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Isgur-Wise function in a relativistic model for a qQ system
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We use the Dirac equation with a "(asymptotically free) Coulomb + (Lorentz scalar) linear"
potential to estimate the light quark wave function for qQ mesons in the limit mg —+ oo. We use
these wave functions to calculate the Isgur-Wise function ((v v') for orbital and radial ground states
in the phenomenologically interesting range 1 ( v v' ( 4. We find a simple expression for the
zero-recoil slope, ('(1) = —1/2 —e (r~ )/3, where e is the energy eigenvalue of the light quark, which

can be identified vrith the A parameter of the heavy quark effective theory. This result implies an
upper bound of —1/2 for the slope ('(1). Also, because for a very light quark q (q = u, d) the size

V/(r~~) of the meson is determined mainly by the "confining" term in the potential (pocrr), the shape
of ( s(v v') is seen to be mostly sensitive to the dimensionless ratio A &/cr We .present results for
the ranges of parameters 150 MeV& A, g ( 600 MeV (A, —A,s+ 100 MeV), 0.14 GeV & cr & 0.25
GeV and light quark masses m„, m& —0, rn, = 175 MeV and compare to existing experimental
data and other theoretical estimates. Fits to the data give A s/cr = 4.8 + 1.7, —(' s(1) = 2.4 + 0.7,

and IV,sI/r~/1 48 ps =. 0.050 + 0.008 [ARGUS 1993]; A„s/rr = 3.3 + 1.2, —g„' s(1) = 1.8 + 0.5,

and IV, sI V/r~/1. 48 ps = 0.043 6 0.005 [CLEO 1993]; A„s/cr = 2.0 + 0.7, —(„' s(1) = 1.3 + 0.3, and

IV,sIF(l) = 0.037 + 0.002 [CLEO 1994] [existing theoretical estimates for F(1) fall in the range
0.86 ( F(l) & 1.01]. Our model seems to favor the CLEO 1994 data set in two respects: the fits are
better and the resulting ranges for the model parameters (A„,s, o) are more in line with independent
theoretical estimates.
PACS number(s): 12.39.Hg, 03.65.Pm, 12.39.Pn

I. INTRODUCTION AND SUMMARY

During recent years, a lot of effort [1] has gone into the
description of systems and processes involving at least
one heavy quark (mg )) AqcD) via a systematic expan-
sion in the small parameters (AqcD/mg) and ci, (m&),
taking advantage of "heavy quark symmetries. " The use-
fulness of this approach is in that in the heavy quark limit

mg ~ oo, all the physics can be expressed in terms of
a small number of form factors, which depend on the
light quark and gluon dynamics only. These "univer-
sal" functions can be used as a means for comparison
among different theoretical models (such as nonrelativis-
tic and relativistic potential models, lattice QCD cal-
culations, etc.). Comparisons with experiment or with
methods such as QCD sum rules require in general intro-
ducing model-dependent 0( ) corrections [except at
v v' = 1, where corrections start at order (AQcD/m&)
[2]], as well as calculable perturbative QCD corrections.

In this paper we limit ourselves to the leading or-
der in the heavy quark expansion. We calculate the
Isgur-Wise function [3] ((v . v') for radial and orbital
ground state mesons using a relativistic model for the
light quark Thi. s function in our case (radial and orbital
ground state), for a given flavor of light quark, fully de-
scribes the transition Mq ~ M' in which a local operator
transforms the heavy quark Q in the initial meson Mz (of
four-velocity v, J = 0 or 1) into the heavy quark Q' in
the meson M' (of four-velocity v', 1 = 0 or 1).

'Present address: Department of Physics, Ochanomizu Uni-
versity, 1-1, Otsuka 2, Bunkyo-ku, Tokyo 112, Japan.
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= e@(~) (1)

Because we are investigating the meson system in the
heavy quark limit (AqcD/mq ~ 0), the energy eigen-
value e of the Dirac equation can be identified with the
"inertia" parameter Aq often introduced in heavy quark
efFective theory (HQET) [1]:

e = A~ = lim (M(qq) —Mg). (2)

In our investigation, we allow the A parameters to vary
over the range 0.15 & A„~ & 0.6 GeV (A, —A„g + 100
MeV), obtained from recent lattice gauge theory studies
[4] and other theoretical estimates [5, 6]. As will be seen
below, the parameter A plays an important role in the
calculation. of the Isgur-Wise function. However, since
the additive constant co in the potential is indetermi-
nate, only the difference A —co e —co can be extracted
from Eq. (1) so that A is efFectively an independent in-
put parameter in our model. The asymptotically &ee

We assume that the light quark wave function obeys
a Dirac equation with a spherically symmetric potential
in the reference kame in which the heavy quark is sta-
tionary at the origin. We also assume that the poten-
tial has the form V(IzI) = V, (IzI) + co+ pooIxI, where
V, (IxI) is an asymptotically free Coulomb term, co is a
constant, and the last term is a Lorentz scalar confining
term. Thus, the spatial wave function for the light quark
q, of mass mq, is assumed to obey the time-independent
Dirac equation
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Coulomb term V, (r) is parametrized in terms of the QCD
scale AMs and a saturation value for the strong coupling
o., :—ct, (r = oo), where MS denotes the modified min-
imal subtraction scheme. (We use AMs ——240 MeV and
o., = 1.) Phenomenological and theoretical considera-
tions motivate our use of three diferent values for the
string tension: o = 0.25 GeV, 0.18 GeV, and 0.14
GeV . We set m„, mg ——0 and m, = 0.175 GeV. Further
details about the parametrization of the potential are
given in Sec. III. At the end of that section we present
arguments that could be used to narrow the ranges of
the model paraineters (A„,g, n) to A, g = 0.5 + 0.1 GeV
and 0. = 0.14 GeV2.

We find that the shape of the Isgur-Wise function is
mostly sensitive to the parameters A and o. In fact, to
a very good approximation („&(v v') depends on the

dimensionless ratio —only. Within our approximation,
we also find a strict upper bound on the slope at zero
recoil: ('(1) ( —1/2. A recent paper [7] that uses the
MIT bag model formalism obtains the same bound, which
is stronger than the well-known Bjorken bound ('(1) (
—1/4 [8]. For large values of v v' (2 ( v.v' ( 4) the shape
of ((tr v') is relatively insensitive to the input parameters
A, o, and AMs.

We present explicit results for ((v . v') in the phe-
nomenologically interesting region 1 & v . v' & 4, us-

ing the above-mentioned range of parameters. We com-
pare our results with recent experimental data [9—11] of
semileptonic B decays as well as with other theoretical
estimates. Prom fits to the ARGUS 1993 data [9] we

A
obtain the ranges "' = 4.8 + 1.7 [corresponding to

g (1) = 2.4 + 0.7] alld
~

V g~ i 4s, ——0.050 + 0.008.

Although the fits are of good quality, for reasonable val-
ues of the string tension o. they favor values for the iner-
tia parameter A„g that are significantly above the range
0.15 GeV& A„g & 0.6 GeV advocated by most theo-
retical estimates [4—6]. The corresponding range for the
slope —( ~(l) is also above most independent theoretical
estimates (see discussion in Sec. IV). The best fit to the
CLEO 1993 data [10] was of significantly poorer quality.

A
Here we found the ranges "' = 3.3+1.2 [corresponding

to —(' d(1) = 1.8+0.5] and ]Vt,
~

~ = 0.043+0.005.
A

The ranges for "'" have in this case some overlap with
previous theoretical estimates, but are still somewhat on
the high side of these estimates. We noticed that if the
data point &om the CLEO 1993 set [10] correspond-
ing to the largest value of v v' is ignored, the quality
of the fit greatly improves. The parameter ranges ob-

2

tained in this case are "' = 2.0 + 1.4 [corresponding to
—(„',(1) = 1.3 +0.6] and iV.,i, ;... = 0.038 + 0.005.

A
These ranges for "' — and —(„' &(1) overlap with many
previous theoretical estimates, but are somewhat too
wide to provide useful new information that could dis-
tinguish between these.

The recently released CLEO 1994 data analysis [11]
has smaller error bars than the data mentioned above [9,
10]. Also, our model produces better quality fits to this

data set than to the previous ones. These two factors
contribute to help narrow the parameter ranges. The fol-

lowing ranges are favored: "'" = 2.0+0.7 [corresponding
to —(' „(1)= 1.3 + 0.3] and ~V, t, ~E(1) = 0.037+ 0.002.
[Different theoretical estimates for the constant E(1) can
be found in Eq. (41), Sec. IV.] Note that the central
values of these ranges are quite close to the ones found
from the fits to the CI EO 1993 data set after removing
the CI EO 1993 data point corresponding to the highest
v v'. The uncertainties, however, are here reduced by a
factor of about 2, which should help us to narrow down
the parameter space of the underlying physics.

II. GENERAL FORMALISM

We assume that the wave function 4 of a qQ meson of
mass M~@ in the limit mg -+ oo [i.e., ignoring 0( )
effects] can be expressed in terms of a direct product of
the (free spinor) wave function of the heavy antiquark,
g, and the wave function of the light quark, g, in the
"relative" coordinates. It is therefore convenient to define
the four-vectors

A" = (tg, rg), x"—:(t~ —tg, rq —rg). (3)

Of course, the kinematics of the two wave functions y
and vP are not completely independent. They are con-
nected by the implicit constraint that in the rest frame
of the heavy quark (which is also the rest frame of the qQ
meson) the spatial part of the light quark wave function,
@(x),obeys the time-independent Dirac equation (1). In
order to be able to give the meson wave function 4' a
physical meaning in a given reference frame, we have to
set the "relative time" of the two constituents to zero:

z =0)

@""(A,x) =
0

2M-
QQ 4 irngtg y'9—( )

—iet

(2vr)

(4)

where A, g are spin indices (A, i1 =g or $ with respect to
some axis), y~ is a &ee Dirac spinor at rest correspond-
ing to the heavy antiquark, and tt "(2:) obeys Eq. (1)
with energy eigenvalue e. The factor in front of the di-
rect product is for normalization purposes [see Eq. (10)
below]. Using our convention tg = t~ = t we see that the
rest mass M is given by

M ~
——my+~, (5)

thus validating our identification of e with the parameter
A~ commonly introduced in HABET.

We now turn to the description of the meson qQ as
seen Rom a reference frame I, with respect to which
the meson (rest &arne I') is moving with a four-velocity
v = (p, pP). In the unprimed frame, the four-momentum
of the meson is given by P = vM. We assume that the

In the rest &arne of the meson (P = 0), its wave func-
tion can then be written as
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wave functions of the light quark and heavy antiquark
transform in the standard way under a Lorentz transfor-
mation. Although this would be strictly correct only if
the Dirac equation for the light quark [Eq. (1)] were in
fact covariant under Lorentz transformations, we assume
(and verify in some special cases later) that this proce-
dure will not introduce important errors in our results.
We can then express our wave functions in the unprimed
kame in terms of those in the rest kame of the meson,
LI.

@„(t,r ) = S„@-(t', ' ),
y„(tg, rq) = S„ys(t ~, r ~),

where
I

tqQ + tqQ ~ rq9

q, o + (P — ) (P q g)P —wPtq g,
tq ——tg =t,

arctanh[P~
~v = exp

2

wP. w(P —~Py)
p+1 pjl
~(P-+'P, ) ~P.

p+1 p+1

1 0

p+1 0
~P. ~(P —~Py) gQ+ 1 p+1
~(P.+'P, ) ~P.

p+1 p+1

Therefore, the wave function of a meson moving with velocity P in our (unprimed) frame will be

,~.x-qQ sp xS —A . S yq[ +~( 1)(p ~)p] iepp 8 (9)

where we have used Eq. (7) for the last step and tq ——

tg = t, rg = X, rq —rg = x, P = (pM, CPM).
It is straightforward to check that the standard nor-

malization for meson states,

is obtained provided that the usual normalization is used
for the light and heavy quark wave functions:

I

and Q g g g

((v . v') =, (P„~h„(0)h„(0)~P„), (12)

where ~P„) = ~ (~4"„")—~@~t)) can be obtained &om

Eq. (9) and h„i(0) [h„(0)] is the creation [annihilation]
operator for a heavy quark of four-velocity v'(v) at the
origin of space-time and v~p&h = 6 has been used. The
light quark wave functions @"[see Eq. (9)] correspond in
this case to the radial and orbital ground state solutions
of the Dirac equation (1).

Without loss of generality we can. assume that P and
P' are collinear. We can then use the simple result

The Isgur-Wise function ((v v') (for orbital and radial
ground states) can be extracted in a simple way [1, 3]
by calculating the following matrix element between two
pseudoscalar states of mass M and four-velocities v and

Xo ~ r'~ Xo=0 1+v v

v: to obtain the explicit expression

(v. v') = $3 ~ ) y 7t(~l)S tS @&(~~a) ie(PP P"P'l8—
n=t 4

(14)

where

(15)

and v . v' = pp'[1 —P . P'] (v . v' in [1,oo]). x' and i"
represent the spatial coordinates in the reference &ames
where the mesons of respective four-velocities v' and v
are at rest.

In principle, the above integral expression (14) should
depend on v ~ v' only, i.e., should be Lorentz invariant

I

so that its value will be independent of the (unprimed)
kame that is chosen to evaluate the integral in. In prac-
tice, because the Dirac equation (1) is not Lorentz covari-
ant (due to the potential), the wave functions are not ei-
ther. Therefore, the function ((v.v') does depend on the
kame we choose. However, it can be easily checked that
the important properties ((1) = 1 and Im[((v v')] = 0 are
satisfied in any Lorentz kame. Moreover, as will be de-
tailed at the end of this section, we found that the value
of the slope at zero recoil ('(1) is the same in three sim-
ple (but quite difFerent) Lorentz frames. Thus, at least in
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the vicinity of the zero recoil point, the efkcts of Lorentz
noninvariance of our function ( are expected to be small.

We choose to work in the Breit [7] frame, where it
is easiest to perform the calculation. In this frame the
incoming and outgoing mesons are moving with equal
speeds but in opposite directions (P = —P') and therefore
v . v' = 2p —1. Also, St, = S so that after a change
in integration variable ((v .v') can be written in a simple
form [12], with P and P' in the z direction:

where

1+v v v v —1
v. v'+ 1

(17)

2
Because P &&

@"(x') is spherically symmetric, the
0

angular integration is trivial. Also, it is easy to derive
an expression for the slope at zero recoil ('(1) in terms
of the inertia parameter e~ = A~ and (r2)-:

8(~ 1 122 = 1 122= ————e (r )-= -- ——A (r )-.
B(v v') 2 3 ~ '' 2 3

(18)

(19)

This bound is stronger than the well-known Bjorken
bound ('(1) ( —I/4 and is a result of the dynamical
assumptions inherent in our treatment of the meson sys-
tem in the heavy quark limit. In particular, we think that
it can be traced to the fact that we describe a moving
meson by boosting the light and heavy quarks indepen-
dently (by the same amount). General arguments based
on relativistic kinematics lead to a result similar to Eq.
(19), but not as a strict upper bound on ('(I) [13]. A
simple relativistic oscillator model gives the same upper
bound as Eq. (19) [14).

Because our formalism is not fully covariant (spher-
ically symmetric Dirac equation potential is put in by
hand), one may suspect that the above result for ('(1)
[Eq. (18)) is Lorentz frame dependent. We have checked

This is a general result within our formalism and not
linked to any particular form of the potential used in
the Dirac equation for the light quark. It tells us that
('(1) depends only on the light quark energy eigenvalue
e [or equivalently, for our model, the HABET "inertia"
parameter A~ = lim ~~ (Mg~ —mq)] and on the rms
distance between the light quark and the (stationary)

heavy antiquark, (r2)-. We should point out that this

same result was obtained independently in a recent paper
that describes qQ mesons and qqQ baryons in the context
of the MIT bag model [7], also obtained in the Breit
kame.

An interesting aspect of this result is that it sets an
upper bound on the slope [('(1) = —p2]

explicitly that the result is unchanged if ('(I) is calcu-
lated in the frames where either the incoming or the out-
going meson is at rest.

III. PARAMETKIZATION
OF THE DIRAC EQUATION POTENTIAL

!n the Mg -+ oo limit, the qQ meson system should
be well described by the heavy antiquark stationary at
the origin and the light quark (of mass m~) moving in a
spherically symmetric static external potential. We are
of course ignoring the self-interactions of the light quark
in the hope that these can be absorbed to some extent
in a renormalization of the parameters of the external
potential.

We take the short-distance behavior of the poten-
tial from renormalization-group-improved @CD pertur-
bation theory and the long-distance behavior &om lattice
and other nonperturbative studies that ignore screening
by light quark pair creation. Unfortunately, knowledge
about the leading behavior of the potential in these two
extreme distance regimes defines the potential only up to
an additive constant.

At short distances, the usual asymptotically free
Coulomb form (transforming as the zeroth component
of a Lorentz four-vector) is obtained:

4 n, (r)
3 r (20)

The parameter A defines the "long-distance" saturation
value for o;, . We use A = 2 which corresponds to
n, (r = oo) = 1.0. The parameter B is related to AMs

by B = (2.23AMs) for N~ = 3. We use N~ = 3 [15]
throughout because for most distance regimes relevant to
our calculation the cc and bb vacuum polarization contri-
bution should be negligible. We generally use the present
experimental average AMs 0.240 GeV [16], which cor-
responds to B = 1.87 GeV . As described in Sec. IV,
we do vary the value of B (i.e., of AMs) with respect to
the above value for the specific purpose of studying the
sensitivity of the shape of ((v .v') to this parameter. We
find only a weak dependence.

To describe the long-distance behavior we use a linear
term in the potential that transforms as a Lorentz scalar
(masslike). Many theoretical and phenomenological ar-
guments seem to favor this form [17—19],

VL, ——p ~r, (22)

where p is the usual Dirac matrix, rather than an admix-
ture with a linearly rising zeroth component of a vector
term. We do our calculations with three diferent val-
ues for the string tension parameter o. The choices that
we made were arrived at as follows. The experimental
information available for the D and D, systems seems

where n, (r) is obtained in the leading logarithmic ap-
proximation and is parametrized as

27Kn. (r) =
(11 —'~

) in[A+ ~]
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to indicate that the (spin-averaged) splitting between P
states and S states is in both cases approximately 0.45
GeV. We found that in order to obtain a splitting of this
magnitude with our V, (r) +. co + poor as defined above,
o. had to be about 0. = 0.25 GeV . A previous study
[17] agrees with this calculation. On the other hand, this
value for o is significantly larger than those obtained &om
the Regge slope data (qq systems) [18,19]. Of course, one
cannot exclude the possibility that the 2P-1S splitting of
about 0.45 GeV holds for the D, D, systems but is signif-
icantly smaller in the hypothetical limit Mg ~ oo, which

are the systems we are trying to describe in the present
work. The difterence would be due to heavy quark recoil
effects in the charmed systems. In fact, preliminary ev-
idence was reported recently for a B**(I.= 1) candidate
with mass Mgy" = 5610 MeV (Ref. [20] and also talk by
V. Luth at the same conference), which would indicate
a 2P-1S splitting of only about 0.34 GeV. If con6rmed,
this would allow us to use more conventional values for 0.,
as extracted &om the Regge slope o.'. We therefore also
consider this possibility. The extraction of 0 from o.' is
somewhat model dependent. Two common relations are

2' o.'
(string model [21]) (23)

and

1
CT =

8o.'
[two-body generalization of Klein-Gordon (KG) equation [18,19]]. (24)

Using n' — 0.9 GeV [21] we obtain, respectively,
cr = 0.18 GeV (string model) and 0 0.14 GeV (two-
body KG. equation). The latter value agrees also with
a recent lattice estimate [22]. We would like to remark
that if the 2P 1S split-ting for the B mesons (and there-
fore also in the mg ——i oo limit) turns out to be similar in
magnitude than the observed splitting in the D, D, sys-
tems, as predicted in several models [23], we could. still
Gt this splitting using the more conventional values of o.

(0.18 and 0.14 GeV ), provided that we change the A

parameter in V (r) [see Eq. (21) and discussion below]

to A ) 0.5 GeV, i.e., B & 0.9 GeV
So far we have used as input the well-known leading

short-distance and long-distance behavior of the poten-
tial. There is less theoretical knowledge about the shape
of the potential in the intermediate region. We introduce
an additive constant term c0, which is clearly subleading
both in the short- and long-distance regimes. Because
the only role of this constant is to define the absolute
scale of the light quark energy eq, this constant gets ab-
sorbed once we identify e~:—A~ = lim z~ (M~q —mg)
and assign Aq some physical value.

We obtain a plausible range for the physical parameter
Aq from previous theoretical works that estimated the
value of the "pole mass" of the b quark, mb. We use the
relation

(P )
Mii (spin averaged) 5310 MeV A„g + mi, +

2mb

(25)

where (P&) = (P ) has been used.
A recent lattice study Ands mb ——4950 + 150 MeV

[4], which also agrees with a HABET estimate [5]. @CD
sum rule estimates are lower, closer to ms 4.6 GeV [6].
From these values for mb and Eq. (25) we then find the
range

A„g = 150—600 MeV.

We do our calculations using mostly the two extreme

MD- —MD = MD. —MD, (28)

M~- —Mg = M~- —M~ . (29)

Thus, simply taking

A, = A„g+ 100 MeV (3o)

seems to be consistent with the heavy quark expansion
to 0( ). We will adopt this prescription to compare

mg
results for mesons containing a u or 0 quark with those
containing an s quark.

In summary, our Dirac equation potential is of the form

—8' 0+ 0

2 0 + 1.87 (CeV 1) (31)

where we assumed o., = 1, N~ ——3, and AMs ——0.240;
u takes the values 0.25, 0.18, or 0.14, and c0 takes values
such that e g = A g is in the range 150—600 MeV. For
the quark masses we use m„= mg ——0, m, = 0.1?5 GeV.
We have checked that this choice for m, is consistent with
Eq. (3o).

We would like to remark that we are allowing wide
ranges for the model parameters o. and A„g so that our
results will be useful in spite of present theoretical uncer-
tainties in the determination of their "physical" values.
We could signi6cantly narrow these ranges by making
model-dependent assumptions. For instance, the argu-
ments leading to Eq. (24) [18, 19] are closest to the theo-
retical context of the present paper, leading to 0 = 0.14
GeV. As mentioned earlier, this value for o also agrees
well with the recent lattice estimate of Ref. [22]. Also,
because the constituent mass of a light quark q in a qQ

I

values as well as the average value in this range, A„g ——

150, 375, and 600 MeV. Notice that we have to make a
distinction between A„d and A„but this does not intro-
duce any complications because, experimentally,

MD —MD = M~. —M~ = 100 MeV,
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system is expected to be somewhat larger than the con-
stituent mass of the same quark in a qq system (due to the
smaller size of the former), we can obtain lower bounds
on A (energy eigenvalue of the light quark in our qQ sys-
tems) that are stronger than 150 MeV [see Eq. (26)]. For
example, a commonly quoted value for the constituent
mass of the s quark in light baryons or mesons is 0.5
GeV. Then, a lower bound of A„g ) 0.4 GeV would fol-
low through Eq. (30). We thus obtain "preferred" ranges
for o and A„,g.

o. = 0.14 GeV,
04GeV & A„g & 06GeV. (32)

We however prefer to present our results for the wider
(and less model-dependent) ranges given earlier (i.e., 0.14
GeV & o. & 0.25 GeV and 0.15 GeV & A„d & 0.6
GeV).

IV. QUANTITATIVE RESULTS
AND DISCUSSION

In this section we use the parametrization for the Dirac
equation discussed in the previous section in order to find
the light quark wave function g~(z). We then use the
formalism developed in Sec. II, to calculate the Isgur-
Wise function ((v . v') in the Breit reference frame, for
diferent values of the parameters in the potential and for
systems where the light quark is u, d (m„= mg = 0) or
s (m, = 0.175 GeV).

In the case of a central potential, the time-independent
Dirac equation for a state with angular momentum quan-
tum numbers j and m is reduced to radial equations by
writing

d K
[V)(r) + m]g(r) + ——+ — f(r) = eg(r),dr r (34)

K—+ — g(r)+ [™+I'( )]f( ) = f( ) .
dr r

1 &g(r)n„„(e,y)
r (—if(r)A „(e,$)) '

where v = E —1 for j = 8+1/—2 and v = E for j = E —1/2
and 0„ is a spinor with spin 1/2 coupled to orbital
angular momentum E. The radial equations are then

P, (r) = r'e "~, i = 1, ..., M,

This form is chosen to have the correct analytic behavior
at large r values. Matrix elements of the kinetic energy
operators and the linear potential can be evaluated ana-
lytically, but matrix elements of the "Coulomb" term are
computed numerically. Satisfactory results are obtained
for modest values of M and N of ord.er 10.

The problem has also been solved fully numerically in
the finite di8'erence approximation by converting the two
first-order equations to the second-order Pauli equation.
Details of the method used can be found in Ref. [24].
Energies found by the two methods are identical. How-
ever, for evaluating the form factor the more accurate
numerical wave functions have been employed.

We present our results for („g,(v v') in graphical
form for the range 1 & v v' & 4 which is of phe-
nomenological interest for decays of the types B,B* ~
D, D*+X; B,B*~ K*+X; D, D* + K*+X. Figures
1, 2, and 3 exhibit our results for the "inertia" parameter
A„g = 0.15 GeV, 0.375 GeV, and 0.6 GeV (A, = 0.25
GeV, 0.475 GeV, and 0.7 GeV), respectively. For each
value of A g we show the result („g(v v') for o' = 0.25
GeV, 0.18 GeV, and 0.14 GeV while for each A, we
give (, (v v') with cr = 0.18 GeV for comparison with
(„g(v . v').

In Table I we present the values of the zero recoil slope,
('(v v')~„.„—q for the same values of the parameters
A„,g, A„and o as used in Figs. 1—3.

We observe that for A„~ = 0.15, („~(v v') is almost in-
dependent of the parameter o. It is clear from Eqs. (16)—
(18) that if [A~(= ~e~~) is very small, ((v. v') is controlled
mostly by purely kinematic factors, the shape of the wave
function becomes unimportant (provided that it is prop-
erly normalized). We observe also that („d(v v') and
(,(v. v') are quite close (0 = 0.18, A, A g+ 100 MeV)
for all values of A„g. This confirms that the strange
quark can be treated as a light quark and that SU(3)~ is
only softly broken for the processes considered here, once
the (phenomenologically imposed) shift in the value of A
has been considered.

Although it is not obvious from Figs. 1—3, we checked
(by using different values of 0 and A„d and keeping

In the present calculation the potentials operating on the
large and small components are parametrized as 0.8

z7 & [&+ay )
+

8( ) =
27' 1n[A+Hyr] + 0 .

t'(v v')

0.6

0.4

The eigenvalue problem has been solved in two inde-
pendent ways. The algebraic approach is to expand g(r)
and f (r) in "basis" functions P;(r), i = 1, ..., M, and
yi(r), j = 1, ..., N, leading to a matrix eigenvalue prob-
lem of dimension (M+N) for e. The smallest N eigenval-
ues correspond to hole states and the (N+ 1)st eigenvalue
is the lowest particle state. In the present calculation P
and y are taken to be

0.2—

FIG. 1. The Isgur-Wise function („,z ($,) for A~, z = 0.15
GeV (A, = 0.25 GeV) and cr = 0.25, 0.18, and 0.14 GeV
(o = 0.18 GeV ).
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B = 1.87 GeV and cT = 0.18 GeV, are kept fixed,
while A ~ and the physical observable [Vg[p are varied
in such a way that y, defined in standard fashion [26] as
being the total square deviation from the data (weighted
by one standard deviation experimental uncertainty for
each point), is minimized:

Ã
X' = ).(IV.~IS ([(v . v');] —f') /~,' (38)

where

BP= 1.48 ps

and

(fits to ARGUS 1993 and CLEO 1993)

(39)

p—:E(1) g~ in the notation of [ll]

E(1) = 0.97 + 0.04 [1,27],
E(l) = 0.96 + 0.03 [28],
E(1) ( 0.94, E(1) = 0.89 + 0.03 [29] .

(41)

For each data set, we obtain the one standard devia-
tion (68.3% confidence level) ranges for our two fitting
parameters, A„g and [V,t, [p [26]. Because of the scaling
behavior described above Eq. (37), the ranges that we
obtain for the parameter A„p and Axed 0 = 0.18 GeV
can be translated into ranges for the dimensionless ratio
A2 &/o where o. is allowed to take values other than 0.18
GeV .

We would like to add a cautionary note before giv-
ing the results of our Bts. Because the Isgur-Wise func-
tion that we calculate in our model and use for these
6ts does not take into account finite-Mg corrections
[O(AQcD/M&) at v v' = 1 and O(AQcD/MQ) elsewhere],
we have to be aware that direct comparison of our model
with experiment (via our y function) can be reliable to
leading order in AQ&D/MQ only. At v. v' = 1, this uncer-
tainty is of order AQ2&D/M&2 and can be absorbed into the
parameter p which multiplies [Vt, [ [see Eqs. (39)—(41)].
However, away &om v v' = 1 there is an "intrinsic" un-
certainty in the comparison of our model to experiment of
expected relative magnitude of order (v.v' —1)AQcD/MQ.

The best fit to the ARGUS 1993 data (eight points) [9]
gives yo/NDF = 0.54. We obtain the following ranges for

the fitting parameters: "'" = 4.8 + 1.7 (corresponding
to [see Eq. (37)] p„~ = —(„'~(1) = 2.4 + 0.7) and

(fits to CLEO 1994). (40)

We will use yo/NDF as a measure of the "quality" of the
Bt, where y& corresponds to the minimum of the func-
tion y (A„g, ]Vt, [p) and NDF = N —2 is the number
of degrees of freedom for a particular data set (N exper-
imental points, two fitting parameters) [26]. The factor
E(1) = g~ required to extract an estimate of [V,t, [

from
the CLEO 1994 data [ll] has been estimated theoreti-
cally by several authors:

TABLE II. Various theoretical estimates of p„~ = —('(1).

Bjorken [8]
Isgur et al. [30]

Rosner [31]
Manuel et aL [32]

Neubert [33]
Bernard et al. [34]

UK+CD Collaboration [35]
Radyushkin [36]

Karanikas and Ktorides [37]
Sadzikowski aud Zalewski [7]

Kugo et al. [38]
Ivanov et al. [39]

Ivanov and Mizutani [40]
Narison [6]

Blok and Shifman [41]
Close and Wambach [13]

)—1
4

0.63(0.33)
1.44 + 0.41
1.77 + 0.74
1.28 + 0.25

1.41 + 0.19 + 0.41
1.2 8

0
1.24

1.8—2.0
0.43

0.42—0.82
0.52—0.92
0.5—0.8

1.19 + 0.03

0.050 + 0.008. We note that even ifi.4s i

a small value for the string tension, o. = 0.14 GeV
were used, the range for the inertia parameter would be
A„p = 0.81+0.15 GeV, which is significantly above most
theoretical estimates [see Eq. (26)]. The corresponding
range for p„& overlaps with some of the theoretical es-
timates (see Table II) but is centered above most of the
predicted ranges.

The best fit to the CLEO 1993 data (seven points) [10]
is poorer with yo/NDF = 1.19. Here we find the ranges

= 3.3 + 1.2 (corresponding to [see Eq. (37)] p2
&

——

—(„'&(I) = 1.8+ 0.5) and [V,t, [ i 4', = 0.043 6 0.005.

There is some overlap between the resulting range for
A„~ (e.g. , A„g = 0.66 + 0.13 for o = 0.14 GeV2) and in-
dependent theoretical estimates [see Eq. (26)]. Also, the
range for the slope p„& signi6cantly overlaps with sev-
eral previous theoretical predictions (see Table II). We
would like to remark that if we ignore the GLEO 1993
data point corresponding to highest recoil (v v' = 1.5),
the Gt to the remaining six points is greatly improved.
We obtain in this case yo/NDF = 0.62 and ranges
A = 2.0 + 1.4 (corresponding to p2

&
——1.3 + 0.6) and

[Vb[ i 4s
——0.038+0.005. For commonly used values

for the string tension (cr = 0.14—0.18 GeV2) the accept-
able range for A g in this case is centered well within
the range of previous theoretical estimates [see Eq. (26)].
The range for the zero recoil slope p„& ———(„' &(I) is very
similar to the ranges obtained in recent lattice estimates
[34, 35] as well as &om several other theoretical calcula-
tions (see Table II).

The best fit of our model to the recent GLEO 1994 data
analysis (seven points) [ll] gives go/NDF = 0.50 which is
the lowest yo/NDF of all our fits, in spite of the smaller
experimental error bars. This means that within a re-
gion of its parameter space, our model agrees well with
this data set. In turn, we expect that these data with
smaller error bars will be useful in selecting a relatively
narrow region for our model parameters (inainly A„d/0)
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as well as for the standard model flavor-mixing parameter
IVcbl [or at least the product IVblF(1)]. The parameter

A
ranges obtained are "' = 2.0 + 0.7 [corresponding to

p„~ = —(„' ~(1) = 1.3+0.3] and IV blF(1) = 0.037+0.002.
As expected, the smaller experimental error bars lead to
a better determination of our model parameter A„d/o
[and correspondingly, via Eq. (37), of the slope at zero
recoil p„&] as well as of the physically interesting product
IV,blF(1). We note that for the commonly used values
for the string tension, o. = 0.14—0.18 GeV, the resulting
range for A„d (0.42 GeV& A„d & 0.69 GeV) overlaps
significantly with the upper half of the range given in
Eq. (26), which was obtained f'rom recent theoretical es-
timates of mb [4—6]. In this respect, the larger values of
o (e.g. , cr = 0.25 GeV [see discussion below Eq. (22)]),
seem to be less favored. We would like to remark here
that an estimate of the pseudoscalar decay constants J'Ii
and f~ in the context of the relativistic model used here

[42], when compared with recent estimates of these con-
stants with lattice and @CD sum rule methods, favors
the lower values for 0 as well.

Because the Isgur-Wise function is normalized at zero
recoil, ((I) = 1, the slope at zero recoil ('(I) determines
to a good approximation the value of the function close
to v - v' = 1. Therefore, at least close to v v' = 1
(all the existing data is in the interval [1,1.5]) the slope
('(I) = —p is a reliable tool for comparison of the difFer-

ent theoretical estimates of ((v . v'). Our original model
parameter ranges 0.15 GeV( A„g & 0.6 GeV and 0.14
GeV & cr & 0.25 GeV [see discussion between Eqs.
(22) and (26)] give [through our result in Eq. (37)] a
wide range 0.54 ( p„& ( 1.5, which overlaps with many
different theoretical estimates (see Table II and Refs. [6—
8,13,30—41]). The only exceptions are Refs. [36—39]. On
the other hand, our "preferred" range for the model pa-
rameters, 0. = 0.14 GeV and 0.4 GeV( A„g ( 0.6
GeV [see Eq. (32) and discussion preceding it as well as
comments at the end of the last paragraph], leads to the
narrower range 0.94 ( p„& ( 1.5. This range is very sim-
ilar to the one favored by our fit to the CLEO 1994 data
[ll] (p d

——1.3 + 0.3) and overlaps with the predictions
in Refs. [7,8,13,31—35] only, although it is not far from
the range advocated in Ref. [6] (see Table II). Both the
lattice gauge theory calculations of [34,35] contain the
range favored by the fit of our model to the CLEO 1994
data within their predicted ranges.

The extraction of a precise value for the standard
model parameter IV,bl from the range IV,blF(1) = 0.037+
0.002 favored by our fit to the CLEO 1994 data is par-

tially hindered by the present uncertainty in the theo-
retical determination of F(1). For example, if we use
the whole range of values for F(1) given in Eq. (41), we

would obtain 0.034 & IV,bl & 0.046.
It is interesting to note that our fits to the CLEO

1994 data (seven points) produce similar central values

for A„d/ o, p„&, and IV,bl [for F(1) 1] as do our fits
to the CLEO 1993 data with the point corresponding
to the largest v ~ v' omitted from the CLEO 1993 set
(i.e. , six points). The resulting ranges for these quantities
are, however, significantly narrower (by a factor of about
2) for the CLEO 1994 data set. We should also point
out that the above-mentioned central values for p„& and

)

IVblF(1) that we obtained from the fits of our model to
the CLEO 1994 data set (Fig. 12 in Ref. [11])are both
somewhat larger than the central values for these quan-
tities obtained in the CLEO analysis carried out in Ref.
[11] (in their notation a = p„&). Once the uncertainties
are included, however, our results for these quantities are
compatible.

Eventually, when the experimental data become more
precise and the I/Mg corrections can be incorporated
with fewer uncertainties, one should be able to further
narrow the allowed range for our main model input,
A2 &/o, as well as for the fiavor-mixing parameter IV bl.

Note added. After this paper was submitted for publi-
cation, we became aware of recent data by the ALEPH
Collaboration on B —+ D*+E v decays [43]. For com-
pleteness we give below the results of a fit of our model
to their data set (six points). We obtain yo/jVDF
0.67 and the ranges A„&/cr = 1 + 1 [corresponding to

t „' e = —(„' z(1) = o.9 + o 4] and
I
V.b IF (I)

0.039 + 0.004. This fit is of poorer quality than our fit
to the CLEO 1994 data [ll] described earlier. The re-
sulting ranges for the parameters are wider than and sig-
nificantly overlapping with the ranges obtained in our fit
to the CLEO 1994 data [44]. An approximate method
for solving the Dirac equation for this type of problem
has been described previously by Franklin and Intemann
[45].
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