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Magnetic moment and perturbation theory with singular magnetic fields
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The spectrum of a charged particle coupled to Aharonov-Bohm or anyon gauge fields displays a
nonanalytic behavior in the coupling constant. Within perturbation theory, this gives rise to certain
singularities which can be handled by adding a repulsive contact term to the Hamiltonian. We
discuss the case of smeared Qux tubes with an arbitrary profile and show that the contact term can
be interpreted as the coupling of a magnetic moment spinlike degree of freedom to the magnetic Geld
inside the Aux tube. We also clarify the ansatz for the redefinition of the wave function.

PACS number(s): 74.20.Kk, 03.65.Bz, 32.10.Dk

The fact that the problem of N noninteracting anyons
[1], for % ) 2, is exactly solvable only in the two limit
cases of bosons and fermions gives rise to the idea of
applying perturbation theory in order to get at least
some information in the vicinity of these two limit cases.
However, perturbation theory meets certain diKculties
near Bose statistics, as originally noticed in [2]. In or-
der to overcome these difFiculties, it was pointed out in
[3—5] that certain modiflcations of the singular N-anyon
Hamiltonian are required.

In the regular gauge, anyons may be viewed [6] as
charged particles with attached singular Aharonov-Bohm
[7] flux tubes. In this Brief Report, we discuss a gener-
alization of the perturbative algorithm discussed in [3—5]
to the case of smeared Aux tubes with any proFile. This
will bring some light on the singular case itself. In partic-
ular, the contact repulsive interaction b (r) added to the
singular Hamiltonian will be reinterpreted as a magnetic
moment coupling of the particle to the magnetic field
inside the fIux tube. Remarkably enough, the resulting
Hamiltonian has the form of a Pauli Hamiltonian with a
gyromagnetic factor g = 2. This is to be contrasted with
the recent literature [4, 5, 8] where these contact terms
have been described as resulting &om a renormalization
procedure, without any per se physical interpretation.
Characteristic features of the singular perturbative algo-
rithm, for example cancellation of singular two-body as
well as regular three-body interactions in the transformed
Hamiltonian, will be shown to be easily generalized, pro-
vided that such magnetic moment couplings are properly
taken into account. Finally, we disregard possible self-
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Zt„=(2n+ ~Z
—~~+1)~,

t~(r~ P) —rl I ~+~ ( n~ ig cr( + 1~ rn~v )

x exp — r exp iE (4)

The ground state wave function is obtained by setting
8=o n=o.

goo(r, y) = r~-~ exp (
— r*) .

2
(5)

Its energy is

adjoint extensions with singular wave functions at the
origin [8, 9], since we have in view hard-core anyons only.

Let us first remind the reader what happens in the
paradigm Aharonov-Bohm (AB) problem, or equiva-
lently, in the relative two-anyon problem [3, 4]. This is
convenient since a complete checking of the perturbative
results at all stages is possible for this problem by com-
parison against the exact ones. We work in the regular
gauge, in which the wave functions are single-valued and
the AB statistical parameter o. explicitly appears in the
Hamiltonian. We consider a particle of charge e and mass
m moving in a plane and coupled to the gauge potential
of a singular flux tube P located at the origin

H= p —eA (1)

where A(v ) = —"„"," and k is the unit vector perpendicu-
lar to the plane. The AB statistical parameter is o. = ~z

The Hamiltonian (1), in polar coordinates, is

1 f cl' 1 B 1 ol' 2icr 8 n'lH= + + —
I2m ( Orz r Br v28(P r2 0$ r2)

1+—mu r,
2

where one has added a harmonic attraction in order to
discretize the spectrum. The complete set of exact eigen-
states for this Hamiltonian, up to a normalization, is
given by
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The reason for this divergence may be traced back to
the fact that the unperturbed E = 0 wave function does
not vanish at the origin while the perturbed one does
and therefore one cannot get the latter as a perturbative
series starting &om the former.

In order to get a meaningful perturbation expansion,
a modification of the Hamiltonian is required. Adding to
H a short range repulsive interaction [4], one defines

H' = H + h'(r).
m (8)

The contact term clearly does not acct the exact wave
functions, since they vanish at the origin, except in the
Bose case n = 0, but then there is no contact interaction.
Still, this new Hamiltonian makes it possible to use per-
turbation theory, with the parameter in (8) precisely
chosen for this aim. Indeed, the first order correction to
the ground state energy &om the contact term is just

and it turns out that while the higher ord.er corrections
due to this term are divergent, they nevertheless ex-
actly cancel the divergent corrections coming &om the
—„,term. More precisely, the singular perturbative prob-
lem is solved in the sense that, if a short range regulator
is introduced to give an unambiguous meaning to the per-
turbative divergences, they do cancel in the limit where
the regulator vanishes [5].

It would however be more satisfactory to have a pertur-
bative algorithm where perturbative divergences do not
exist from the very beginning [3]. Willing to take into
account the small r behavior of the ground state wave
function (5), if one redefines [3]

& = (I~I + 1)~.

It is, however, impossible to get (6) in perturbation the-
ory near Bose statistics, treating the o,-dependent terms
in (2) as perturbations. Indeed, in the s-wave sector,
nonzero peturbative corrections turn out to be logarith-
mically divergent. For example, the unperturbed ground
state wave function @Do

——g exp (—2 r ) gives

(12)

A(r) = — s(r), (14)

where s(r) satisfies the boundary conditions s(oo) = 1
(hence at large distances one has efFectively anyons with
statistics o.) and s(0) = 0, in order to avoid singularities
at the origin. The physical meaning of s(r) is rather
obvious: 4(r) = 2vr s(r) is the fiux—through a circle of
radius r, and

a ds(r)
CP CLP

(15)

does coincide with the exact answer, while the higher
order perturbative corrections are finite and cancel. The
fact that first order perturbation theory gives here the
exact answer is of course due to the fact that one has
"guessed" the correct ansatz (10) by looking at the exact
solution (5).

In perturbation theory for the N-anyon problem [3],
the ansatz analogous to (10),

(»)
~&k

eliminates in H not only the singular two-body terms,
but also the three-body terms, thus considerably simpli-
fying the treatment. This complete cancellation can be
understood if one remarks that the prefactor g.&& rg&k ~k
is nothing but a pseudogauge transformation factor,
whose parameter is the real part of the analytic func-
tion ~a~ P && lnz~A, . The imaginary part of the same
analytic function is precisely the singular gauge trans-
formation parameter which defines the anyonic N-body
vector potential A(r;) = —O; g.&1, P~g. It is not diKcult
to realize that, because of the Cauchy-Riemann relations,

g, A~(r;) indeed disappears in H [3, 10].
To gain a more complete understanding of the singular

perturbative algorithm, let us now try to see how it ap-
plies in a regular case. We consider first a smeared flux
tube version of the singular Aharonov-Bohm problem—
possible generalizations involve lux tubes of finite size-
and we concentrate on a flux smeared over a certain re-
gion of space, with a given profile. The eBective change
of statistics of the particles then depends on the distance
between thexn [11].Thus consider the vector potential

@(,4) =' '0(r, 4), (10) is the magnetic field profile of the smeared flux tube.
The Hamiltonian new reads

then the Hamiltonian H acting on @ no longer contains
c"2the dangerous —„,term:

1 O2

2m Or

1 O 1 O2 2ins(r) O

r Or r2 OP2 r~ OP
+

1 ( O2

2m q Or'
1+—mu r .
2

18 1 8 2zo. 8
r Or r2 O$2 r2 OP

2/n/ O)
r Or/

The last term in the parentheses in (11), which appears
in place of the singular one, does not lead to any per-
turbative singularities. The first-order correction to the
ground state energy

r2 +2

In the problem at hand, there is always a characteristic
parameter A, which is essentially the size of the flux tube,
such that s(r) 1 for r )) B. All the results of the ideal
anyon model should be recovered in the limit B ~ 0.
Since the Hamiltonian 'R tends to H in this limit, the
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(o) nze2 (r) {o) ~nze2 (r)
oo 2m'' oo

0

(17)

problem of perturbation theory does manifest itself for
'R. Indeed, the first order correction to the ground state
energy

a'
2m I

Dr2

2~n~e(r) cl ~ + —mu r,
Or) 2

1 8 1 8 2ine(r) 0
r Br r2 Bpz r2 Bp

(25)

2m /n/
(18)

Coming back to the smeared fIux case, this suggests the
introduction of

'R' = '8 —pB(v),
corresponding to the magnetic moment coupling

e 03
u —B(r)

2m 2
(20)

with the gyromagnetic factor g = 2. What is now the
appropriate generalization of the ansatz (10) for the wave
function? In the singular case, the idea was to extract the
short distance ground state behavior. It happens that
the ground state wave functions for a two-dimensional
particle with the gyromagnetic factor g = 2 in a magnetic
field B are (up to a holomorphic function) [13]

—2mp, a(v )~oo =e
where a(r) is such that

Ea(r) = B(r).

(21)

(22)

In [13],spin-2 particles have been considered, altogether
with a Pauli Hamiltonian viewed as the nonrelativistic
limit of the relativistic Dirac Hamiltonian. In the present
context, however, spin is an additional degree of &eedom
simply introduced by hand. Taking into account (15),
one has

is finite, but diverges as R —+ 0, whereas it should tend
to fn]cu.

What stands, in this smeared case, in place of the sin-
gular AB perturbative algorithm? Let us recall that for
ideal anyons, the magnetic field inside the singular fIux
tube is B(r) = 2vr —b (r). The h (r) contact term
added to H may be interpreted as the coupling to the
singular magnetic field of a magnetic moment p, associ-
ated with the particle

2mB+ ——(p —eA) ~ e(0iAz —BzAi) (26)

and go to the Coulomb gauge Aq ———192a,
In two dimensions, this is a general choice of gauge. One
has

2m'R+ ———4 —2eie;~cl~aO, + e (Ba) ~ eb, a (27)

Redefinez @ = e+' @. If g = g(z) [ @ = g(z)], then @ is
the zero eiiergy ground state wave function of H+ [H ].
Otherwise, one gets, acting on @:

2m'R~ ———4 —2eie;&0&aO, + 2et9;aB;. (28)

The connection with the discussion above is transpar-
ent if one specializes to the rotationally invariant case
e;~O~aO, = —"&" 0@. Focusing on the s-wave sector, only
the term +2eB;aO,. contributes to the energy shift;:

where the A have again disappeared.
In a sense, coming back to the singular case, one has

now at hand a clearer point of view on certain subtleties
associated with the contact term, and also a more pre-
cise understanding of the ansatz for the redefinition of
the wave function. A "naive" R ~ 0 limit e(r) = 1
would imply that both 'R and 'R' would coincide with
II. However, if one insists on the nonsingular bound-
ary condition e(0) = 0, then in the limit R m 0 one
should rather take e(r) = rl(r), where rI(r) is the step
function. Then &(") ——h(r), and R' coincides with H',
not H. Here, ignoring the difFerence between unity and
the step function would be the same as, say, considering
that b, in@ = 0, rather than b, lnr = 2vrb'2(r), thus "los-
ing" the b (r) contact terin [4]. Note also that once the
correct ansatz is made, i.e., once one works with 'R, this
subtlety no longer plays any role: in the limit R —+ 0,
it does not matter whether one puts e = 1 or s = rI(r)
to get (11), since the correct short-distance behavior has
already been properly taken into account.

Generalizing further, consider now the Hamiltonian

a(r) =—,dr',n " e(r')
e 0 r'

and the generalized ansatz is

@(r,P) = exp ~n~, dr' Q(r, P).
e(r')

0

Transforming 'R', one obtains

(23)

(24)

a, ]y,",'~'a, ad'r-
2m

~qo"o' ~2&ad2r-.
2m

If one wishes to generalize to the N-body case, one

Such magnetic moment couplings have already been intro-
duced in the anyon model [12], as relics of a relativistic for-
mulation, but were shown to be associated with attractive b
interactions.

Note that the inverse transformation vP = e+' g leads to
the Fokker-Planck equation associated with 'R~ .

—&X+ ~'(XK*) = &X,

K, = +2e(B,a + ie;~O, a) .
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starts 6Iom
N

2m&+ ——) (I7; —eA;) p eB(r;) (30)

with

A(r;) = —8; x ) a(r~g), B(r;) = A, ) a(r~~) (31)

and redefines

Sea(v~g, )@ (32)

e(r) = r&B) B. (33)

The first-order correction from the last term of 'R' in (19)
ls

(o) [o[ de(r) (o) 1 —exp( —q)
&oo 2mr 8r Woo

q
(34)

to get a Hamiltonian without three-body interactions,
exactly as in the N-anyon case.

To conclude, and as an explicit illustration, let us carry
out the calculation in the simple case where the magnetic
field is uniform within a circle of radius R. One has

where

q=m+B (35)

is the squared ratio of the Aux tube radius to the length
scale of the harmonic potential: The particle is well out-
side the Aux tube if q &( 1. In the limit q ~ 0, the exact
result (6) is recovered. Alternatively, one may proceed
with the Hamiltonian (25) to get

(
(o) [(1[ e( r) 0 {o) 1 —exp( —q)

&oo @oomr Br q
(36)

the same answer as above.
In conclusion, hard core boundary prescriptions in the

singular AB or anyon cases can be naturally understood
in the context of Aharonov-Casher Hamiltonians for spin-
I/2 particles coupled to at two dimensional magnetic
field, with the gyromagnetic factor g = 2.
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