, many papers relevant to the subject have
appeared in the literature. The present discussion is not
a review of the subject. In particular, there are still open
questions that are under current debate. Rather, we will
focus on the following three aspects that are most useful
for our discussion of hadron masses. First, the energy-
momentum tensor can be uniquely separated into the
trace and traceless parts which are to be separately renor-
malized. Second, the trace part of the tensor is shown to
be Gnite according to the fact that renormalized Green's
functions are Gnite functions of renormalized masses and
couplings. The result is equivalent to a new derivation of
the trace anomaly originally given in Refs. [11,12]. Third,
the traceless part of the tensor is shown to be Gnite us-
ing Ward identities related to space-time translational
symmetry. A study of scale symmetry and related Ward
identities (Callan-Symanzik equation) is included in the
end of this section as a by-product of the previous dis-
cussion.

The fundamental QCD Lagrangian reads

where @ are quark fields, carrying implicit flavor, color,
and Dirac indices, D~ = B~ + igA" is a covariant
derivative with A" = A" t being the gauge potential
(Trt t = b /2), m is the quark mass matrix in flavor
space. The gluon field strength has the usual non-Abelian
expression

F"" = t9"A —0"A" — & A" A" (2)

where f s' is the structure constant of the gauge group.
To simplify notations, we shall omit color indices if no
confusion arises. All quantities without further speci6ca-
tion are bare ones.

To discuss re normalization, we work in dimen-
sional regularization and (modified) minimal subtraction
scheme. An important virtue of this scheme is that it
does not modify the basic QCD Lagrangian except all
Lorentz indices and space-time integrations are taken to
be d dimensional. (The Pauli-Villars regularization, some
momentum cuto6' schemes, or lattice cutoK all modify the
Lagrangian in a more significant way. ) We use perturba-
tion theory to explore large momentum behavior, and
thus a gauge fixing is needed. We choose the usual pre-
scription for use of the covariant gauge, which introduces
two extra terms in the Lagrangian: the gauge-fixing term

and the Faddeev-Popov ghost term

Cgs = 0 QJD@4J (4)

Therefore the total efFective Lagrangian

~eK —~+CD + ~GF + ~GS

enters the remaining discussion.
The energy-momentum tensor can be derived &om the

fact that the action S = J d"xZ, ir is invariant under
space-time translation. The result is well known [10]:

1 —. 1T" = g" l: —F" F—" + AD~"p @+ @iD—"p" @ —g""(—8 (A 0 A) +2( A~"8"i(8 A)

bS bS 1 „„-1„bS+28~"urD "l(u — A — —[p",p"]@—Q —[p",p ]bA„b'Q8 ' 8 '
hg

' (6)

where (pv) means symmetrization of the indices and
D" = —0& + igA~. There are two standard methods to
derive the above expression. First, one can write down
the canonical Noether current associated with space-time
translational symmetry and then improve it with the Be-
linfante procedure [13]. Second, one can follow Ref. [10],

deriving a current coupling to gravity. Both methods
yield the same tensor for QCD, though not for the P
theory.

The last three terms in (6) are usually ignored in other
references because they vanish when the equations of mo-
tion for gluon and quark 6elds are used. When they are
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inserted into a Green's function, their role is to change
polarizations of external lines, and thus they are finite
operators. When they are included in the tensor, the
Ward identities related to space-time translation sym-
metry take a simpler form [12]. Without these terms,
the energy-momentum tensor is symmetric:

Tglv Tv@ (7)

T" = T" +T" ) (8)

where the traceless (T"")and trace parts (T" ) are

TP v TP v gkv Tcx
Ck

d
A 1TP v tv TEx

In the following discussion, we concentrate on the sym-
metric part of the tensor only.

The symmetric part of the energy-momentum tensor
can be split into a sum of traceless and trace parts. Al-
though a splitting like this is not unique in general, we
define the splitting in the following unambiguous way:

where we have defined

PF ———-P ~y.'p,
4

OGF = —(2() '(8 A)',
bS

OGF = OGF ——A„

bS
O~ ——A„

-bS
0@ = vP = vP(iP —m)g,

hg
bS

O~ = CO = (dO D~(d
be (12)

In Refs. [11,12], it was shown that the trace can be ex-
pressed in terms of a linear combination of a set of renor-
malized operators with finite coefBcients. Here we would
like to derive the same result &om the operator mix-
ing point of view [14], by extending the discussion in
Ref. [15].

First consider the equations-of-motion-related opera-
tors

Notice that we have defined the trace consistent with di-
mensional regularization, under which tensors of difFerent
ranks do not mix. Therefore the necessary and sufFicient
condition for the energy-momentum tensor to be finite is
that the traceless and trace parts are separately finite.
This is indeed the case as we shall see below.

A. The trace part of the energy-momentum tensor

I et us first consider the trace-part of the energy-
momentum tensor,

T = @mQ + a[Os + OGF]
—(2 —e)0 [( A 0 A+a D ~]

-bS bS—(3 —e)@ —(2 —e)u
her

1 —— A„

A zero momentum insertion of these operators into a
renormalized Green's function produces the number of
external lines. Therefore all these operators are finite
and need no renormalization.

The total derivative operator in the third term in
Eq. (10) is a Becchi-Rouet-Stora-Tyutin (BRST) vari-
ation of 8 (A ~): i.e.,

~-bBRsT(& ~) = 8-[(-'A O. A+~D ~] .

As such it has vanishing physical matrix elements at
nonzero momentum [16,17]. At zero momentum, the op-
erator vanishes identically as it contains no poles. Since
other dimension-four operators do not mix with it, it is
a finite operator by itself.

Renormalization of the rest three operators can be
worked out by studying the renormalized Green's func-
tion generating functional,

f D(QR QR QR ~R ~R) exp (~ + + f (Jp+R + il@R + gRq + g~R + gR~) ) (14)

where the renormalized fields are related to bare fields by the multiplicative renormalization constants,

Since Z(J, g, il, y, g) is finite, its derivatives with respect to the renormalized quark masses m, the gauge coupling
constant g, and the gauge-fixing parameter ( are also finite. In the dimensional regularization and minimal
subtraction scheme, all the renormalization constants are independent of quark masses, and the renormalization
factors for the gauge coupling Zg and the quark masses Z are independent of the gauge-fixing parameter [18].
According to these, we find the following quantities are finite:
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0 = xaam@,

~01nZsb — &01nZ2 J, 01nZ

&0lnZs) ( &01 nZs &0lnZs 1 &0lnZs lOz 1+9 09R )l
0~+ 9 09R 0(~ + 29 09~ )

OGF

( &0lnZ2 1 ~0lnZ2) &0lnZ 1 &0lnZ 1 &01 nZ+l( 0(~ 9 0 ~ I V+ & 0(R 29 0 R ~+29 (16)

From the above equations, we can solve O~ and OGF in terms of the renormalized ones:

e(OJ;+OGF) = ( 2p/g —)Og+ ( 2p/g —+ps)OGF —pO —pgOg+p OM, (17)

where we have defined the anomalous dimensions

dlnZ2s dlnZ & ding7&s~=P, ~
'Y=P, ~

= 9 P
Qp d/l dp

Since all these quantities have no 1/e poles, the right-hand side of Eq. (17) is finite.
Inserting Eq. (17) into Eq. (10), we find the trace part of the energy-momentum tensor expressed in terms of finite,

renormalized operators:

= (—2P/9 )(Os +Oa~F)+(1+t )0 —20 ~»»(& )

+P3OGF — 1+—O~ —2+ P O„—3+ P2 Og . (19)

Two comments are in order at this point. First, com-
posite operators defined through path-integral formalism
have implied subtraction of their vacuum expectations.
Thus they are said to be "normal ordered, " but not in
the usual sense of relative to perturbative vacuum. Sec-
ond, although the individual term in the above equation
depends on the renormalization scale (p ), the sum does
not.

According to the Joglekar-Lee theorems [16,17], the
matrix elements of O~, Oy, and O, and BRST exact op-
erators vanish in a physical state. Thus as far as hadron
matrix elements are concerned, we electively have

where and henceforth the symbol (pv) also means sub-
traction of the trace. The gauge-invariant quark part is

Tc q D(v )q+ . qzD(s & )q
1-. 1-.~

q 2
(24)

The gauge variant part is

T~v ——( A("0 )0.A+ 0("urD )~, (25)

which is the BRST variation of 0("uA ~. Finally, the
gluon-equation-of-motion-related operator is

T = (—2P/g )Og+ (1+p )0 (2o)
A(»

bA) ' (26)

T""= T." (~') + T" () ') (21)

This suggests we write the trace part of the energy-
momentum tensor as

which is finite.
According to the Joglekar and Lee theorems [16], the

above four operators close under renormalization. Fur-
thermore, the mixing matrix takes the form

where T~" = —(2P/9~)OP(g& /4) and T"" = (1 +
)0 (9" /4).

B. The traceiess part
of the energy-momentum tensor

(T." lT"
fiv
GV

( Zm Zss
gq gg
0 0

( o o

+ga +ge Tg
+aa +ae TGV

) E~--)
(27)

Tgsv Tpv + Tgsv + T» v + @p,v
g q GV (22)

The gauge-invariant gluon part T~ is

Tpv ~(pn~v)
g (23)

The traceless part of the energy-momentum tensor can
be written as a sum of four parts:

That is, the gauge-variant operators do not mix with
gauge-invariant operators and the equations of motion
operators do not mix with any other operators.

To find the Z's, one needs to study Green's functions
with one insertion of the composite operators in pertur-
bation theory. However, we can find constraints among
the renormalization constants by studying Ward identi-
ties related to space-time translational symmetry. Cal-
culating the divergence of the energy-momentum tensor
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without using the equations of motion, we find

B„T""= — 8"A" — cj"@ — 8"@bA„
bS bS
b.' b-'

When the above equation is inserted into a renormal-
ized Green's function (Ward identity), the right-hand
side simply replaces the elementary fields by their deriva-
tives, and thus is finite. Hence the divergence of the
energy-momentum tensor is a finite operator. The only
remaining counterterm for the tensor itself is of form

(8"0"—g" 0 )f(A, (u, u), (29)

where f is a dimension-two function of its arguments.
However, since the trace part of the energy-momentum
tensor is finite, Lorentz symmetry allows only counter-
term tensors that are symmetric and traceless. Thus the
traceless part of the tensor must be finite by itself [12].

The finite traceless part of the energy-momentum ten-
sor imposes the following constraints on the renormaliza-
tion constants in minimal subtraction scheme:

C. Scale symmetry
and the anomalous Ward identities

x m Ax,
y(*) M A~ 'l~'q(A*),

A" (x) m A"~ A"(Ax),
u)(x) -+ A"i 'u)(Ax) . (33)

The change in the effective QCD Lagrangian is a total
derivative plus symmetry-breaking terms. There are two
types of symmetry-breaking effects: quark masses and
the gauge coupling, the latter has dimension e/2 in di-
mensional regularization. Thus,

BC,gbC,g = 8"(x„l:,g) + /mal ——g
19g

(34)

The above discussion on mixing of dimension-four op-
erators and the trace of the energy-momentum tensor
permits a simple explanation for the anomalous breaking
of scale symmetry and a derivation of Callan-Symanzik
equation (or the anomalous Ward identity). Consider the
scale (dilatation) transformation in d dimensions:

qq + gq

qg + gg

Zqa + Zga + Zaa —&

Zqe + Zge + Zae —0

Thus in the scheme, we have

Z p, v + ggsv + Z pv + Egsv
q g GV

(30)

The last term is clearly not gauge invariant. A simple re-
arrangement reveals that it consists of operators O~ and
O~F defined in the previous section plus a total deriva-
tive term:

—g
' = 8"(I'„„A"+.( (8.A)A„) + 20F + 20GF .

Bg

= T,"""(I')+T,"" (p')+TGv"(~')+E" . (31)

Although the individual term on the right-hand side de-
pends on the renormalization scale, the sum does not.
Again, according to the Joglekar-Lee theorems, T&v (p )
and E" have vanishing physical matrix elements, and for
practical purposes, we can keep only the gauge-invariant
quark and gluon contributions in the traceless part of the
energy-momentum tensor,

Since OF and OGF diverges like 1/e, the scale symmetry
is broken anomalously at the quantum level.

On the other hand, with use of the equations of motion,
one has

bZ,~=8"
~

'
bP,

~

„FBd.g
)

(36)

where P; is a generic notation for all the fields. According
to this, we can define a dilatation current corresponding
to the scale transformation:

Tpv TgvR( 2) + TgvR( 2) (32)

Jg = '
bP; —x"l:,s — [I"" A„+( '(0—. A)A"] .

Recently, some questions have been raised in the lit-
erature about validity of the Joglekar and Lee theorems
[19,20], in particular, regarding the form of the mixing
matrix appearing in Eq. (27). Harris and Smith [21]
pointed out that so long as one is working with com-
posite operators at nonzero momentum transfer, all the
theorems should remain valid. Collins and Scalise [20], on
the other hand, have worked at zero momentum transfer.
They showed that the on-shell limit for gauge bosons is
subtle and potentially causes problems. However, it ap-
pears that if one works with o8'-shell Green's functions or
physical hadron states, the operator mixing shall follow
the standard theorems. More work is certainly needed in
this direction to clear up the issue.

(37)

O„Jg = gung + e(OF + OGF) . (38)

To prove this, use of the equations of motion is essential.
The dilatation current has a simple relation with

the energy-momentum tensor in Belinfante's form. To
see this, we use the definition of the canonical energy-
momentum tensor T&" to write

The symmetry-breaking terms now appear as a diver-
gence of the current:
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Jg = T~ x + '
dy,. [F—""A„+$ '(B.A)A"],jef'

p

J& —+8 ~ + (gPP + gPPd )
Od, g

oa„y; ij 2

[F„——A" + ( '(8 A) A„], (4o)

where d~ is the canonical dimension for P, field. Using
the Belinfante improvement, one has

this means that conformal symmetry present in the ba-
sic QCD Lagrangian is broken by the gauge fixing. This
fact is of course well known in perturbation theory where
a gauge-fixed gluon propagator does not have conformal
symmetry. However, the breaking term is a BRST-exact
operator plus the ghost equation of motion and thus has
no physical consequences.

To derive the anomalous Ward identities associated
with scale transformation, we consider the correspond-
ing change in the Green's function generating functional
Z(J~, il, 71, y, g). A siinple derivation yields the equation

where the second term is called field virial, which has a
part that cancels the last gauge noninvariant term, ).l d~, +*' lG"(*~)+G"(~,, ~ JD~) =0, (42)

JD ——T" x„+ 1 —— 0"Cu~ + CuD"~
2

+(2 —e)( (8 A)A" .

The remaining terms cannot be written as a total deriva-
tive. According to Callan, Coleman, and Jackiw [3],

I

where GR(z;) is a renormalized Green's function with
n~ external gluon lines, n~ quark (antiquark) lines, and
n ghost (antighost) lines. G (x;, 0~JD„) is the same
Green s function inserted with divergence of the dilata-
tion current. In momentum space, we have

0—).p'~ —4(n~ + ng + n —1) +
~

n~ + ng + n„~ —G (p;) + G (p;, 0"JD„) = 0 .a a

Here momenta p; are conjugation of all x; except for one which is taken to be zero. On the other hand, a simple
dimensional analysis yields

t' 3) p; +p& +m &+4(n~+n~+n~ —1) —
~
n~+ ny+n

~

—G (p) =0, (44)

(46)

where p, is a renormalization scale. Combining the above two equations, we get

p +m G (p)+G (p, , BJri ) =0. (45)
t9p 07K

According to Ref. [11], an insertion of the divergence of the dilatation current can be replaced by derivatives with
respect to the gauge coupling, quark masses, and the gauge-fixing parameter. Thus, we find the anomalous Ward
identity (Callan-Symanzik equation)

+P „—p m „—~,( „+n„+n& +n —G—(p;) =0. —'Ya 72 'Y

This is just the well-known renormalization group equa-
tion which can be derived independently by studying the
dependence of the renormalized Green's function on the
renormalization scale.

III. BREAKUP OF THE HADRON MASSES

(47)

So the separation at this level is completely physical. Fi-

Let us first recapitulate the main results obtained in
the last section. First of all, we have shown explicitly that
the QCD energy-momentum tensor T"" (with vacuuin
subtraction) is a finite composite operator and thus a
physical observable. Second, the tensor can be separated
uniquely into the traceless and trace parts, each of which
is a finite and scale-independent composite operator:

TPv TPv + TPv

nally, in physical states the traceless part; of the tensor
is effectively a sum of the renormalized, gauge-invariant
quark and gluon contributions,

&""=&,"""(s')+&,"" (s') (48)

and the trace part is a sum of the gauge-invariant quark
mass and trace anomaly contributions,

&""= &."" (~') + &"""(~'). (49)

The separation at this second level is renormalization and
regularization scheme dependent.

In this section, we study a breakup of hadron
masses according to the above properties of the energy-
momentum tensor. We first discuss matrix elements of
various parts of the tensor in hadron states. Then we
write down the finite form of the QCD Hamiltonian and
drive a mass separation formula. We reexamine its ap-
plication to the nucleon and discuss implications of the
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result on the nucleon's quark-gluon substructure and on
the low-energy dynamics of QCD. Application to the pion
is studied in a separated subsection, where we show that
the color electric and magnetic fields in the pion is the
same as those in the QCD vacuum in chiral limit. We also
discuss the color fields in the QCD vacuum in a Lorentz
covariant, nonperturbative regularization scheme.

A. Matrix element of the energy-momentum tensor
in hadrons

Second, we define the matrix element of the quark-mass
operator:

(PiT""iP) = b(p ) g"—"M, (56)

where the renormalization scale dependence comes en-
tirely from the anomalous dimension p of the mass op-
erator, which depends on the renormalized gauge cou-
pling. From Eq. (49) and the second line in (53), we
have

(PiT." iP) = [1 —b(~')]-g""M (57)
Let us consider the forward matrix element of the

energy-momentum tensor in a hadron state, iP), where
P" is the four-momentum of the state. We as-
sume the state is normalized according to (PiP)
(E/M)(2m) b (0), where E = P is the energy of the
state and M is the mass of the hadron. It is well known
that

(PiT" iP) = P"P"/M .

A simple derivation of the above equation goes like this:
According to Lorentz symmetry, one has

Thus the matrix elements of the four parts of the energy-
momentum tensor are entirely determined by two param-
eters a(p2) and b(p2).

The matrix element a(p2) can be extracted from
hadron structure functions measured in deep inelastic
scattering. According to operator product expansion,
the twist-two operator TI" appears in the expansion of
product of two vector or axial-vector currents. Using a
dispersion relation, one can relate the matrix element of
T~" to the first moment of quark distributions:

(PiT" iP) = aP"P" + bg"", (51) a(p ) = ) dx x[gy(x, p ) +. qy(x, p')],
0

(58)

where a and 6 are scalar constants. On the other hand,
the Hamiltonian of the system is H = I dsxToo, which
has the following matrix element in the hadron state:

(PiHiP) = (E /M)(2vr) b (0) . (52)

Comparing Eq. (52) with Eq. (51), we obtain Eq. (50).
Equation (50) allows us to obtain the matrix elements

of the traceless and trace parts of the energy-momentum
tensor separately. In fact, decomposing both sides of
Eq. (50) into trace and traceless parts, we have

where qy and qy are quark and antiquark distributions
in the hadron. The physical meaning of a(p ) is the
momentum fl. action of the hadron carried by quarks in
the infinite momentum frame [25].

The matrix element b(p ) is proportional to the nu-
cleon's scalar charge (Pi@@iP), which cannot be mea-
sured directly from an experiment. However, the opera-
tor yam@ is a part of the QCD Lagrangian which breaks
the chiral symmetry explicitly. Therefore, useful informa-
tion about b(p ) may be obtained by studying physical
effects of chiral symmetry breaking.

(PiT""iP) =
i

P"P" ——g""M
i

M,
4

(PiT" iP) = g""M . —
4

(53)

B. A separation of hadron masses

The QCD Hamiltonian is defined as

The right-hand sides of both equations are independent
of the renormalization scale, as required by Lorentz sym-
metry. The second line in (53) is not new; it has appeared
before in the literature [22—24].

We use Lorentz symmetry again to define two scheme-
dependent matrix elements below. First, we define the
matrix element of the quark operator appearing in the
traceless tensor,

(PiT""iP) = a(p ) i

P"P" — g""M
i

M, —(54)
( „1

where a(p2) has an explicit scale dependence. From
Eq. (48) and the first line in Eq. (53), we have

(PiT""iP) = [1 —a(p )] i

P"P" — g""M
i

M . —( „1
4 )

(55)

Hg~D = d xT O, x (59)

Hq~o =H +H +H +H (60)

where various terms are

H'
m

d x @t(—iD n)@+ @mg—
4

dx —(E +B),3-1

f d x —(1+p )@m@,4

d x —P(g) (E' —B') .
4

From the discussion of the last section, H@cD is a finite
operator. (Interestingly, however, the Lagrangian density
has 1/e divergences. ) According to the separation of the
energy-momentum tensor, we have the partition of the
Hamiltonian operator,
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Rearranging the mass term by defining C. The mass structure of the nucleon

Hq= d x ~ —iD o.

H = dz~1+ —p ~@mg,
(

4
(62)

we have Eq. (60) without the primes. Note that the
above expression implicitly contains the renormalization
counterterms, which we omit for simplicity. The physi-
cal meaning of the various pieces of the Hamiltonian is
clear: Hq represents the quark kinetic plus potential en-
ergy (the static color interaction is not included); Hg is
the gluon kinetic and potential energy; H is the quark
mass contribution; and finally, H is the anomaly contri-
bution whose significance will become clear later.

In field theory, masses of bound states are usually de-
fined as poles in Green's functions (implicitly so in lattice
calculations). In Hamiltonian forinalism, one can define
masses as eigenvalues of a Hamiltonian as in nonrelativis-
tic quantum mechanics. In the following discussion, we
assume that hadron masses are calculated as expectation
values of the Hamiltonian operator in the rest frame of
hadrons:

rest frame

(63)

We view the above equation as a mass probe into the
structure of quark and gluon configurations in hadron
states, since different pieces of the Hamiltonian have dif-
ferent sensitivity to various components of hadron wave
functions. At this point, the reader might recall the re-
cent investigation in the literature about the spin struc-
ture of the nucleon [22], where one is interested in how
the spin of the nucleon is made of the spin and orbital an-
gular momenta of quarks and gluons. The same question
can be asked of the mass structure of hadrons.

According to Eqs. (61), (62), and (63), masses of
hadrons can be separated into various contributions:

M =M, +M, +M +M. . (64)

M, = —(1 —a)M,
3

9

4+ pm

4(1+~-)

M = —(1 —b)M .
1

Therefore, knowing the parameters a and b, we can deter-
mine a complete separation of the masses. In the follow-
ing subsections, we shall apply the separation to several
cases and discuss physical significance of the result.

Relating the matrix elements of different pieces of the
Hamiltonian to those of the energy-momentum tensor,
we have

M~= —
/

a — /M,
3 ( b

4 ( 1+p )

The mass structure of the nucleon was analyzed in de-
tail in the Letter [9]. Let us brieHy summarize the main
result here and discuss its physical implications more
thoroughly. In the end, we shall make some remarks for
the mass separation of other hadrons following a rather
plausible assumption.

The matrix element a(p, ) for the nucleon has been
measured quite accurately in various high-energy scat-
tering processes involving nucleons. A recent extraction
gives [26]

aMs (1 GeV ) = 0.55, (66)

where MS denotes the modified minimal subtraction
scheme. In the Letter, two estimates of b(1 GeV ), in
the limits of chiral SU(3) (m, ~ 0) and heavy strange
quark (m, ~ oo), were given. They are

b(m, m 0) = 0.17,
b(m, m oo) = 0.11 . (67)

Since the two limits do not lead to qualitatively differ-
ent conclusions, we focus on the chiral limit below. The
numerical numbers in this case are

Mq ——270 MeV,
M = 160 MeV,
Mg ——320 MeV,
M. =190 MeV. (68)

According to the above result, the quark kinetic and
potential energies contribute about 1/3 of the nucleon
mass. The further separation into the two is not gauge
invariant. However, the practice does have an intuitive
appeal at the phenomenological level. If there are three
massless quarks confined to a spherical cavity of radius
1 fm, as in the MIT bag model, the total kinetic energy
is 600—700 MeV. Thus, the color-current interaction be-
tween quarks and gauge fields contributes —300 to —400
MeV to the mass, which is consistent with the magni-
tude of N-L splitting. Such large current interaction is
intrinsic to a truly relativistic theory. It does not oc-
cur for instance in low-energy @ED, where the static
Coulomb potential plays a dominant role. The strong
current interaction certainly induces quark interactions
of Nambu —Jona-Lasino type, and is perhaps at the ori-
gin of the chiral symmetry breaking.

The quark energy can be further separated into con-
tributions of difFerent flavors. The parameter a measures
the fraction of the nucleon momentum carried by quarks,
which is known separately for each fIavor. For instance,
0.38 &action of the nucleon momentum is carried by up
quarks, which can be translated into the up quark con-
tribution to the nucleon mass 250 MeV. Likewise, down
quarks contribute 105 MeV mass, and strange quark pairs
contribute —85 MeV. One might try to break the contri-
bution &om each Qavor into these &om valence and sea
quarks. However, since the valence and sea contributions
to the matrix element 6 are unknown, the separation is
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not possible. Nonetheless, for up and down quarks, the
contribution from 6 is not large, and may be neglected.
From the momentum &actions carried by the sea, we
Gnd that the up or down sea contribution to the nucleon
mass is on the level of 30 MeV. The small number indi-
cates that there are not many quark and antiquark pairs
in the wave function. Thus the nucleon seems to have
a simpler Fock expansion than the small current quark
masses imply.

The quark mass term contributes about 1/8 of the nu-
cleon mass. About half of which comes &om the strange
quark pairs. The strange quark contribution here is defi-
nitely less certain than two light Bavors. One might hope
that future lattice measurement of the strange scalar
charge may reduce the uncertainty. The implied mag-
nitude of the scalar charges (P~uu~P), (P~dd~P), which
are charge conjugation odd quantities, is another indica-
tion that the number of quark-antiquark pairs is small.

The normal gluon energy contributes about 1/3 of
the nucleon mass. This energy includes the color-static
Coulomb energy between quarks. The gluon part of the
trace anomaly contributes about 1/4 of the mass. From
these, we deduce the color-electric and color-magnetic
fields in the nucleon. separately (taking n, (l GeV2)
0.4),

(P]E ]P) = 1700 MeV,

(P~B ~P) = —1050 MeV .

The second line indicates that the color magnetic Geld
in the nucleon is smaller than that in the vacuum. This
property of the magnetic field has long been suspected
phenomenologically. The present result lends strong sup-
port for the educated guess. Clearly, this behavior of
color GeMs is closely related to color conGnement.

In the chiral limit, the trace anomaly contribution is
analogous to the vacuum energy in the MIT bag model.
In fact, the trace part of the energy-momentum tensor
in the bag is Bg&, where B is the energy density of the
"perturbative vacuum. " The role of such energy density
is to confine quarks. Thus the scale symmetry breaking
is explicitly connected to quark confinement. It is essen-
tial then to include the eÃects of the trace anomaly in
phenomenological hadron models.

A Gnal comment is about the role of strange quarks.
They contribute —60 MeV to the mass through the trace
anomaly because the P function depends on the number
of Havors. The kinetic and potential energy contributes
about —85 MeV. Adding these to the strange mass contri-
bution of 115 MeV, one gets a total of —30 MeV, roughly
three percent of the total mass. Therefore the uncer-
tainty in the separation is largely limited to the strange
sector.

What shall be the general feature of the mass sepa-
ration for other hadrons for which there are no data?
First of all, so long as one is concerned with nonstrange
hadrons, the contribution of the quark mass term is pre-
sumably small, and we may neglect b. Second, that glu-
ons carry about half of the nucleon momentum in infinite
momentum frame is perhaps approximately true for all
hadrons, e.g. , p or A. Thus we further assume a = 0.5.

Given these guesses, we have

Mq ——-M, Mg ———M, M = -M.3 3 1

8 9'

This is a heuristic way to sum up the main result of the
mass separation.

D. The mass structure ef the pion and the vacuum

The mass structure of the pion is particularly inter-
esting because, according to the Goldstone theorem, the
pion is intrinsically difFerent &om ordinary hadrons: it is
a collective mode in the @CD vacuum. As we shall see,
the mass structure indeed reHects this.

The matrix element a(p ) can be extracted from the
quark distributions measured in vr-N Drell- Yan pro-
cesses. The quality of the available data [27], however, is
much less satisfactory compared with that of the quark
distributions in the nucleon. Nonetheless, it seems safe
to conclude that a(l GeV ) is known at ten percent level,
with a central value similar to that of the nucleon:

u(l GeV ) = 0.55 + 0.05 . (71)

(Note that the precision of the data is not good
enough to discern radiative corrections at the subleading-
logarithmic level, so we have suppressed the scheme la-
bel. ) Thus as far as high-energy probes are concerned,
the pion is not dramatically difFerent from other hadrons.
This is also true for the m-K total cross section at high
energy, for which the quark counting rule appears valid.

The matrix element 6 can be calculated through study
of the pion mass in chiral perturbation theory. To avoid
kinematic singularity in chiral limit, we adopt the nor-
malization of the vr state, (P~P) = 2E(27r) h" (0). There-
fore the matrix element 6 is

hm' =P( Q m„ggggg~P) .

f=u, d, s

On the other hand, the Grst-order chiral perturbation
theory predicts [25]

m„' = —(m„+ mg) (0~uu + dd ~0) / f',

—m = (P~m„uu + mgdd ~P), (74)

where ~P) is the pion wave function in chiral limit. Com-
paring the above equation with Eq. (72), we have

where f is the pion decay constant and ~0) is the @CD
vacuum. The above equation tells us two things. First,
strange quarks do not contribute to the pion mass in the
first-order perturbation, and matrix element (P~ss~P) is

strongly suppressed. Second, m m„, mp, and so to
first-order accuracy, one can take the chiral limit of the
pion w'ave function on the right-hand side of Eq. (72).

The pion mass can also be calculated by using the or-
dinary first-order perturbation theory [28],
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6= 1/2. ularization scheme. Using the trace anomaly, one has

So the first-order chiral perturbation gives a clean pre-
diction.

Using the above matrix elements, we roughly have

3 1 1
M =0, M, =-m, M =-m, M. =-m

(OIT""lo) = o .

Taking p = v = 0, one gets

(OIK'lo) = —(OIB'lo (7s)

The color electric Geld is negative of the color magnetic
field in vacuum. This appears to be a quite dramatic
statement at first. However, it is trivially true, with some
caveats, in lattice QCD calculation. On lattice, the color
electric and magnetic fields can be defined as the average
of the trace of elementary plaquettes in space-time and
space-space planes. Because of hypercubic symmetry on
lattice, the two diferent plaquettes have the same expec-
tation value in vacuum. Remembering that the electric
field in Minkowski space is related to that in Euclidean
space by a factor of i, the imaginary unit, one gets the
above equation immediately.

The trace part of the energy-momentum tensor con-
tains only the anomaly. According to Lorentz symmetry,

(OIT "lo)

where p is the vacuum energy-density in a particular reg-

(76)

Two comments can be made immediately with regard
to the above mass partition. First, the quark kinetic
and potential energies cancel almost exactly. This fact
is difFicult to reproduce in quark models for the pion,
where quarks carry large kinetic energy when confined
to a small region of space. Second. , the color electric and
magnetic fields in the pion approach those in the vacuum
in chiral limit. This strongly indicates that the pion is a
collective excitation of the QCD vacuum.

It is tempting to use the above formalism to study the
color electric and magnetic fields in the QCD vacuum.
However, the energy-momentum tensor without vacuum
subtraction ("normal ordering") is not finite and it is
dangerous to work with divergent quantities. Nonethe-
less, if one finds a Lorentz covariant and nonperturbative
regularization scheme to define the energy-momentum
tensor without the subtraction, one can make statements
about the vacuum color Gelds, except, of course, discus-
sion is regularization scheme dependent and is meaning-
ful only in a carefully defined context. (Perturbative reg-
ularization schemes are usually plagued with the infrared
renormalon problem, and hence are not useful in this con-
text [29].)

For simplicity, let us neglect quarks and study pure
non-Abelian gauge theory. Since the vacuum is not char-
acterized by any four-vector, the matrix element of the
traceless part of the energy momentum tensor vanishes.
That is,

The above equation shows that the vacuum energy den-
sity is related to the expectation value of E, which is
called the gluon condensate in the literature. Know-
ing the condensate in a particular scheme, one obtains
the color electric and magnetic fields of the vacuum, and
hence the vacuum energy density.

Unfortunately, no one has yet proposed a natu-
ral Lorentz covariant, nonperturbative regularization
scheme for the unsubtracted energy-momentum tensor
operator. However, there is a phenomenological defini-
tion of the vacuum condensate used in the QCD sum
rule calculation [30]. The magnitude of the condensate
has been determined through fitting to hadron spectra:

0~ 'F'~ )0= —(0.35 GeV)~ ~ (s1)

This translates to

(O~B ~0) = —(O~E ~0) = 3.6S GeV/fm (s2)

It is a rather large number &om the phenomenological
point of view. However, one should not forget its defini-
tion when it is used in a physical context.

IV. DISCUSSIONS AND COMMENTS

The structure of the nucleon is a subject that has
been discussed for many years. The nonrelativistic quark
model has the virtue that it is simple and captures many
important aspects of physics. Unfortunately, to improve
our understanding, we inust solve QCD in the nonper-
turbative region. Although lattice QCD provides an ef-
fective method to calculate many observables, it provides
little insight about the physics.

The measurement of the spin structure functions of the
nucleon is a milestone in motivating new explorations
of the quark-gluon structure of the nucleon. It points
to our deficiency in traditional modeling of hadrons and
to a need for unquenched lattice calculations. On the
other hand, it also urges a better physical description for
hadrons. In light of this, any rigorous information about
the nucleon properties is useful.

The mass separation of the nucleon is certainly one
step towards a better understanding of the quark and
gluon dynamics of the nucleon. As was discussed, it
has many implications about the physics of gluons and
quarks, and their interactions. What is particularly in-
teresting is the anomaly contribution. If the reader is
familiar with the 'spin crisis, " he/she might recall that
the axial anomaly was considered as one of the contri-
butions to the nucleon's spin [31]. Unfortunately, there
the separation between the anomaly and normal contri-
butions are not quite clear. In particular, the question
of gauge invariance and factorization has not been solved
satisfactorily. Here the anomaly contribution to the nu-
cleon mass is unambiguous, and its physics interpretation
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is quite clear.
One may ask where one goes Rom here. First, one can

confirm the present result by doing lattice calculations.
One can measure different pieces of the Hamiltonian in
the nucleon state. Such a calculation in the end may
help to test lattice approximations. Second, one can try
to build models which are consistent with the present
mass separation. One important conclusion here is that
the anomaly term must be added to models such as the

Nambu —Jona-Lasino model. Without this term, it is dif-
icult to include the con6nement effects.
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