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Mass spectra of supersymmetric Rang-Mills theories in 1 + 1 dimensions
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Physical mass spectra of supersymmetric Yang-Mills theories in 1+ 1 dimensions are evaluated
in the light-cone gauge with a compact spatial dimension. The supercharges are constructed and
the infrared regularization is unambiguously prescribed for supercharges, instead of the light-cone
Hamiltonian. This provides a manifestly supersymmetric infrared regularization for the discretized
light-cone approach. By an exact diagonalization of the supercharge matrix between up to several
hundred color singlet bound states, we find a rapidly increasing density of states as the mass increases.

PACS number(s): 11.15.Tk, 11.15.Pg, 11.30.Pb

I. INTRGDVCTION

Supersymmetric theories o8'er promising models for
the unified theory. Both as a model for grand unified the-
ories and as a low energy efFective theory for superstrings,
the dynamics of supersymmetric Yang-Mills gauge theo-
ries is a fascinating subject. The nonperturbative aspects
of supersymmetric theories are crucial to understanding
the fundamental aspects of such theories, especially su-
persymmetry breaking.

One of the most popular models for supersymmetry
breaking is currently to assume the gaugino bilinear con-
densation in the supersymmetric Yang-Mills gauge theo-
ries [1]. Although the condensation itself may not break
supersymmetry in the supersymmetric gauge theories,
it will give rise to the supersymmetry breaking if em-
bedded in supergravity [2]. Since the fermion bilinear
condensation is implied by the chiral symmetry breaking
in @CD, one can expect similar nonperturbative eKects
in supersymmetric Yang-Mills gauge theories. Moreover,
recent progress in understanding duality in supersym-
metric Yang-Mills gauge theories has opened up a rich
arena for studying the nonperturbative efI'ects in super-
symmetric gauge theories [3].

It has been quite fruitful to study Yang-Mills gauge
theories in 1 + 1 dimensions instead of studying directly
the four-dimensional counterpart. In 1 + 1 dimensions,
the Yang-Mills gauge field itself has no dynamical degrees
of freedom as a field theory, but gives rise to a confin-
ing potential for colored particles [4]. Many aspects of
color singlet bound states can be explored by solving the
theory in the large N limit [5]. Unfortunately the su-
persymmetric gauge multiplet contains genuine dynam-
ical degrees of freedom in the adjoint representation of
the gauge group contrary to ordinary Yang-Mills gauge
theory [6]. Therefore one cannot obtain a simple closed
form for the color singlet bound states even in the large
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N limit.
There has been progress in studying the dynamics of

matter fields in the adjoint representation in ordinary
Yang-Mills gauge theories [7]. They have used light-
cone quantization and compactified the spatial dimension
to give discrete momenta. In this discretized light-cone
quantization approach, one can diagonalize the mass ma-
trix for a finite number of light-cone momenta and can
hope to obtain the infinite volume limit eventually [8, 9].
The Yang-Mills gauge theory with only the adjoint mat-
ter fermion is used to propose a kind of supersymmetry
which is valid only at a particular value of a parameter
and is difFerent &om the usual linearly realized supersym-
metry [10]. More recently, gauge theories in 1+1 dimen-
sions with matter in adjoint representations was studied
focusing attention on zero modes [11]. The zero modes
are generally important in revealing nontrivial vacuum
structures such as the vacuum condensate [12].

In spite of these investigations of Yang-Mills gauge the-
ories with adjoint scalar and. spinor matter fields, there
are two points which necessitate a new analysis of phys-
ical spectra in the case of supersymmetric gauge theo-
ries. The first point is that the coexistence of spinor
and scalar gives rise to a large number of new "mixed"
physical states, partly consisting of spinors and partly of
scalars as constituents. The second point is the presence
of a specific amount of the Yukawa interaction which is a
distinguishing feature of the supersymmetric Yang-Mills
theory [6].

The purpose of our paper is to study the supersymmet-
ric Yang-Mills gauge theories in 1+1 dimensions through
the discretized light-cone quantization. We construct the
supercharge explicitly and specify an in&ared regulariza-
tion for supercharge by means of the discretized version
of the principal value prescription. By using the super-
charge, we succeed in overcoming ambiguities in prescrib-
ing the in&ared regularization for the light-cone Hamilto-
nian. As a result, the regularization preserves the super-
symmetry algebra manifestly. For light-cone momenta
up to 8 units of the smallest momentum, we find sev-
eral hundred color singlet bound states of bosons and the
same number of fermions. We exactly diagonalize the su-
percharge instead of the Hamiltonian to obtain masses,
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degeneracies, and. the average number of constituents in
these bound states. We observe that the d.ensity of the
bound states as a function of their masses tends to con-
verge in the large volume limit. It is consistent with
the rapidly increasing density of states suggested by the
closed string interpretation. Since we preserve supersym-
metry at each stage of our study, we naturally obtain ex-
act correspondence between bosonic and fermionic color
singlet bound states. Although we postpone studying
the issue of zero modes, our results in the present ap-
proximation suggest that supersymmetry is not broken
in this supersymmetric Yang-Mills gauge theory. It is an
interesting future problem to see if our supersymmetric
theory can ofFer a model for gaugino condensation. For
that purpose, one should study the zero mode in this
theory. However, the present investigation is focused on
physical mass spectra as a first step to understand the
dynamics of the supersymmetric Yang-Mills theories.

Before writing our paper, we have received a paper
in which the same theory has been studied by means of
the Makeenko-Migdal loop equations [13]. With certain
assumptions, the author gave an interesting solution and
also argued for the nonvanishing Witten index. Although
his method is worth exploring, it may not be suitable to
obtain physical quantities such as mass spectra. In this
respect, our methods are complimentary to his, and our
conclusions are consistent with each other.

In Sec. II, supersymmetric (SUSY) Yang-Mills gauge
theories in 1 + 1 dimensions are quantized and super-
charges are de6ned. In Sec. III, the compact spatial
dimension is introduced in the light-cone quantization
and the supercharges are discretized. The result of our
exact diagonalization of supercharge is presented and dis-
cussed in Sec. IV. Superfields and supertransformations
are summarized in Appendix A. Truncation of the bound
state equation to the two-constituent subspace is given
in Appendix B. Explicit mass matrices with mass terms
for adjoint scalar and spinor are given in Appendix C.

hs~pepAp: cgE+5&y'~24
~ bg~pepg: F'~2%

1 ~~ z
8s~ppp@ Ee Fp~ + p eD~Q.

2 2g 2
(2.3)

The corresponding spinor supercurrent j+ is given by

+ v2 ~~,C~""D„P . (2.4)

We introduce the light-cone coordinates where the line
element d8 is given by

2

ds = (dx ) —(dx ) = 2dx+dx (2.5)

D„P = 8„$+i[A„,Q], D„@= 0„@+i(A„,@]. (2.2)

The supersymmetry dictates the presence of the Yukawa-
type interaction between the adjoint spinor and scalar
Gelds with the strength of the gauge coupling. The su-
persymmetric Yang-Mills gauge theory in two dimensions
can be obtained by a dimensional reduction from the su-
persymmetric Yang-Mills gauge theory in three dimen-
sions. The adjoint scalar field can be understood as the
component of the gauge field in the cornpactified dimen-
sion and the Yukawa coupling is nothing but the gauge
interaction in this compactified extra dimension.

In the Wess-Zumino gauge, the remaining invariances
of the action are the usual gauge invariance and a su-
pertransformation which is obtained by combining the
supertransformation and the compensating gauge trans-
formation in the superfield formalism as summarized in
Appendix A. We denote this modified supertransforma-
tion as b,„&,which is given in terms of component fields
as (6 = —eoi = 1)

II. SUSY YANG-MILLS THEORIES
IN 1+ 1 DIMENSIONS

In two dimensions, the gauge field A" is contained
in a supersymmetric multiplet consisting of a Majorana
fermion 4 and a scalar P in the adjoint representation
of the gauge group together with gauge field itself [6].
Therefore our field content is difFerent from that in [10].
After choosing the Wess-Zumino gauge, we have an ac-
tion

We decompose the spinor and use p matrices:

+„=2 "(@„,X;,),
0 = 02) p = Zoy)

0 i (2.6)

S= dx+dx tr 8+ 0 +i 0+ +ipse

Taking the light-cone gauge A = A+ = 0 and x+ as
time, we find. the action

4g' "" 2 +,(~-A+)'+ A+ J+ + v 2a4(0, x&
2g

(2.7)

+ii p" D„@—2iggi p, 4, (2.1)
where the current J+ receives contributions from the
scalar J+ and the spinor J+:

where A„, P, 4', and @ = 4' p are [traceless] N x N
Hermitian matrices for the U(N) [SU(N)] gauge group,
g is the gauge coupling constant, E~ = 0~A„—8 A~ +
i[A~A„] and D~ is the usual covariant derivative

J+ = J~++ J~+, J~+ = i[/, B P], J~+ = 2Qg. (2.8)

We do not need Faddeev-Popov ghosts in this gauge.
Since the action contains no time derivative for the gauge
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potential A+ and the left-moving fermion y, they can
be eliminated by means of constraints obtained as their
Euler-Lagrange equations

l&v (x) ~ &-i i(&)] = &Hv(x) @~i(&))
1.= -ib(x —y )b;ib,.g.
2

(2.i6)

i~28 y —g[P, @] = 0, g A+ —g J+ = 0, (2 9)

where A+ is the nonzero mode of A+. The zero mode of
A+ plays the role of a Lagrange multiplier which provides
a constraint:

We expand the fields in modes with momentum k+ at
light-cone time x+ = 0:

Pv (x, 0) = av (k+) e '"
2~ p 2k+

(2.io)

This constraint will give a restriction for physical states
in quantum theory. After eliminating the fields A+ and
y, we find that the action becomes

S= dx+dx tr t9+ 0 + i 0+

+a~, (k+)e'" *

@;,(x, 0) = dk+ b;, (k+)e
2 Jl p

+bt (k+)e'" *

(2.17)

(2.18)

+—J+ J+ —-ig'[4 0] [4 0] .
2 i9 2 l9

(2.ii) The canonical (anti)commutation relations (2.16) are sat-
isfied by

Let us note that the constraints give rise to nonlocal
terms in the action.

By the Noether procedure, we construct the energy-
momentum tensor T"" and light-cone momentum and
energy P+ = f dx T++ on a constant light-cone time

[uv(k') o&g(k+)1 = (bv(k+) bi~(k+))
= b(k+ —k+)b;ih, i, (2.i9)

P+ = dx tr 8 +i 0

P- = dx tr ——J+ J+g
2 8

+-g'[4, 0]& [4»4'] .

(2.12)

(2.13)

In nonsupersymmetric theories, one can define finite
Hamiltonian operators only after discarding the usually
divergent vacuum eiiergies [7]. However, we should not
discard any vacuum energies in supersymmetric theories,
since vacuum energies have an absolute meaning in su-
persymmetric theories as an indicator of supersymmetry
breaking. In fact we will not need to discard the vacuum
energies by hand, provided we exercise care with respect
to ordering of operators.

One can obtain the light-cone momentum P+ in terms
of oscillators:

The supercharges Qi and Qq are defined as integrals of
the upper and lower components of the spinor supercur-
rent j"= (ji,j~~) in Eq. (2.4):

P+= dkk c.. ka~ k +b. . kb~ k
0

(2.20)

Qa —= f Ch jr+ = 2'& f Ch tr]hatt rt —rttt tt],

(2.14)

+ 1Qr=fCh Cr+=2&gfCh tr C+

1= 2'/'g dx- tr z, a

(2.i5)

JJ + Yukawa (2.21)

Let us introduce the momentum representation of the
current J+:

where we dropped the superscript + on k+ for brevity,
and henceforth we do so.

The light-cane Hamiltonian P can be divided into
two parts: the current-current interaction term P&& and
the Yukawa coupling term PY„~

Using the conjugate momenta aery
= t98/t9(0+$) = 8

for the adjoint scalar field Pv and mq = t98/t9(t9+@) =
i g for the adjoint spinor field gV, the canonical
(anti)commutation relations are given at equal light-cone
times x+ = y+ by

dx J+ (x ) exp( —ikx ). (2.22)

Substituting the mode expansions (2.17) and (2.18), we
obtain, for —k & 0,



MASS SPECTRA OF SUPERSYMMETRIC YANG-MILLS. . .

'p+" t . tJ,+, (—k) = "p ok;(p)& 7(k+ p) —&,k(p)6i' (k+ p) + "p o' (p)o 7'(k —p)
2 27r p p(p+ k) -

' ' ' - 2V'27r o Qp(k —p)

+ dp bi, ;(p)b»(k+ p) —b, i.(p)b'~(k+ p) + dpb'~(p)b»(k —p).
27l p

(2.23)

Note that J+(k) = J~+~(—k) . There are no (divergent) c-number terms in J+(k) since supersymmetry requires

for the bosonic and fermionic c-number contributions to cancel each other. Therefore J+(k) is just the same as the
normal ordered product: J+(k): . The current-current interaction term is given by

dk dk

—OO 0

The source for y is given in momentum space for —k ( 0:

(2.24)

[& @];,(—k) = dp — o„,.(p)b»(k+ p) —a,.„(p)b,,(k+ p)
2 2K 0 p

+„'.(k+ p)b, ,(p) — . (k+ p)b. ;(p)k+p
k

+ dp [ '~(p)b»(k —p) o~7(p) —'~(k —p)].
2 27T 0 p

(2.25)

Note that [P, @], (k) = — [P, @],(—k) . The Yukawa coupling term is given by

.= —
2 J —„(6,VI;, (k), (6, @I„(—k) (2.26)

When we bring the Hamiltonian into a normal ordered form, we find that the (divergent) c-number vacuum ener-
gies cancel between bosons and fermions. Moreover, the only additional term P „& compared to normal ordered
Hamiltonian: P: is quadratic and is symmetric between scalar and spinor oscillators:

P = P,„.~+:P-:,
P z

——— C(k) (a, (k)a—~ (k) + b(k)bt (k),) (Nb;~6~ —6;bb~ ),
g~ dk

0

(2.27)

(2.28)

o (p' p] 0 p(k —p)' (2.29)

as
The supercharge is given in terms of these operators

OO

Qi ——i2 ) dkV k a;7. (k)b, (k) —a, (k)b,7(k)
0

(2.30)

a;, (k) ~0) = 0, b;,.(k) ~0) = 0, (2.32)

Our next task is to determine physical states whose
mass spectra will be calculated later. The light-cone vac-
uum is the Fock vacuum defined by

Q2 —— 7.2 ~ g —bt~(k) J;7—(—k)
0

t
J;,(—k) b;, (k) (2.31)

By taking (anti)commutators with spinor 7/6 and scalar P
fields, we can confirm that these supercharge operators
generate supertransformations in the light-cone gauge as
given in (A15) and (A16).

satisfying P+ ~0)=0. Fock states are given by act-
ing creation operators at~ (k), bt. (k) and their linear
combinations on ~0). In leading order in the 1/N
expansion, physical states are given by gauge sin-
glet states with single trace of creation operators
tr [C7(ki). . .Q(k )] ~0) /K ~ vbs with O(k) representing

at(k) or bt (k), and N ~ the normalization factor and
s a symmetry factor.

The mass spectrum is obtained by solving the eigen-
value problem

2P+P- ~C) = M'~C). (2.33)
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It is almost impossible to solve the eigenvalue problem
analytically because we must diagonalize an infinite di-
mensional matrix. Therefore we will resort to a dis-
cretized approximation in the next section. Truncation
to two-constituent subspace yields a closed bound state
equation similar to the 't Hooft equation [4] as described
in Appendix B.

become discretized

+At ( )
lorn+ /I, (3.3)

III. DISCRETIZED I IGHT-CGNE
QUANTIZATIGN GF SUPERCHARGE

dk+ m —) . (3.2)
n=1

Then mode expansions (2.17) and (2.18) for P,~. and vP,z

I

k+ = —n, n= i, 2, 3, ... ,

In order to prescribe the infrared regularization pre-
cisely and to evaluate the mass spectrum in spaces with
Gnite number of physical states, we compactify spatial di-
rection x to form a circle with radius 2L by identifying
x = 0 and x = 2L. In order to preserve supersym-
metry, we need to impose the same boundary condition
on scalars P;~. and spinors g;~. . It is in general neces-
sary to choose periodic boundary conditions on bosonic
field and to retain zero modes, if one wishes to take into
account the possibility of vacuum condensate or spon-
taneous symmetry breaking [12]. Since we are primar-
ily interested in physical mass spectrum, we neglect the
zero modes in the present work. We shall choose periodic
boundary conditions for both scalars P;~ and spinors @;~.,
leaving the problem of zero modes for a further study

&v(& ) =&a(& +2L) &U-(* ) =&a(& +2L).
(3.1)

The allowed momenta become discrete and the momen-
tum integral is replaced by a summation:

) B;.(n)e
1

4L n=l

+Bt ( )
inn2: /I (3.4)

A;, (n) = g~/La;, (k+ = ~n/L),

B;,(n) = Qvr/Lb, ;(k+ = mn/L), (3 5)

A;, (n), An(n') = (B,(n), B,,„( 'n))

(3.6)

Let us define the supercharge in this discretized light-
cone quantization. The Brst supercharge Ql in Eq. (2.30)
in this compactiGed space is given by

Q, = 2'/'i ) ~n A;, (n)B,, (n)

—A,, (n)B;, (n) (3.7)

Since the elimination of gauge field A+ introduces a sin-
gular factor I/c) in supercharge Q2 in Eq. (2.31), we
need to specify an in&ared regularization for this factor.
Following the procedure of 't Hooft [4], we elnploy the
principal value prescription for the supercharge. Namely
we simply drop the zero momentum mode

Q =2"(—)~
m=1

~i ) At(n)Bt(l) Bt(l)At(n) A, ~. (l + n)
, 2lgn(l+ n) -22 u

—Al,.(l + n) (A(n)B(l) —B(l)A(n))
22

oo 1—1

+ ) ) Bl.(l)
~

A(n)A(l —n)
~

—(Al(n)Al(l —n)) Bn(l)
, 2tgn(l —n)

oo
—) ~

—+ —
~

(Bl(n)Bl(l)), . B,(l + n) + B,,(l+ n)(B(n)B(t),)
i n=l J

oo l —1

+) ) — Bl, (l)(B(n)B(l —n)) + (Bl(n)Bl(l —n)),, B,, (l)
/=2 n=1

(3.8)
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The supersymmetry algebra requires a relation be-
tween supercharges and the light-cone momentum P+
and the Hamiltonian P operators:

(Qi, Qi) = 2v 2P+,

(Q2, Q2) = 2v 2P

(Q Q2) =o

(3.9)

(3.10)

(3.11)

1
tr [D(ni) . O(n~)] ~0), m ) 1, (3.12)

where 0 represents At or Bt. The symmetry factor s
is the number of possible permutations of constituents
which give the same state [7]. Note that we should con-
sider only states with two or more constituents m ) 1
since we should discard singlet to the leading order of
the 1/N expansion of U(N) gauge theory. It is also ab-
sent in the case of SU(N) gauge theory anyway. All these
states satisfy the physical state condition coming &om
the constraint (2.10):

in our choice of spinor notation (2.6). In&ared regulariza-
tions of P+ and P have to be done consistently with the
supersymmetry algebra. It is actually difBcult to guess
the correct infrared regularization for the Hamiltonian
unless we start &om the supercharge. The Hamiltonian
P can be defined by just squaring the supercharge Q2.
Then the above principal value prescription for the su-
percharge Q2 specifies uniquely the prescription for the
Hamiltonian. In this way we can check that the super-
symmetry algebra holds in our formulation of the dis-
cretized light-cone quantization.

Physical states take the form

box and try to evaluate the asymptotic behavior K ~ oo.
The supersymmetry algebra (3.10) implies that the di-

agonalization of the supercharge Q2 gives the desired
mass spectrum. Let us consider the subspace for fixed
light-cone momenta P+, and denote

0 A~ 0 B~
~0 Q'= Bo (3.i6)

where the first half of the rows and columns correspond
to the bosonic color singlet bound states and the second
half to the fermionic states. The mass matrix is

M' —= 2P+P- = v 2~K BtB 0
0 BBt (3.17)

The diagonalization of the positive-definite matrix B'~B
gives the mass eigenstates of bosonic color singlet bound
states and the other positive definite matrix BBt gives
fermionic ones. There exist two unitary matrices U and
V such that

U (BtB)U = V '(BBt)V = D,
UtU= VtV = 1, (3.18)

A —24 I (3.19)

The anticommutation relation between two supercharges
(3.11) gives

where the matrix D is positive diagonal. Let us empha-
size that the positive definiteness of mass-squared matri-
ces BtB and BB~ is a direct consequence of regularizing
the supercharge Q instead of P

Relation (3.9) shows that the matrix A is unitary apart
from a scale factor

J+(0) ]C) = 0. (3.i3)
Bt = —A~BAt. (3.20)

P+ = —K, K=1)2).. . ) (3.14)

Here we note that there are both bosonic and fermionic
oscillators in our supersymmetric theory. This fact gives
rise to much larger number of new physical states com-
pared to the purely fermionic or bosonic adjoint matter
case.

Since P+ commutes with other operators, we work on
a subspace with a definite value of the light-cone momen-
tum P+:

Therefore we find that the matrix A is precisely the ma-
trix which maps the mass eigenstates of bosonic bound
states and fermionic ones:

V=AU. (3.21)

In the rest of this section, we consider adding
(supersymmetry-breaking) mass terms ms for the adjoint
scalar field and mf for spinor field to explore supersym-
metry breaking and to help treat the zero modes more
precisely:

Srnassive = S + d x tr — mb —mf "ttf @
2

(3.22)

IC = ) n(A, , (n)A;, (n) + R,, (n)B;, (n)) . (3.15)
n=1

For the state defined in (3.12), K = P, i n;. Therefore
the number of physical states is finite for a given K. So
long as K is finite, we can consider finite dimensional
physical state space to diagonalize the mass matrix. The
parameter K plays the role of the in&ared cutoK The in-
finite volume limit I —+ oo is achieved by taking the limit
K -+ oo with finite physical values of P+ fixed. As usual
in the discretized light-cone approach, we shall evaluate
mass spectra for finite K corresponding to a finite spatial

1 2 2S „; = S+ dx+dx tr ——mb
2

—i~2m~g@ . (3.23)

The Euler-Lagrange equation for the auxiliary field y is
modified from Eq. (2.9):

where S is the massless action given in Eq. (2.1). In
the light-cone gauge A = 0, the action reduces to mass
terms added to the massless action S in Eq. (2.7):
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i~20 y —g[P, g] —imfvP = 0. (3.24) massive m, quad m, cubic ~
P . =P +P (3.26)

Elimination of A+ and y gives the action with S in
Eq. (2.11) and mass terms:

S „;,= S+ dx dx tr ——mba + —mfa
1 2 2 i 2 1

2 2 t9

1 2 2 z 2 1P „„~= dx Tr —mba — m~—g7A ) quad (3.27)

1
+mug@ [P, @] (3.25) P ,„„-=—. m~g dx-T

I q [@ q] I. (3.28)

The momentum P+ „; is the same as Eq. (2.12) and
the Hamiltonian P „,. has mass terms in addition to
the massless P in Eq. (2.13):

The final result for the additional terms in the Hamil-
tonian is given in the discretized light-cone quantization

P q
———) —(mbA, . (n)Aq(n) +m~B;, (n)Bq(n, )., (3.29)

.mfgl 1 1 1
P~ ~~b;~

= —1 3 ) —+ nq n2+na, o k& (n—2) Bki (nl)Bij (n3)
4vr-: n2 n3 n1

n1,n2, n3 ——1

,+„,o A~k (nq)B,.k (n2) B;~ (ns) —Ak; (nj )Bk . (n2) B;~(ns)
1 1 1

n1 n3

+ ~nq+n, —n„o Ak. (nz)B,k(n2)B, ~ (ns) —A, k(nz)Bk. (n2)B;~ (ns)nl n3 n2

8„, „, „,oA, ~ (ni)H, , (n~)R, ~(n~)I.
1 1 1

n1 n2 n3
(3.3o)

IV. RESULTS OF SUPERCHARGE
DIAGONALIZ ATION

As we have seen, our procedure preserves supersymme-
try manifestly throughout the calculation. Therefore we
are naturally led to obtain supersymmetric mass spectra
with exactly the same bosonic and fermionic spectra for
color singlet states.

If we consider the states with finite values of the dis-
crete momentum K, we have only finitely many physical
states to diagonalize the mass matrix. Let us illustrate
the procedure for smaller values of the discrete momen-
tum K. In the case of K = 3, we find four possible states
for bosonic color singlet states

„,t. [At(1)At(1)Bt(1)] Io),

12)f = t»'(1)B'(1)B'(1) Io)
1

I3), = —t. At(2)Bt(1)] Io),
1

I4)f — , tr B"(2)A (1) Io),

(4.2)

Using the matrix B appearing in Eq. (3.16), the mass
matrix is given as

I ), = „',~ tr [A (1)At(1)At(1)] Io),
I 2) b

——~,&, tr [At (1)Bt (1)Bt (1)] I 0),
I3)b

= ~ tr [A'(2) A'(1)] Io),
I4), =,'„ tr [Bt(2)Bt(1)]Io),

(4 1)

and four possible states for fermionic color singlet states

7r2P+P ~2m2K
g2N g2N g2NI,

0 Bt
2 Jg ) (4.3)
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(0 o o )
0 g

20 0

0 —3 2 0 0

(0 —,'~3 O O )

(4.4)

l»b ++1»f

l»b++ l»y+ 14)g . (4.5)

By diagonalizing this matrix, we obtain mass eigenval-
ues in units of g/N/vr. We find that two bosonic mass-
less states correspond to two fermionic states through the
first supercharge Qi as shown in Eq. (3.21):

11)b =

l»b =

l»b =

14)b =

16)b =

l»b =

tr At (1)At (1)At (1)At (1) 10),

tr At (1)At (1)Bt (1)Bt (1) ' 10),

/
tr At (2)At (1)At (1) 10),

tr At(2)Bt(l)Bt(1) 10),

„,t A'(1)B'(1)B'(2) Io)

tr At (1)Bt (2)Bt (1) 10),

—tr At(3)At(1) 10),

N 2
tr At (2)At (2) 10)

—tr Bt (3)Bt (1) 10),

(4.7)

12)b ++ 12)y

1
14) 13)y — 14) (4.6)

Let us note that the adjoint scalar Geld alone gives only

11)b and 13)b as color singlet states, whereas the adjoint
spinor field alone gives 14)b as bosonic color singlet state
and 12)& as fermionic color singlet state. Therefore each
case gives only a quarter of the possible states in our
supersymmetric theory. Similarly for K = 4, we Gnd
nine possible states for bosonic color singlet states,

We also find that the two bosonic states with mass eigen-
values 81/4 in units of g2N/vr correspond to two fermionic
states with the same eigenvalues which are also mapped
by the first supercharge Qi.

and nine possible states for fermionic color singlet states:

11)g =

12)f =

13)g =

14)g =

l»f =

tr At (1)At (1)At (1)Bt(1) 10),

tr At (1)Bt (1)Bt(1)Bt (1) 10),

, , tr At(2)At(1)Bt(1) lo),

tr At (2)Bt (1)At (1) 10),

tr Bt (2)At (1)At (1) 10),

,&,
tr B'(2)B'(1)Bt(1) 10),

—tr At (3)Bt (1) 10),
1

—tr At (2)Bt (2) 10),

—tr Bt(3)At(1) lo).

(4.8)

The matrix B appearing in the supercharge Q2 in
Eq. (3.16) is given by

(0 0 0
0 0 0

25/4
0 3 0

gv'NL O O O

0
—3
0

0 0

0
0

5
~6
5

~6
0
0

o o \
1

3~2—3 — 1
3~2

0 0
0 14

3

(4.9)

0 0 0 —5

0 0 0 3
(0 o o o

~3 ~3
0 0 0

o o o )

From the diagonalization of the matrix for bosonic
color singlet states, we find four diferent mass eigen-
values 0, 18, and (1302 + 42~13)/54 . All massive states
have degeneracy two, whereas there are three massless

states. We Gnd exactly the same spectra for fermionic
color singlet states.

We have explicitly constructed bosonic and fermionic
color singlet states for higher values of the cutofF momen-
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turn K up to K = 11. We Gnd the number of bosonic
color singlet states for K = 5, 6, 7, 8, 9, 10, and 11 to be
24, 61, 156, 409, 1096, 2953, and 8052, respectively. The
number of fermionic color singlet states is exactly the
same as the corresponding bosonic one with the same K.

After evaluating the supercharge for these subspace up
to K = 8, we diagonalize the supercharge exactly to ob-
tain the mass eigenvalues. In Fig. 1 we plot the ac-
cumulated number of bosonic color singlet bound states
as a function of mass squared in units of g2%/vr. We
can see that the number of states is approaching to a
limiting value at least for smaller values of M . The
present tendency seems to suggest that the density of
states is increasing rapidly as the mass squared increases.
This behavior is in qualitative agreement with the previ-
ous results for the adj oint scalar or adj oint spinor mat-
ter constituents in nonsupersymmetric gauge theories [7].
Namely the density of states showed an exponential in-
crease as mass squared increases in accordance with the
closed string interpretation. The fermionic color singlet
bound states show the same behavior.

In Fig. 2 we plot the mass squared of bosonic color sin-
glet bound states in units of g K/7r as a function of the
average number of constituents for the case of K = 5.
We have also obtained a similar plot of the fermionic
color singlet bound states which turns out to be indistin-
guishable from the bosonic one. Since we Bnd the exact
correspondence, we shall display only the bosonic spec-
tra. In Figs. 3, 4, and 5 we plot the mass squared in
units of g2%/vr as a function of the average number of
constituents for the case of K = 6, 7, and 8, respectively.
It is interesting to see that the average number of con-
stituents increases as mass squared increases.

We G.nd that there are a number of massless states.

Empirically we And that there are K —1 bosonic and
fermionic massless states for the momentum cutoK K. It
is easy to understand some of the massless states. For
instance, for each K there is one massless bosonic state
with K bosonic oscillators of the lowest level At(1) act-
ing on the vacuum. There is also one massless bosonic
state with one bosonic oscillator At(2) of level two and
K —2 bosonic oscillators of the lowest level At(1) acting
on the vacuum. Both these states become massless at
arbitrary K because of the principal value prescription
for the infrared regularization of the supercharge.

The bound state equations for adjoint scalar or spinor
constituents are infinitely coupled even in the large N
limit [7]. To compare with the case of constituents in
the fundamental representation, it is instructive to work
out a truncation to a two constituents subspace. The
two-body bound state equation becomes analogous to
but is somewhat different from the 't Hooft equation [4]
extended to the boson-boson bound state case [14) and
the boson-fermion bound state case [15], as given in Ap-
pendix B. Unfortunately, our results in Pigs. 2-5 suggest
that the two-body truncation does not seem to give an
adequate approximation even for states with low excita-
tions.

To explore the eKects of supersymmetry breaking mass
terms, we diagonalize the mass matrix exactly with equal
mass m = mg ——mf for scalar and spinor constituents.
The explicit form of the mass matrix for K = 3 and
K = 4 are given in Appendix C. As an illustration,
we plot the mass squared of bosonic color singlet bound
states for K = 4 as a function of the constituent mass
both in unit of g~N/7r in Fig. 6. Similarly Fig. 7 shows
the fermionic bound state. We observe that the mass
spectra of bosonic bound states and fermionic ones dif-

400-

300

200

~ 4
e

FIG. 1. The accumulated number of
bound states as a function of mass squared
for K = 4, 5, 6, 7, 8; there is no difference
in behavior between bosonic and fermionic
state.
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80
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FIG. 2. Mass squared of bosonic bound
states for K = 5 as a function of the average
number of constituents; M are measured in
units of g N/7r.
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FIG. 3. Mass squared of K = 6 bosonic
bound states as a function of the average
number of constituents; M are measured in
units of g N/7r
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M /(g N jn)
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FIG. 4. Mass squared of K = 7 bosonic
bound states as a function of the average
number of constituents; M are measured in
units of g N/7r
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FIG. 5. Mass squared of K = 8 bosonic
bound states as a function of the average
number of constituents; M are measured in
units of g N/7r.
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FIG. 6. Mass squared of K = 4 bosonic
bound states as a function of the constituent
mass squared m [x = m /(g %/n)]; both are
measured in units of g N/vr
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FIG. 7. Mass squared of A = 4 fermionic
bound states as a function of the constituent
mass squared m [x = m /(g N/vr)]; both are
measured in units of g N/vr.
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fer as constituent mass increases even though we have
given identical masses for both bosonic and fermionic
constituents. This is because they are supersymmetric
partners of gauge boson which has to be massless. It is
interesting to see that the vanishing mass of the gauge
boson demands massless scalars and spinors even though
the gauge boson does not have dynamical degree of &ee-
dom.

V' G = D G —i2g[» V, G],

b „,V' G = —i2g[S, V' G], (A6)

G = DV + i2gV»V, bg „g,G = —i2g[S, G]. (A5)

Using f d 8 —88 = —1, the action of supersymmetric
Yang-Mills theory is given by the covariant derivative of
G.
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Let us decompose the gauge transformation (A2) in com-
ponent fields:

hgauge(n

hgauge+y. /g
&gauge4'

~gauge+

hgauge v 2'@

= —(»A) —i2g[A, ( ],
= —i2[A, A„] —2g(A, »p„() + 28~A,
= -'2g[A, y] —i2g(W, (),
= 2F —i2g[A, N]+ i2g(A, »(),
= i»p„B"A —i2g[A, ~2ilf] + [»7"A, 4„]

+ig[A, P] —ig[»A, N] —i2g[F, (].
(A8)

We choose the Wess-Zumino gauge ( = N = 0 by using
the gauge &eedom A and F, and we find the remaining
gauge transformation with the parameter A,

APPENDIX A: SUPERFIELD AND
SUP ERTRANSFORMATION

hg „g,A„= —i2g[A, A„] + 2gB„A,

hgaugeP: i2g[A i (f)] i

h, „,.v 24 = —i2g[A, v 2@].

(A9)

hg „g,V = (»D) S —i2g[—S, V ] = —(»V) S, (A2)

(V') S = D S —i2g[(»V), S],
8 . 0D = — + i(p"8)00 Bx& (A3)

where D is the supercovariant derivative and V' is the
super- as well as gauge-covariant derivative. The trans-
formation parameter S is a scalar superfield:

S(x, 8) = A(x) —8A(x) — 88F(x), —1—
2

(A4)

where A, E are scalar fields, and A is a two-component
Majorana spinor field.

Let us define the quantity G which transforms covari-
antly under the gauge transformation (A2):

Here we construct the action of supersymmetric Yang-
Mills theory in 1+ 1 dimensions by using the superfield
formalism. The spinor superfield V corresponds to the
vector multiplet

V-(, 8) = (-(*)—-(»~.8)- + 8-4(*)-i A" (x) 1

2 g 2
1—

N(x)(»8) ————88~24 (x), (A1)

where 0 is a two-component Majorana Grassmann spinor;
are Majorana spinors; A" is a vector field, @ and

N are scalar fields. Spinor indices and spacetime indices
are denoted by o; and p, respectively. The infinitesimal
gauge transformation on V is defined by

Next we consider the supertransformation. The super-
field V transforms as

|9
b,„p„V= ieQV —= e —= —ip"88„V,

Oe
(A10)

——(»p"e) i9„¹ (A11)

Note that the Wess-Zumino gauge condition ( = N = 0 is
violated by the supertransformation. We therefore need
to make compensating gauge transformation to maintain
the Wess-Zumino gauge condition

hsuper( + hgauge( 0i hsuperN + hgaugeN (A12)

at the Wess-Zumino gauge fixing slice ( = N = 0. By

where Q is the supercharge acting on superfields and e

is an infinitesimal two-component Majorana spinor. In
terms of components, it becomes

i „A„1 1
hsuper(rr ( y5 y e)sr err4'+ (»e)rr Ni

2 g 2 2

bsupepAp
'

LgC+5 pp 2Q + gp

b. p., tt = —r (&2s —ip s„r),
b,„p„N= ep5 24 + ip 0„

1 OA„h-p-@- = (»~"~"e)- " " + —(—~"e)-~~&
2 g 2
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i „A„1 1-
ps—~P, I" = — e—ps~2@

2 g 2 2
(A13)

choosing the compensating gauge transformation as the supertransformation for the dynamical variables in
the light-cone gauge as

b super/: i2 (eig e2/i)t+ 2 gei i/ P (A 15)
we obtain the modified supertransformation b,„per

p + 8g g in the Wess-lumino gauge as shown

Eq. (2.3). In the Wess-Zumino gauge, G becomes
in 1

bsuper4 =

G = P+ 0~2% + 00 — e"—"F„„,1 1

2g
(A14)

+2 e28 /+2 g (A16)

where e = —eoi ——1. Substituting (A14) into (A7),
we obtain the action (2.1) of the two-dimensional super-
symmetric Yang-Mills theory. Since the light-cone gauge
condition A = 0 is violated by the supertransformation
(2.3), we need to define a modified supertransformation

~super = ~super + ~gauge by adding another compensating

gauge transformation to make b,„p„A = 0. We find

APPENDIX B: TWO-BODY TRUNCATION
OF BOUND STATE EQUATIONS

Here we summarize the bound state equations in the
truncated subspace of two constituents only. Bosonic
bound states consist of two bosonic consitituent wave
functions Pbb and two fermionic ones Pff

p+
1

S(&+))b = rtSr&kb&(kb + kb —&+) (ribb(trrkb) —«]b,b (4), b' (Sb)]
0

+r)rtt(kr, kb) —tr]t(sr), btr (kb)] ) ]0),

ebb(kt P+ —k) = ebb(P+ —k, k), off(kt P+ —k) = off(P+ ——k, k) (82)

We define Cf ——C+,~' (j = b, f), using the quadratic terin in the Hamiltonian C(k) defined in Eq. (2.29). Weg2N
obtain a coupled bound state equation for bosonic bound states using x = k/P+, y—:l/P+:

M~ (kP+ —k)=g ()+ ( ) ~ (kP+ —k
27r x 1 —x

g2N '
dy (x + y) (2 —x —y)

bbV'*(I — )y(1 —y)

2N
6f(/ P+ —/)

2m. () (y x) gx(1 x)
(B3)

M2y (k P+ k)
g f ( ) + f ( ) y (k P+ k)2' x 1 —x

2g'N 2N / P+ —ldy g N „ebb(/ P —/)

(*—y)' 2~ 0 (x —y) y y(1 —y)
(B4)

Similarly we And a bound state equation for fermionic ones:

e(P+)), =
p+

dkidk2h(ki + k2 —P+)i/)bf (kit k2) —tr[a (ki), b (k2)] i0) t (B5)

M'A(kP k)=g N C'-(k)+Cf(P' k) A, (k, P.-k)
2' x 1 —x

2 1 d
tt bf (/, P+ —l) — dy pbf (/, P+ —l).

2m o (1 —x —y) gxy vr 0 (x —y) 2 gxy
(B6)
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Jt mg ™f2 2

g2N' g2N 'y= (Cl)

APPENDIX C: MASS MATRIX WITH MASSIVE
CONSTITUENTS

Here we display the bound state mass matrices for mas-
sive constituents. Introducing mass squared parameters
of constituents in units of g2%/m

M2Vr

g2N

(3x+ 6y

0

Eq. (4.2), we find

—+ 9y —3i4

3i —+ —x+ 3y2? 3 27
2 2

27 27+3~+ s )
(C3)

we find the mass-squared matrix in units of g K/m for
K = 3 bosonic bound states defined in Eq. (4.1):

(9* O O O

M m 0 —+ 3x + 6y —3i~ ——' ~y

For K = 3 fermionic bound states defined in
I

For K = 4 bound states, we decompose the mass matrix
as

~2~'Z
(c4)

For bosonic bound states, the first supersymmetric term
Q22reduces to BtB in terms of the matrix B in Eq. (4.9),
and the second and third terms are given by

( 16x 0 0
0 8x 0
0 0 10x
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
o o o

0 0 0
0 0 0
0 0 0

2x 0 0
0 4x 0
0 0 4x
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
3x 0 0
0 4x0
o oo)

(G5)

r
0
0

Ty —— 0
0
0
0

0 0
8y —2i~/2y

2i~/2y
0 0

i~y 0—
i~y 0

0 0
0 0
0 0

0
0
0

8y
0
0
0

4i ~y
—;~2y

0
i~y

0
0

6y
0

i~By
0

—;~i

0
—i~y

0
0
0

6y
i~/3y

0
—;~i

0
0
0
0

—i~3y
—i~3y

0
0
0

0
0
0

—4i~y
0
0
0
0
0

0
0
0

—4s* ~2y
—

—;i/y——,
*

i/y
0
0

16

(c6)

For fermionic bound states, the Q2 reduces to BB in terms of the matrix B in Eq. (4.9), and the second and third
terms are given by

('12x 0 0 0 0 0
0 4x 0 0 0 0
0 0 6x 0 0 0
0 0 0 6x 0 0
0 0 0 0 8x0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(0 o o o oo

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

—x 0 03
0 2x 0

(C7)

(4y 0
0 12y
0 2i~2y
0 2i~/2y
0 0
0 0
0 0
0 0

( o o

0
—2i.~2y

4y
0
0
0
0

i~y
——'; i/2y

0
—2ii/2y

0
4y
0
0
0i~y-

—'; ~2y

0 0 0
0 0 0
0 0 0
0 0 0

2y 0 0
0 10y —2i i/3y
0 2i~3y 4y
0 2ii/2y 0
0 0 0

0
0

—i~y
i~y

0
—2ii/2y

0
2y
0

0
0

—"V2y
—s' i/2y

0
0
0
0

3y

(C8)
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