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Accurate calculations of macroscopic and mesoscopic properties in quantum electrodynamics
require careful treatment of infrared divergences: Standard treatments introduce spurious large-
distances effects. A method for computing these properties was developed in paper I. That method
depends upon a result obtained here about the nature of the singularities that produce the dominant

large-distance behavior.

If all particles in quantum field theory have a nonzero mass then the

Landau-Nakanishi diagrams give strong conditions on the singularities of the scattering functions.
These conditions are severely weakened in quantum electrodynamics by the effects of points where
photon momenta vanish. A new kind of Landau-Nakanishi diagram is developed here. It is geared
specifically to the pole-decomposition functions that dominate the macroscopic behavior in quantum
electrodynamics, and leads to strong results for these functions at points where photon momenta

vanish.

PACS number(s): 12.20.Ds, 11.15.Tk, 11.55.Bq

I. INTRODUCTION

A method of calculating the macroscopic and meso-
scopic properties of scattering functions in quantum elec-
trodynamics was developed in Ref. [1], in the context of
a particular example. The large-distance behavior was
shown to be concordant with the idea that electrons prop-
agate over large distance like stable particles in classical
physics. This result is expected, and indeed is required in
the interpretation of scattering experiments. But unless
one is able to deduce this dominant behavior from the
theory, and exhibit a controlled nondominant remainder,
the theory would be unsatisfactory, for it would lack the
power to make valid predictions in the mesoscopic regime
lying between the quantum and classical realms. This
regime is becoming increasingly important for technol-
ogy.

The extraction from quantum electrodynamics of the
correspondence-principle large-distance part plus a well-
controlled nondominant remainder is a not a trivial exer-
cise. Difficulties arise from (1) the spurious large-distance
effects introduced by the usual momentum-space treat-
ments of infrared divergences, (2) the singular character
of the photon-propagator singularity surface k2 = 0 at
k = 0, (3) the occurrence of several different types of sin-
gularities on certain singularity surfaces, and (4) the need
to deal effectively with the pole-decomposition functions
that control the large-distance properties. These prob-
lems were all dealt with in Ref. [1]. But one key property
was left unproved. The immediate aim of this paper is to
establish this property. In the course of doing so we shall
develop powerful methods for dealing with singularities
arising in quantum electrodynamics.

A first problem to be faced is the weakening of the
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Landau-Nakanishi diagrammatic conditions for the pres-
ence of a singularity. The vanishing of the gradient of k2
at k = 0 renders the original versions [3,4] of these condi-
tions trivial: They yield no condition at all, for functions
that describe processes with internal photons. Improved
versions that cover the k = 0 points have been devised
[5]. But these also have too many solutions: In general
a continuum of essentially different diagrams all lead to
any given point on the Landau singularity surface. This
surplus of diagrams precludes the application of the sim-
ple known rule [6] for the nature of the singularity on
that surface.

The first part of our resolution of the problem is
this: Use not the original momentum-space variables, but
rather a set of nested radial coordinates and the associ-
ated angles. These variables are defined by first sepa-
rating the integration region into sectors specified by the
different orderings of the relative sizes of the Euclidean
norms |k;| of the soft-photon energy-momenta k;, then,
in each sector, reordering the vectors k; by size, so that
|ki| > |kit1|, and finally writing

ki=rira-- 19, (1)

where, for all 7, |2;|]=1and 0 <r; < 1.

A second problem is that we need results not for the
scattering functions themselves but rather for the func-
tions obtained from them by decomposing their mero-
morphic parts into sums of poles times residues. The
functions obtained by this pole decomposition give the
dominant large-distance behavior. We devise a new kind
of “Landau” diagram for these functions.

The specific example considered in Ref. [1] pertains to
a Feynman graph consisting of six hard photons coupled
to six vertices into a single charged-particle closed loop.
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These six vertices are divided into three disjoint pairs,
with the two vertices in each pair linked by a charged-
particle line that is associated with a momentum-energy
vector that is far off mass shell. This line can, for our
purposes, be shrunk to a point. This produces a (trian-
gle) graph G consisting of three internal charged-particle
lines, with two hard photons attached at each of the three
vertices.

We now “dress” this triangle graph G with soft pho-
tons: We consider the set of graphs {g} obtained by
coupling all possible numbers of soft photons into this
charged-particle loop in all possible ways. If we separate
the interaction term Zevy, into its classical and quantum
parts, in the way described in Ref. [1], then all the classi-
cal interactions can be shifted to the three hard vertices,
leaving only quantum vertices along the three sides of the
triangle. Each of these three sides s of the original tri-
angle graph G is therefore now divided into segments by
a set of quantum vertices. Each segment j is associated
with a Feynman denominator (p, + K;)2 —m? +10, where
K is some (algebraic) sum of photon momenta. The to-
tal contribution from all “classical photons,” which are
the photons that are coupled into G only at classical ver-
tices, can be factored off as a single unitary operator that
is independent of the nonclassical remainder.

We are interested here in the properties of the individ-
ual terms of the perturbation expansion of this remain-
der. Each such term is represented by a Feynman graph
g. Each soft photon is coupled on one or both ends into
either a vertex or a side of the original triangle graph
G, with C couplings at vertices and Q couplings on the
sides.

To exhibit what are expected to be (and turn out to
be) the dominant contributions to the singularity of the
scattering function on the triangle-diagram singularity
surface ¢ = 0, we consider the Feynman denominator as-
sociated with each segments j of side s to be a pole in the
z, = p? plane, and then express the function associated
with each of the three sides s of the triangle as a sum
over pole contributions:

N, [[lps + K5)? = m? +40]*

j=0

= N, Z{[(ps + Ki)2 -m? + iO]Dsi}_l » (1)

=0

where D,; is the product over j # i of factors [(ps +
K;)? — (ps + Ki)?].

There is a pole-decomposition formula = . h as this for
each of the three sides s of the triangle. The direct aim
of this paper is to show that for each term consisting of
photon propagators, together with three factors fs,i(s)s
one from each side s of G, with f, ;(,) being the i(s)th
term in the pole-decomposition formula (1’) associated
with side s, the contours in ; space can be shifted so
as to avoid, simultaneously, all singularities in the pho-
ton propagators and residue factors. This result plays
a crucial role in our arguments. It means, for the case
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under study, that the part of the scattering function that
comes from the meromorphic parts of the propagators
can be expressed as a sum of terms, in each of which the
only singularities are end-point singularities at r; = 0
and 7; = 1, and three Feynman denominators, one for
each of the three sides s of the triangle G. The problems
are thereby focused on the effects of the integrals over
the r;. These are the issues resolved in papers I and III.

II. NOTATION

The original triangle graph G is shown in Fig. 1. The
momenta p;, —pz, and p3 represent the momenta flow-
ing from vy to v;, from v, to vz, and from v; to vs,
respectively. Conservation of energy-momentum is rep-
resented by introducing a closed loop carrying momen-
tum p, and two open paths carrying momenta ¢; and gz,
respectively, in the directions indicated by the arrows.
Then p; = p +q1, p2 = p — g3, and p3 = p.

The function associated with this Feynman graph G
has a singularity on the positive-a Landau-Nakanishi
triangle-diagram singularity surface ¢(q) = 0, where
q = (q1,92,93) and g3 = —q1 —¢q». For each point g on this
surface ¢ = 0 there is [2] a uniquely defined set of three
four-vectors pi1(q), p2(q), and ps(g) such that the singu-
larity at g of the Feynman function F(G) corresponding
to the graph G of Fig. 1 arises from an arbitrarily small
neighborhood

P~ p(q) =p1(q9) — 91 = p2(q) + g3 = p3(q) (2a)

in the domain of integration of the Feynman function.
These three four-vectors p,(g) satisfy the mass-shell con-
straints

[PB(Q)]z =m? ) (2b)

and the (Landau-Nakanishi) loop equation

a1p1(q) + a2p2(q) + asps(q) =0, (2¢)

where the a, are non-negative real numbers. This loop
equation implies that for each g on ¢(g) = 0 the three
four-vectors p,(q) lie in some two-dimensional subspace
of the four-dimensional energy-momentum space.

FIG. 1. The basic charged-particle triangle graph G. The
momentum-energy p, flows along side s of the triangle in the
direction of the arrow. The three energy components satisfy
p? >0, p3 < 0, and p§ > 0.
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We shall consider a fixed interior point q of the surface
¢ = 0. In this case each of the three parameters «;, is
nonzero, and each of the three four-vectors vectors p,(q)
is nonparallel to each of the other two.

Consider now a graph g obtained by inserting some
finite number of soft-photon lines ¢ (¢ € I) into G. Each
inserted line begins on a line of G and ends on a line of
G. The bound § on the Euclidean norms |k;| of the (soft)
photon momenta is taken small enough so that

nd<d «Km, (3)

where n is the number of photon lines in the graph.

The case under consideration here is one where every
coupling is a Q-type coupling. For a C-type coupling
the corresponding vertex lies on one of the three vertices
of the graph G. The present argument can be carried
over to the case with some C-type couplings by simply
contracting to points some segments representing residue
factors, thereby bringing each of various vertices lying on
sides of G into coincidence with a vertices of G. These
contractions (performed after the loops have been speci-
fied) do not upset the arguments.

Momentum-energy conservation is now maintained by
introducing a separate closed loop for the momentum k;
of each photon line. Momentum k; flows along the photon
line segment ¢ in the direction indicated by the arrow
placed on that line segment. It then continues to flow
through the graph g by flowing along certain charged-
particle lines of this graph. This continuation through
g is specified by the condition that this flow line pass
through at most one of the three vertices vy, vz, v3.

The arrow on photon line 7 is chosen so that every
term p,k; that occurs in any Feynman denominator oc-
curs with a plus sign. Consequently, the Feynman rule
that m? represents m? — 0 is compatible with the rule
that each p,k; represents p,k; +10. No condition is placed
on the sign of the energy component k2.

Each charged-particle line segment j has an arrow
placed on it. The momentum flowing along the charged-
particle segment j in the direction of this arrow is called
3;. It is the momentum p, flowing along the side of the
triangle upon which segment j lies, as defined in Fig. 1,
plus the (algebraic) sum Kj; of the photon momenta k;
carried by the photon loops that pass along this segment
j-

Our interest here is in the functions that arise from
inserting the pole-decomposition formula (1’) [or (5.5) of
Ref. [1]] into the meromorphic parts of the generalized
propagators corresponding to the three sides of the orig-
inal triangle graph G. Consider, for example, the simple
graph g of Fig. 2. The meromorphic part of the func-
tion represented by the graph g of Fig. 2 is a sum of the
four terms represented by the four asterisked graphs of
Fig. 3. The asterisk (*) on a line segment of an aster-
isk graph indicates that it is the segment associated with
the (pole) denominator (ps + K;)? — m? + 40 in the pole-
decomposition formula (1’). Each of the other charge-
particle segments j # i is associated with a pole-residue
denominator function

fj = 2(1’8 + Kz)ﬂu + PijQ?j +10, (4a)
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FIG. 2. A graph g representing a soft-photon correction
to a hard-photon triangle-diagram process G. Hard and soft
photons are represented by dashed and dotted lines, respec-
tively.

where

Pij = T1T2" " " T1(i,5) (4b)

and
Qij = (5 + ) = 04 (K; — Ki)/pij - (4¢)

The index I(3, j) is the smallest j such that k; appears in
K; or K;, but not both. Each of the nonexhibited terms
in the parentheses in (4c) is a product of some +; with
a product of a nonempty set of factors r, (h > 2).

Each of the pole-residue factors f; is formed by first
taking the difference 0;;(£% — £?), where &; = p, + K;
is the momentum energy flowing along segment j in the
direction of the arrow on that segment, and ¥; = p, + K;
is the momentum energy flowing along the asterisked seg-
ment on the same side s of the charged-particle triangle,
and then dividing out the common factors r, (b > 1).
The sign o;; is the sign that makes the term 2p,k;(; ;) in
0i;(X% — X?) appear with a positive sign.

The full set of functions f; whose zeros define the lo-
cations of the singularities of the four functions Fy rep-
resented by the graphs g of Fig. 3 are given in Table I.
The functions f; for j = (1,...,6) corresponds to de-
nominators f; + ¢0. The function f7 corresponds to the

é-function constraint §(Q2Q — 1), and fs corresponds to

“F

FIG. 3.
terms that arise from inserting the pole-decomposition for-
mula (1') into the meromorphic part of the function repre-
sented by the graph g of Fig. 2.

The asterisked graphs representing the four
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TABLE 1. The functions f; whose zeros define the singu-
larity surfaces of the four functions F'(g) represented by the
four asterisked graphs of Fig. 3. Here and in what follows p,,
s € {1,2,3}, are the vectors defined in Sec. II.

(a) (b)

fl =02 f1 = 92

f2 = 2p2Q +rQ? f2 = 2p2Q + 72

fs = (p2 +Q)* —m? f3 = (p2 +rQ)* —m?
fa=(p +1‘Q)2 —m? fa=2p1Q +rQ?

fs = 2p1Q + rQ? fs =pi —m®

Je =P§_— m? fo= Pg_— m2
fr=00-1 fr=00-1
f8:T fs=1'

d
(fj)= 92 ;1)= 92
fa=pi—m? fa=p3 —m?

f3 = 2p2ﬂ + TQz
fa=(p1+7rQ)* —m?
fs = 2p1ﬂ + 1‘92

f3 = 2]729 + 7‘92
fi =2p1Q +rQ?
fs =Pf - m?

fo = ph—m? fo—ph—m?
fr=00-1 fr=00-1
fa=r fa=r

the Heaviside function 6(r).

The necessary (Landau-Nakanishi) conditions [3,4] for
a singularity (in the original real domain of definition) of
one of these functions Fy is that there be a set of real
numbers ajy,...,as, not all zero, a real number » > 0
(r < 4), and a pair of real four-vectors {2 and p, with
P1=p+q1, p2 =P — g3, and p3 = p, such that

anJ=0 all]é{l,---78}’ (53-)
and
8
Zaj%=o all i € {1,2,3} , (5b)

i=j
where £, = Q, 3 =7, 3 = p, and
a; >0, je{1,...,6}. (5¢)
Also,
fr=0 andr < m . (5d)

The contribution from the upper end points of the » in-

TAKAHIRO KAWAI AND HENRY P. STAPP 52

tegrals are neglected because these end points are artifi-
cially introduced, and hence do not represent singulari-
ties of the full function.

The Landau matrix L;; = 0f;/0z; for the function
represented by the graph of Fig. 3(a) is shown in Table II.
The Landau (loop) Egs. (5b) are formed by multiplying
each row j of this matrix by «; and requiring the sum of
each of its columns to vanish.

There are two cases: r # 0 and r = 0. If r # 0, then
Eq. (5a) implies ag = 0. If one forms the combination of
columns 2 dQ—r dr and compares the entries to Eq. (5a),
a;f; = 0, then one finds that the only term in the result-
ing loop equations is a7} = 0, with Q! = 1. This
entails a7 = 0. If, on the other hand, » = 0 then the dr
column of L;; has an entry in row 8, and hence it cannot
be used in this way. But for r = 0, this column does not
contribute to r dr. So in either case the conclusion holds:
a7 = 0, and the QQ = 1 row does not contribute.

Similar arguments in the case of graphs with more lines
show that one can always eliminate all of the rows cor-
responding to ©;; — 1. In the general case it is the
combination of columns Q;dQY; — r;dr; +r;1dr;; that is
used to show the vanishing of the row corresponding to
Q;Q; = 1. (See Appendix A.)

Consider now the function corresponding to the graph
in Fig. 3(d), and the corresponding set of functions f;
in Table I, column (d). This graph is a graph of the
separable kind: Cutting the three asterisked segments
separates it into three disjoint parts.

If one considers the d2 column with the QQ = 1 row
deleted, then one immediately concludes from a look at
Table I, column (d), and from the nonparalleled character
of p; + 7Q, and p; + rQ, and the impossibility of the
simultaneous vanishing of f; and either f3 or f4, that
the only solution of the implied © loop equation [and
Eq. 5(a)] is the trivial one in which all three contributions
are zero: a; = ag = a4 = 0.

In this situation we may invoke a basic lemma [7]: “For
any sets of real numbers 75, and A., the system of equa-
tions

op = ana5a, oy >0,
’ (6a)
0= ZAcaéa )

has a solution § = {4,} if and only if the system of equa-

TABLE II. The Landau matrix L;; corresponding to the graph in Fig. 3(a). The oj,’s are

negative for j = 2 and j = 5.

fi . [119] dr dp
=02 Q 0 0
f2 =2p2Q2 + rQ? p2 +718 %92 Q
fa = (p2 + Q)% —m? r(p2 + r2) (p2 +r2)Q p2 + 710
fa=(pr +7rQ)? —m? r(p1 + r2) (pr + Q)2 p1+ 1
fs =2p Q2+ rQ? p1+rQ 102 Q
fo =p3 —m? 0 0 ps
fr=00-1 Q 0 0
fg =TT 0 '21' 0
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tions

Z pTMba + Zﬂc/\ca =0, a, >0, Zab >0 (6b)
b c

has no solution (o, 3).”

Identifying (7ba, Aca) With the entries in the dQ and
dr columns of L;j, withb =j € {1,...,6} andc=j €
{7,8}, and identifying 6, = 8Q,, for a € {0,1,2,3}, as
an imaginary displacement of the four-vector contour-
of-integration variable €2, we find from this lemma, and
the above-mentioned fact (that the only solution of these
equations is the trivial one with every term equal to zero),
that at every point in the space of integration variables
p and Q where some set of functions f; vanishes there
is a displacement of the contour in 2 space that shifts
the contour away from every (2-dependent vanishing f;:
By virtue of (9f;/9Q)5Q > 0 [i.e., (6a)] every such func-
tion f; () is shifted by this distortion into its upper-half
plane.

We wish to generalize this result. We are particu-
larly interested in the functions represented by separable
graphs, i.e., by graphs that separate into three disjoint
parts when the three asterisked segments are cut. An-
other example of such a graph is shown in Fig. 4.

Consider first the case where all r; # 0. In this case
the Landau equations are equivalent to the Landau equa-
tions that arise from using the k-space variables, instead
of the (r,Q) variables. Then the Landau equations asso-
ciated with the function represented by the graph shown
in Fig. 4 can be expressed in a simple geometric form:
These equations are equivalent to the existence of a “Lan-
dau diagram” (a diagram in four-dimensional space) that
has the form shown in Fig. 5. This Landau diagram is a
diagram in four-dimensional space (thought of as space-
time), and each segment of the diagram represents a four-
vector. The rules are as follows.

(1) Each directed photon line segment i represents the
vector

‘/i = a,-k,- N (73.)

where k; is the momentum flowing along segment i of the
graph in the direction of the arrow, and o; > 0.

(2) Each directed charged-particle segment j corre-
sponding to a pole-residue factor f; represents the vector

Vi = B:%; ,

(7b)

FIG. 4. The graph representing a term obtained by pole
decomposition. This graph separates into three disjoint parts
when one cuts the three asterisked segments.
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FIG. 5. The Landau diagram associated with the graph of
Fig. 4. We distinguish “Landau diagrams” from “graphs”:
the former are geometric, the latter topological.

where ¥; is the momentum flowing along segment j of
the graph in the direction of the arrow on it, and

O'j,,ﬁj,, = aj Z 0 N (7C)

where the sign o, is defined below Eq. (4).

(3) Each directed charged-particle line segment s cor-
responding to a pole denominator (£2 — m?2 + i0) is rep-
resented by a star (asterisk) line segment s, and it repre-
sents the vector

V, =,%,, (7d)
where ¥, is the momentum flowing along asterisked line
segment s of the graph in the direction shown, and

o =a, — Z Bis - (7e)

jeJ(s)

Here o, is the Landau parameter o corresponding to the
function f, = ¥£2 — m? + {0, and for each side s the set
J(s) is the set of indices j that label the pole-residue de-
nominators that are associated with side s of the triangle
graph.

(4) Three line segments appear in the Landau diagram
that are not images of segments that appear in the graph.
They are the three direct line segments that directly con-
nect pairs of vertices from the set {v1,v2,v3}. The vector
V, associated with the direct segment s is

Vi=a,Zo+ D Bia(Di—T.) . (7f)
J€JI(s)

It is equal to the sum of the vectors corresponding to the
sequence of asterisked and nonasterisked charged-particle
line segments that connect the pair of vertices v; between
which the direct line segment s runs.

The p loop equation is represented by the closed loop
formed by the three direct line segments V, specified in
(7f). The photon loop equation associated with the pho-
ton line carrying momentum k; is formed by adding to
o;k; the sum of the vectors corresponding to the charged-
particle segments needed to complete a closed loop in the
diagram (see Appendix B). Thus the existence of a (non-
trivial) solution of the Landau equations is equivalent
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to the existence of a (nonpoint) Landau diagram having
the specified topological structure, with its line segments
equal to the vectors specified in (7). Although Figs. 4 and
5 represent a separable case, the rules described above are
general: They cover all cases in which all r; are nonzero.

For each s we can use in the Landau diagram either V/
or V,. We shall henceforth use always V;,, the segment
that directly connects a pair of vertices v;, rather than
V., and we shall place an asterisk on each of these three
direct line segments. These three direct line segments
are geometrically more useful than the V’s because they
display immediately the p loop equations, and also the
relative locations of the three external vertices v;, and
because each one has only a single contribution «,X%,
of well-defined sign and direction, in the limit k; = 0,
provided condition (9) (see below) holds.

We specify the way that photon loops pass through
Landau diagrams: A photon loop shall pass through the
star line s of a Landau diagram (i.e., along the direct line
segment s) if and only if the corresponding loop in the
graph passes through the asterisked line s of the graph.

The positivity of the photon-line a;’s entails that each
directed vector a;k; of Fig. 5 points in the positive (en-
ergy and/or time) direction (i.e., to the left) if the energy
k? is positive, and in the negative direction (i.e., to the
right) if the energy k? is negative. This fact entails that
positive energy is carried by each nonzero (length) pho-
ton line segment of Fig. 5 out of the vertex that stands
on its right-hand end and into the vertex that stands on
its left-hand end. This result is true independent of the
direction in which the arrow points, or of the sign of the
energy component k.

In the general separable case some of the nonasterisked
segments may have o; = 0, and hence contract to points.
Consequently several photons may emerge from, or enter
into, a single vertex of the Landau diagram.

This geometric representation of the “Landau” equa-
tions holds only if all r; # 0. If one or more r; = 0
then the diagram breaks into parts, as will be seen. We
wish to show, by using these geometric conditions and
the result (6), that the Q; contours can be distorted in
such a way as to avoid simultaneously all the singulari-
ties except those associated with the three asterisked line
poles, one for each of the three sides s of G, and those
associated with the various end points 7; = 0 and r; = 1.
We shall treat the various cases separately.

III. SEPARABLE CASE; ALL r; # 0

To prove this result for the separable case, and when
all r; # 0, let us consider any one of the three disjoint
partial diagrams of nonasterisked segments. Let V be
the set of vertices of this partial diagram that lie on an
end of at least one photon line that is not contracted
to a point. Let Vi be any element of V such that ev-
ery nonzero-length photon line incident upon Vg has its
other end lying to the left of Vx. Let Vi be any element
of V such that every nonzero-length photon line that is
incident upon Vi, has its other end lying to the right of
Vr. Then the total momentum K carried into either Vg
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or Vz, by all phovons incident upon it satisfies K # 0
and K2 > 0. These properties follow from the fact that
each photon line of nonzero length incident upon Vg must
carry a light-cone-directed momentum energy with pos-
itive energy out of Vg, and each photon line of nonzero
length incident upon Vz, must carry a light-cone-directed
momentum energy with positive energy into Vy. How-
ever, one cannot satisfy 2pK + K2 = 0 with p ~ p;, p2,
or p3, and with a small K # 0 satisfying K2 > 0. Conse-
quently the charged-particle line segments of the partial
Landau diagram lying on the outer extremities of the two
charged particle lines must contract to points, by virtue
of (5a): The associated Landau parameter o; must van-
ish. Recursive use of this fact entails that all of the lines
in this partial diagram must contract to a single point.

The existence of zero-length photon lines whose ends
do not lie in V' does not disturb this argument, provided
self-energy parts are excluded.

This result, that each nonasterisked line contracts to a
point, means that every entry in every ; loop equation
vanishes. Under this condition the lemma expressed by
Eq. (6) shows that every (; contour can be distorted
away from every Q;-dependent singularity. We next show
that this result continues to hold when some or all of the
r; vanish.

IV. SEPARABLE CASE; SOME »; =0

Let us first consider the simple example shown in
Fig. 6. The Landau matrix for the diagram of Fig. 6
is shown in Table III. If r; # 0 # r;, then one can
multiply the Q2 row by 71, multiply the Q2 row by r;72,
multiply the last row by r2, and divide the d22 column
by r2. This brings the matrix into an equivalent one in
which r; and 72 occur only in the combinations k; = r1Q;
and k; = r172Q5: This is the equivalent k& form that was
previously used for the case r; # 0 # ra.

If r; = 0 and 72 # 0 then one can perform the same
transformations involving 72, and bring the equations to
the same form as before, except that the vector associ-
ated with the photon line segment 1 is now a1, instead
of a1k1, and the vector associated with the photon line
segment 2 is now agryQs instead of agks. The vectors
r1Q; and 71720, that occur summed with p; or p, be-
come zero. Thus the situation is geometrically essentially

FIG. 6. Part of the diagram of Fig. 5.
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TABLE III. The Landau matrix corresponding to the diagram of Fig. 6. The rows corresponding
to the conditions 2;Q; = 1 have been removed, by using the argument given in Appendix A.

fi dQ, dQ,
Q? (92} 0
03 0 Q2
2p1Q + Q2 p1+ 711 0

2p1 (D1 + r2Q2) + 71 (Q1 + 72Q2)?
2p2(Q1 + TzQz) + 1‘1(91 + 7‘292)2
2p2Q2 + 717203

p1+ 7101 + rir2Q2
P2 +11Q1 + 1172822

r2(p1 + 7121 + r172Q2)
r2(p1 + 121 + r172Q2)
0 P2 + r1r2822

the same as in the case r; # 0 # 7, though slightly sim-
pler: The small additions k; and ks to the vectors p;
and ps now drop out. The important point is that the
critical denominators 2pK + K? of the earlier argument
now take the form 2pQ, with Q2 > 0 and Q # 0. Such a
product cannot vanish. Thus the earlier r; # 0 argument
goes through virtually unchanged.

If 1 # 0 and 7o = O then the 2; and Q5 loop equa-
tions can be considered separately. The earlier r; # 0 ar-
gument of Sec. III can be applied to the first part alone,
and it shows that each line segment on the €2; loop must
contract to a point. Next the 2, equation can be consid-
ered alone, with each segment along which the 2, loop
flows contracted to a point. Then the earlier ; = 0 argu-
ments can be applied now to this Q, part of the diagram
(with 72 in place of ;). It shows that each of the seg-
ments along which Q; flows also must contract to a point:
The corresponding a; must be zero.

The case 71 = r9 = 0 is not much different from the
case just treated: r; enters Table III only in an unimpor-
tant way.

The generalization of this argument from the case of
Table III to the general separable case is straightforward.
Let r4 be the first vanishing element of the ordered set
71,72,...,7n. Then the set of £ columns of the Lan-
dau matrix separates into one part involving only the €;
columns for ¢ < g, and a second part involving only the
Q; columns for ¢ > g. For the first part of this matrix the
argument given above for the case with all r; # 0 holds,
and its entails that every line segment in this part must
contract to a point. With all of the rows corresponding
to these contracted segments omitted one may apply the
r1 = 0 argument (with 4 in place of r;) to the part
i > g, and proceed iteratively. This argument leads to
the conclusion that the only solution to all of the £2; loop
equations is the trivial one where every entry in every 2
column is zero. Hence the lemma expressed by Eq. (6)
ensures that each ; contour can be distorted away from
all of its singularities, in the general separable case.

As one moves from the domain where all 7; > 0 to the
various boundary points where some r; = 0, two kinds
of changes can occur. Certain conditions that particular
vectors 2; be in the upper-half plane with respect to a
variable such as (py +71Q1 +717282) - Q; becomes slightly
simplified when an r; becomes zero. Since the different
conditions of this kind correspond to vectors p;, ps, and
ps that are well separated, the passage to a point r; = 0
causes no discontinuous change in the set of vectors that
satisfy such conditions. The second kind of change is

that some contributions to particular d€2;’s may suddenly
drop out if some r; vanishes. (See Table III with r, = 0.)
These changes at the boundary points of the region r; > 0
do not entail any discontinuity in the distortion of the Q
contours on the boundary. The possibility of using a
distortion in  space that is everywhere continuous in
(r,2) follows from the continuousness of the gradients of
the functions f;(r,(2), and the fact that at every point in
the domain of integration the set of gradients of the set
of vanishing f; form a convez set: The Landau equations
cannot be satisfied.

V. NONSEPARABLE CASE; ALL »; # 0

We consider next the functions represented by graphs
such that the cutting of the three asterisked segments
does not separate the graph into three disjoint parts. The
same result about distortions of €2; contours can be ob-
tained also for these functions.

To obtain this result we consider first, as before, the
case in which all r; # 0. Then we may use the k form of
the Landau equations given in (7).

The argument proceeds as before, by making use of the
vertices Vg and V. No such vertex can join together two
pole-residue segments j of nonzero length: It is impossi-
ble to satisfy both 2pK; + K? = 0 and 2pK; + K2 =0
if K; — K, = K satisfies K2 > 0 and K # 0, and K;
and K, are small compared to the timelike p. Likewise,
neither Vg nor Vi can joint an asterisked segment to a
pole-residue segment j with a; # 0: One cannot satisfy
2pK+K? = (2p+K)K =0if K2 > 0and K # 0,and K
is much smaller than the timelike p. Consequently each
of the vertices Vxz and Vi must be confined to the set of
external vertices v;:

{VR,VL} C {111,1)2,113} . (8)

In the nonseparable case some of the signs o;, will be
negative. Consequently some of the vectors correspond-
ing to pole-residue factors f; will point in the “reversed”
direction, because their 8;,’s, defined in (7c), are nega-
tive. There are also some (sometimes-compensating) re-
versals of the ways that certain photon loops run. These
latter reversals arise because we have used, in the Landau
diagrams, the three line segments that directly connect
the pairs in {v1,v2,v3}, rather than the images of the
three star lines of the original asterisked graph. For ex-
ample, the asterisked graph of Fig. 3(c) gives a Landau
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—asp;

aq(p1 + k) + ask

asps + ask

as(pz + k)

FIG. 7. The Landau diagram corresponding to the aster-
isked graph of Fig. 3(c). This diagram represents the equa-
tions obtained from Table I(c), with f; multiplied by r%, fs
and f; multiplied by r, and rQ replaced by k. These changes
recover the k form of the equations. The backward orientation
of the vector asp; arises from the negative sign of o5,. How-
ever, this vector is oriented against the direction of the pho-
ton loop. Consequently all contributions to this photon-loop
equation proportional to any p, have the form a;p,: The two
reversals of the line segment j = 5 compensate for each other.

diagram of the form shown in Fig. 7. A second example
is the function represented by the graph shown in Fig. 8.
The functions f; and the Landau matrix corresponding
to the function represented by the graph in Fig. 8 are
shown in Table IV, for |ki| > |k2| > 0. The Landau dia-
gram corresponding to the Landau matrix in Table IV is
shown in Fig. 9.

The argument leading to (8) entails more than (8). It
shows, in the present case where all k; # 0, that each
vertex of the diagram that does not lie in {v;, vz, v3} and
that has at least one nonzero-length photon line segment
incident upon it must have at least two nonzero-length
photon lines incident upon it: Each such vertex must lie
on the right-hand end of at least one such photon line seg-
ment, and on the left-hand end of some other such photon
line segment. Consequently, every nonzero-length photon
line must lie on a “zig-zag” path of photon lines that be-
gins at a vertex in the set {v;,v2,v3}, moves always to
the left, and ends on another vertex in {vq,vz,vs}: Only
in this way can the conditions K% > 0 and K # 0 used
in the derivation of (8) be overcome, if all k; are different
from zero.
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FIG. 8. A graph representing a term in the pole-
decomposition expansion. The looping line represents pho-
ton 1.

Consider, then, an example with vertices labeled as in
Fig. 10. Suppose V; = vz and Vr = v; are the unique V,
and Vi. Then some sequence of photon lines of nonzero
length must join together to give a zig-zag path from v,
to vz. Three examples are shown in Fig. 11.

To analyze such diagrams we assume temporarily that
for all pertinent solutions of the Landau equations

|aj| < |as|B for j € J(s), (9)

where B is some fixed finite number. That is, we exclude
temporarily the case where some a; becomes unbounded,
with the a, bounded. Then as one lets the ¢’ in (3) tend
to zero the vector V, defined in (7f) and, for j € J(s), the
vectors V; defined in (7b) all become increasingly parallel
to ps.

Consider then a sequence of bounds 4}, t = 1,2,...,
that tend to zero, and a corresponding sequence of solu-
tions S; to the Landau equations in which (1) k; # 0,
i =1,...,m, (2) |ki < §/n, ¢ = 1,...,n, (3) some
a;k; # 0, and (4) condition (9) holds.

If ¢ = (¢t,qt,q%) is the vector ¢ = (q1,92,93) speci-
fied by S;, then any accumulation point g of the set {g*}
must be specified by a limiting diagram in which every
charged-particle segment is parallel to one of the vectors
Ps, 8 € {1,2,3}, and in which some zig-zag path of light-
cone vectors runs leftward from a vertex Vg of {vy,v2,v3}
to a vertex Vi of {v1,v2,vs}, but carries zero momen-
tum energy. The limit point § must therefore lie on the
Landau triangle diagram singularity surface ¢(q) = 0.
However, the presence of the zig-zag photon line con-
necting two of the three vertices v; imposes an extra con-
dition, which defines a codimension-one submanifold of
©(g) = 0. These submanifolds are finite in number (for

TABLE IV. The Landau matrix for the function represented by the graph in Fig. 8, for
|k1| > |k2| > 0. The sign of o1 is minus for j = 3 and 6, and otherwise plus.

fi dk dk3 dp
h =k k1 0 0
f2= k% 0 k2 0
f3 = 2pik1 + k3 p1+ ki 0 k1
fa=(pr +k1)? —m? p1+ k1 0 P11+ k1
fs = 2p1k2 + 2k1ka + k3 k2 p1+ k1 + k2 k2
fo = 2p1(k1 — k2) + k% — k3 p1+ k1 —(p1 + k2) k1 — k2
fr = 2p2k2 + k3 0 p2 + k2 k2
fs=p5—m? 0 Y P2
fo =p3 —m® 0 0 Ps
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........... ay(pr + k1) + ask,
task; +ag(ky — ky)

—ag(p1 + k2)

agp2 + arka g,

ar(p2 + k2)

as(py + ky + k2)

FIG. 9. The “Landau diagram” that represents the Landau
equations associated with the Landau matrix shown in Ta-
ble IV. This diagram is not a true Landau diagram, because,
for example, the vector a;k; cannot be a light-cone vector.
Moreover, condition (8) is not satisfied. Were it not for the
non-negativity condition on a3, one could satisfy the Landau
equations with as = —a4, and o1 = a2 = a5 = ag = a7 = 0.

any fixed graph g), and hence are nondense in the interior
of ¢ = 0. If a point ¢ € {¢ = 0} lies at a nonzero dis-
tance from each of these submanifolds then no solution
of the kind specified above can occur, and hence for some
sufficiently small neighborhood N of ¢, and for some suf-
ficiently small §’, any solution to the Landau equations
for ¢ € N satisfying 0 < |k;| < §’/n for all 4, and condi-
tions (2) and (5), can have only zero-length photon lines:
i.e., for all photon lines 1,

aik; =0. (10)

We are interested here in the singularity structure at
a general point on ¢ = 0, rather than at special points
where other singularity surfaces are relevant. Hence we
may restrict our attention to a neighborhood N in ¢ =0
where (10) holds.

Condition (10) says that every photon line segment
¢ must have zero length. This condition entails the
stronger result that every segment on every photon loop
% in the Landau diagram must contract to a point.

To obtain this stronger result consider in order the
loop equations corresponding to the sequence of variables

1 2
A 4 \ g

v2

oW

a b 'E d e

FIG. 10. A triangle graph with photon vertices labeled by
numbers, and charged-particle line segments labeled by let-
ters. The segments h, ¢, and n are asterisked segments asso-
ciated with the pole-decomposition formula (1'). The photon
lines have been suppressed.
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v2

()

FIG. 11. Three diagrams with zig-zag paths of photons
connecting v; to vs.

k1,...,kn, as defined in the formula (1). Consider first,
then, the closed loop 1 in the Landau diagram. For each
charged-particle segment on this loop the k; with smallest
! that flows along this loop 1 is k; itself. Consequently
the orientations of all of the segments along this loop are
unambiguously determined: For each s € {1,2,3} every
contribution to the loop 1 that arises from a charged-
particle segment on side s adds to the loop equation a
vector that is very close to a non-negative multiple of p,,
just as in Figs. 7 and 9. Use can be made here of the facts
[8-11] that the triple of four-vectors (vy, vz, vs) specified
by the three external vertices v; constitute a normal to
the Landau surface [in ¢ = (g1, g2, ¢3) space] associated
with the diagram, and that this surface can be tangent
to the triangle diagram Landau surface ¢(gq) = 0 at a
point ¢ only if the directions of the three vectors V, are
the same as they are for the simple Landau diagram that
corresponds to Table I. Because we are staying away from
exceptional points of lower dimension the three vectors V,
must be parallel to the three vectors p,. Alternatively,
one can use the condition (9), and take §’ sufficiently
small, in order to deduce that V, is approximately equal
to a,p,.

Each photon loop passes along at most two sides s of
the triangle. Hence, on any single photon loop in the
Landau diagram, each charged-particle segment points
approximately in the direction of one or the other of at
most two of the three vectors p,. (See Figs. 7 and 9.)
Hence the contraction to a point, demanded by (10), of
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the remaining segment of the loop (namely, a1kq) forces
every segment on loop 1 to contract to a point.

Consider next the loop 2. All segments along with k;
runs have now been contracted out. Thus the k; with the
smallest value of [ that flows along the surviving part of
loop 2 is ko itself. Hence each segment on this loop also
must contract to a point, by the same argument that was
just used for loop 1. Proceeding step by step, one finds
that every segment on every photon loop must contract
to a point.

In this nonseparable case with all r; # 0 at least one
photon line must pass along an asterisked line. Hence at
least one of the three asterisked lines of the Landau dia-
gram must also contract to a point. But then the other
two sides of the triangle (v1,v2,v3) must also contract to
points, since, in accordance with the conditions imposed
below Eq. (2), the three sides of the triangle connecting
the three vertices v; are nonparallel. But then every seg-
ment of the Landau diagram is forced to a point, and
thus there is no solution of the Landau equations, in this
nonseparable case with all r; # 0.

This conclusion was derived under the assumption (9).
However, that assumption is not necessary. Suppose we
normalized the solutions by requiring that max |v; —v;| =
1, and drop (9). Then the direction of V; is not con-
strained, but its Euclidean length is.

Consider, under these conditions, the sequence of loops
1. A first part of loop 1 consists of either the zero, one,
or two vectors V, that are included on the loop. Their
directions are indeterminate, but their magnitudes are at
most unity. In fact the magnitude of the sum of these
segments is at most unity.

A second part of this closed loop is the segment corre-
sponding to the photon 1 itself. The length of this seg-
ment is limited by the fact that any nonzero-length pho-
ton line segment must lie on a zig-zag path that runs be-
tween two of the vertices v;, and is composed of leftward-
pointing light-cone vectors. Since the Euclidean distance
between the end points of this zig-zag path is bounded by
unity, the individual segments along this path are like-
wise bounded. Thus these first two parts of loop 1 are
bounded.

The third and final part of loop 1 is the sum of the
contribution of the segments j associated with the pole-
residue denominators f;. All of these contributions to
the loop are essentially of the form o;p,, with all the a;’s
positive, and s ranging over either one or two of its three
possible values. (See Figs. 7 and 9.) We can impose the
condition that at the points ¢ € {¢ = 0} under consid-
eration the three vectors p, are far from parallel. In this
case the bound on the first two parts of the closed loop
1 imposes a comparable bound on the third part, and, in
particular, a bound on the sum of the «; corresponding
to those segments j that lie on loop 1.

We then turn to loop 2. Bounds are established as
before for all parts of loop 2 that are not pole-residue
segments j, and also for all pole-residue segments j that
lie on loop 1. Since the contributions from the pole-
residue segments j that lie on loop 2 but not loop 1 have
the form ajp,, with a; > 0, and with s ranging over
at most two of the three possible values, we can now
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establish upper bounds on the sum of these new a;’s.
Proceeding in this way we establish bounds on all of the
a;’s associated with all the pole-residue denominators
fi- Then for a sufficiently small §’ we can ensure that,
for each value of s, the contribution to V,, specified by
(7f), that arises from the photon momenta k; is small
compared to this vector V; itself. This is the result that
in the earlier argument was obtained from (9), which we
therefore no longer need.

VI. NONSEPARABLE CASE; SOME r; =0

The results for the k; # 0 case carry over to the general
situation, provided the (r,2) variables are retained. The
argument for the case where some r; = 0 proceeds much
as in the case of separable diagrams. Let r, be the first
vanishing member of the ordered sequence 7,72, ...,7,.
Then the Landau matrix separates into two parts. The
first consists of the d{2; columns for ¢ < g, plus the dp
column; the second consists of the d2; columns for z > g.
By multiplying and dividing various rows and columns
of the Landau matrix by appropriate nonzero factors r;
(2 < g), one can convert the ¢ < g part to the k£ form,
with all k; for j > g set to zero. The r; # 0 argument
can then be applied to these i < g Landau equations:
They imply the vanishing of the a;’s corresponding to
all segments j of the Landau diagram along which run
the photon loops ¢ with 7 < g.

The remaining columns, which give the ¢ > g part
of the Landau equations, can be separated into sec-
tors, where each sector begins with a column dQ2; such
that »;, = 0, and is followed by the set of columns
dQit1,...,d2+p such that r,41,...,7;4p are all nonzero.
The latter 7’s can be changed to unity without altering
the content of the Landau equations. We shall do this,
purely for notational convenience.

The rows corresponding to the three pole denominators
do not contribute to the ¢ > g equations because

1 0

209, (
due to rg = 0.

One proceeds step by step, starting with the i < ¢
part, then considering the various individual sectors, in
order of increasing values of i. The Landau equations
for each one of the individual sectors can be expressed
by a Landau diagram constructed in accordance with
the rules (7), with, however, the following changes. (1)
The three vectors V, corresponding to the three direct
line segments s are set to zero; (2) all the segments of
the Landau diagrams that occur at earlier stages of the
step-by-step process are contracted to points; and (3) the
photon propagator contribution a;k; to each d2; column
that belongs to the sector in question is replaced by «;€2;.

The Landau diagram corresponding to a sector S has
a “spider” form: It consists of a single central vertex
v, which represents the three coincident vertices v;, plus
a web of segments sprouting out from v. All segments
of the Landau diagrams corresponding to the previously
considered sectors are contracted to the single point v, to-

p+rioriQi+--)2—m? =0 forj>g,
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gether with all of the segments that constitute the part
1 < g. All charged-particle segments of the Landau di-
agram along which run none of the photon loops that
constitute S are also contracted to points.

The Landau diagram that corresponds to any individ-
ual sector S can be shown to contract to a point by using
the arguments developed earlier: The argument involving
Vg and Vi, shows that no photon line of nonzero length
can occur in the spider diagram, and then the step-by-
step consideration of the photon loops 7, in the order of
increasing i, shows that each of these loops must contract
in turn to a point.

We thus conclude that for every j such that the Landau
matrix element

L,’j = %6[,/89,, ,

is nonzero for some %, a; = 0. But then the lemma repre-
sented by Eq. (6) entails that one can distort the Q; con-
tours in such a way as to move simultaneously into the
upper-half plane of each of the residue-factor denomina-
tors f; and each of the photon-propagator denominators
(©2;)2. The only remaining singularities are the end-point
singularities at 7; = 0 and r; = 1, and the three Feyn-
man denominators associated with the three asterisked
lines of the asterisk graph g: For every other singular-
ity surface f; = O there is some §2; such that L;; # 0
for the corresponding j and i. The consequences of the
three asterisked line singularities in conjunction with the
end-point singularities in the radial variables r; are dealt
with in papers I and III.
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APPENDIX A: PROOF OF THE TRIVIALITY OF
THE CONTRIBUTION FROM THE FACTOR
§5(2;€; — 1) TO THE LANDAU LOOP
EQUATIONS

In discussing the singularities of the meromorphic
parts in Sec. VIII, we made full use of the fact that the
row in the Landau matrix corresponding to 2,2, — 1 re-
duces to zero under the closed loop conditions for the ;,
rj, and the 7;; columns. We give here a proof of this
fact.

In view of the definition of the integral, the functions
f: other than the various Q?,Qjﬂj — 1 and r; have the
form (A1) or (A2), where €, and €, are each either 0,
+1, or —1;

fi= (Pz + Zﬁmrl . ~7'm9m)2 —m?, (A1)
fi=2 (pz + Zemrl . -rmﬂm)
X (Qs + Z €4 Tat1 " -rtQt)

rore (Rt Debran ) (A2)

Let H; denote the first-order differential operator given
by ©; %,- —7rj 5‘27 + Tj+1—5r?j' Then the following equa-
tions hold:

=0 for any j and [ . (A3)
i£5#s, (A4)
ry--"Ts (Q,+Ze§r,+1---rtﬂt)z lf]=8 y (A5)

Hence H; annihilates each f; of the form (A1) and each f; of the form (A2) with s # j, and it reproduces each f;

of the form (B2) with s = j.

Since the ; column, etc. in the Landau matrix is given by 9f;/8%Q;, etc., this property of the operator H; entails,

under the Q;, r;, and r;; closed-loop conditions, that
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of; of;
0 ‘—’-Qj (Zaiaﬂj> —T; (Zaia'l‘j)
af;
tTj+1 (Z aia—rf:;)
Zaiiji

D aufi 420597 + 26,9595 — vim; + Vieariv
i€l(4)

]

where I(j) denotes the set of indices ¢ such that f; is
of the form (A2) with s = j, and a;, B;, and ~y; denote
the Landau parameters associated with 2, Q,;Q; — 1,
and r;, respectively. It follows from (5a) that all terms
except for ﬂijQJ’ = f; on the right-hand side of (A6)
vanish. This entails the required fact, namely, that the
row corresponding to £2;€2; —1 must have coefficient 3; =
0 and hence give no net contribution to the Landau loop
equations.

APPENDIX B: THE LANDAU DIAGRAM
CORRESPONDING TO A TERM IN THE
POLE-DECOMPOSITION EXPANSION

To confirm the geometric representation of the Landau
equations described in connection with Eq. (7), recall
first that the pole-residue denominators corresponding
to nonasterisked charged lines are

fi =0ja(22 —%2) +40, (B1)
where the sign o, is defined below Eq. (4). For each
side s € {1,2,3} one may verify immediately that the
contribution from the side s of the triangle of direct lines
V, is just the contribution to the p loop equation arising
from the charged-particle line segments that lie on side s
of the original graph.

For the photon loop ! there is first a contribution ok,
and then the contributions corresponding to charge-
particle line segments along which the loop flows. There
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are contributions of this latter kind only from segments
corresponding to those (one or two) sides s of the tri-
angle along which the loop runs, and we can consider
separately the contributions from each of those sides s.

There are three cases.

Case (1). The photon loop ! in the Feynman graph
runs along the segment j € J(s) but does not run along
the asterisked segment lying on side s. In this case the
contribution to the [ loop equation proportional to «; is

19f; 10
7 5% = Ujaajga—kl@? -3
= BsXj .

Case (2a). The loop ! of the Feynman graph flows
along the asterisked segment of side s, but does not flow
along the nonasterisked segment j lying on side s. Thus
the contribution to the ! loop equation proportional to
Qaj 18

(B2)

185 _ 190
%20k "*% 2 oK

= ﬂja('—zs) .

(27 - 22)
(B3)

Case (2b). The loop ! of the Feynman graph flows
along the asterisked segment of side s of the graph and
also along the nonasterisked segment j € J(s). Then the
contribution to the [ loop equation proportional to o; is

10fi _ 5 10 o 2
ajia_lq - ﬁ.’lﬂa]i Bkl (2,1 Ea)
=Bjs(E; — Za) - (B4)

Notice that, according to (B2), (B3), and (B4), there
is, for each j € J(s), a contribution 8;,X; to the photon
loop equation ! if and only if the loop ! in the graph
passes along the segment j. There is also, for each j €
J(S), a contribution —f3;,%, if and only if this loop passes
along the asterisked line s in the graph. There is also a
contribution o, X, if and only if this loop passes along the
star line s of the graph. These results are summarized
by the equations (7).
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