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We point out that in heterotic string theory compactified on a six-torus, after a consistent
truncation of the 10-dimensional gauge fields and the antisymmetric tensor fields, four-dimensional
black holes of Kaluza-Klein theory on a six-torus constitute a subset of solutions.
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In this paper we show that four-dimensional (4D) black
holes (BH's) of Kaluza-Klein (KK) theory constitute a
subset [1—5] of 4D BH solutions of an efFective heterotic
string theory compactified on a six-torus [6].

An effective 4D action for the massless bosonic sector
of heterotic string vacua compactified on a 6D torus is
obtained [7] by compactifying the (massless) bosonic part
of D = 10 N = 1 supergravity coupled to N = 1 super-
Yang-Mills theory, containing the dilaton 4( ), the two-

form field B -, and 16 Abelian gauge fields A„- (I =
1, ..., 16), on a six-torus

d xQ Ge @[R~+—0„48"C' —i'2H„pH""~

F„(LML)a—b(F )""+ s Tr(B„MLB"ML)],

where I"„=B„A —B„A„and H„p —— (B„Bp +
2A„L bE )+permutations ((a, b) = 1, ..., 28). G
detG„and the Ricci scalar 'RG. is defined in terms of
the string f'rame metric G~ . M is the O(6, 22) matrix of
the following 28 scalar fields: the internal part of the 10D
metric G = G +s +s ((m, n) = 1, ..., 6), "antisym-

metric" background fields B—:B +s +s ((m, n) =
1, ..., 6), and "gauge" background fields A:—A +s
(m, = 1, ..., 6, I = 1, ..., 16). M has the properties

MLM = L,
(0 I, 0

L= I, 0 0
E 0 0 —Iisf

(2)

where I is the n x n identity matrix. L is the matrix
invariant under O(6, 22) transformations. The 4D dila-
ton field 4 = 4( ) —

2 lndetG is defined in terms of
the 10D dilaton field C ( ) and determinant of the inter-
nal metric G . The gauge fields A„2G G +3
((m, n) = 1, ..., 6) are related to the off-diagonal com-
ponents of the 10D metric. The gauge fields A„with
a = 7, ..., 28 are related to the off-diagonal components
of the 10D antisymmetric tensor B and the 4D space-
time components of the 10D gauge fields A-.P

We choose to set the 10D Abelian gauge fields and
10D two-form fields equal to zero; this choice is consis-
tent with the equations of motion in the corresponding
10D supergravity theory, and thus with the equations of
motion of the 4D effective action (1). Consequently, a
consistent truncation of (1) corresponds to setting the
antisymmetric tensor field B~ and a set of 4D gauge
fields A„(a = 7, ..., 28), as well as the scalar background
fields B and A to zero. The action (1) then reduces
to the form

8 = d x —Ge R.G. + O„CB"4 —I"' LML g E " + —Tr B„MLO"ML
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For notational conventions and the relationship of the 4D massless modes to the bosonic modes of the corresponding 100

N = 1 supergravity theory, see, for example, Ref. [8].
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where

(G—i
M=

i 0
E0

0 0 )
G 0

Iis j
(4)

depends only on G, a real symmetric (6 x 6) matrix of scalar fields associated with the internal metric of six-tori.
The action (3) can now be written explicitly as

S = d ~ —Ge 'R~ + 0„48"C ——G „E„„E"""+ —B„G „0"G

d xv' —g 7Zg ——B„gB"Ip — B„yB"p—— e~p—„F„F"""+ B„p —„B"p (5)

where p is the unimodular part of the metric G, p =
—(= lndet G —C), and P—:—( 2 lndet G+ 4') =

Here, p p~~
——b& and o; = + with

6 = 6. The scalar curvature R~ and g = detg~„are
expressed in terms of the Einstein-frame metric g& .

The action (5) is that of 11D KK theory compactified
on a seven-torus, where the gauge field A, associated
with the seventh torus, is turned ofF. Consequently, the

Geld y = +24 ~ ~, parametrizing the size of the sev-

enth torus, decouples (except for 4D gravity) from the
other fields and can therefore be set to a constant. This
result is obvious, once one realizes that the bosonic sec-
tor of 10D N = 1 supergravity with the 10D gauge Gelds
and antisymmetric tensor Geld turned oK corresponds to
11D KK theory compactified down to 10D with the 10D
gauge Geld, associated with the compactified dimension,
turned oK

Thus, the action (5) is effectively that of 10D KK the-
ory compactified on a six-torus [9]. The corresponding
4D BH solutions of (5) are then those of (4 + n) D (n=6)
KK theory. In particular, with further consistent trunca-
tions of the gauge fields, i.e. , A„= 0 [m = 1, ..., k(( 6)],
(5) reduces to the effective action of (10 —k)D KK the-
ory. Namely, the corresponding internal metric fields,
i.e., combinations of y and p „(&m, n& = 1, ..., k), de-
couple from the other fields (except for 4D gravity) and
can thus be set to constant values. Specifically, for the
choice of k = 5 (only one nonzero gauge field) (5) reduces
to the action of an effective 5D KK theory with the cor-
responding BH solutions [1], as discovered by DufF et al.
[10].

Supersymmetric embedding of the bosonic action (5)
allows one to derive the Bogomol'nyi bound for the
Arnowitt-Deser-Misner (ADM) mass of the above class
of spherically symmetric BH solutions. Among them
the supersymmetric ones, i.e. , those which preserve
(constrained) supersymmetry, can be regarded as non-
trivial vacuum configurations, since they saturate the

The embedding is a generalization of a supersymmetric em-

bedding for the BH solutions in 50 KK theory, found by Gib-
bous and Perry [11].

corresponding Bogomol'nyi bounds. 8upersymmetric
embedding of 4D Abelian KK BH's with a diagonal
internal metric ansatz has been carried out [3] within
(4 + h)D KK theory (1 & 6 & 11), and can thus be ap-
plied to BH solutions of (5) as well. Such supersymmetric
BH's have at most one magnetic (P) and one electric (Q)
charge arising f'rom difFerent U(l)'s, thus corresponding
to solutions in the effective 6D KK theory with inter-
nal isometry U(l)M x U(l)@. Embedding of (5) in 10D
N = 1 supergravity ensures [3] that the resulting vacuum
configuration preserves one (N = 1) of N = 4 supersym-
metries of the e8'ective 4D action.

The corresponding nonextreme solutions with a diag-
anal internal metric [4,5] as well as a class of those with
a nondiagonal internal metric [5] have also been found.
The latter ones can be obtained [5] as solutions of (5),
by performing SO(n) (n = 6) rotations on the solutions
with a diagonal internal metric. This SO(6) symmetry is
realized as a subset of the O(6, 22) symmetry [12] of (1).

The class of solutions generated by the SO(6) transfor-
mations on the U(l) M x U(1)~ BH solutions corresponds
[5] to charged configurations (P', Q') (i = 1, ... , n(= 6)]
subject to the constraint g, i P'Q' = 0. The most gen-
eral solutions within this class, i.e. , those with uncon-
strained charge configurations, are expected to be gen-
erated [13] by (one parameter) transformations, belong-
ing to SO(2, n) (6 = 6), on the former solutions. Here,
SO(2, n) is a symmetry of the efFective 3D Lagrangian
density [2] for the spherically symmetric BH ansatz in
(4+ n)D KK theory.

Such explicit solutions for all static 4D KK BH's would
allow for a study of their global space-time and thermal
properties. They would in turn provide a sub-class of
solutions for general 57- (or 58)-parameter dyonic (or ro-
tating) BH solutions which could be generated [6] by
[O(22,2) xO(6, 2)]/[O(22) x O(6) x SO(2)] transforma-
tions on the 4D Schwarzschild (or Kerr) solution.
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