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A generalization of the non-Abelian version of the CP models (also known as Grassmannian
models) is presented. The generalization helps accommodate a partial breaking of the non-Abelian
gauge symmetry. Constituents of the composite gauge fields, in many cases, are naturally constrained
to belong to an anomaly-free representation which in turn generates a composite scalar, simulating
Higgs mechanism to break the gauge symmetry dynamically for large N. Two cases are studied in
detail: one based on the SU(2) gauge group and the other on SO(10). Breakings such as SU(2)-+U(1)
or SO(10)-+SU(5)xU(1) are found feasible. The properties of the composite fields and gauge boson
masses are computed by doing a derivative expansion of the large N efFective action.

PACS number(s): 11.15.Ex, 12.60.Rc, 14.70.—e

I. INTRODUCTION

Compositeness has been the way of nature. Some of
the so-called elementary. particles of earlier times have
turned out to be composites of more elementary ones.
Compositeness is one way of getting to a simpler theory
involving usually fewer Gelds or fewer parameters at the
fundamental level. It is also expected to soften the ultra-
violet behavior. Composite gauge Gelds could in addition
provide us with an understanding of the gauge principle.
They have received considerable attention in the litera-
ture [1—4]. The generic nature of models in Ref. [1] is that
some vector particles appear as composites dynamically
and the gauge symmetry that is approximate becomes
exact in a certain limit, for instance, when N —+ oo
as in Suzuki's work. In CP~ models [2] and their
non-Abelian generalizations called Grassmannian mod-
els (GM's) [3], the gauge symmetry is exact and the
gauge bosons introduced as auxiliary Gelds become phys-
ical when one-loop contributions are included. Here the
gauge Gelds arise as composites of bosonic constituents
[4]. In this paper, we are interested in these latter type
of models. These models have been studied in the large
N limit and it is found that the non-Abelian symmetry
is either completely broken or not broken at all. Ul-
timately one would like to construct phenomenological
models along these lines, but the phase structure of these
models is not very useful for that purpose. One needs a
version in which the gauge symmetry is partially broken.

Remarkably, as we will see in this article, there does
exist a generalization of the GM's that allows for partial
symmetry breaking. Some of the results of this paper
have been briefly reported earlier [5]. The primary agent
of symmetry breaking turns out to be a scalar that too
is composite. This composite Higgs scalar arises natu-
rally as a solution of the modiGed constraint equation.
In many of the cases, it belongs to the adjoint represen-
tation of the gauge group. The constituent Gelds in those
cases belong to an anomaly-&ee representation. One may
recall here that that the agent of symmetry breaking in
grand uniGed theories is usually a Higgs scalar in the

adjoint representation. One may further recall that the
fermions in a physical theory belong to an anomaly-&ee
representation, and we encounter the same feature here,
though in the bosonic version. Two examples are stud-
ied to illustrate the approach: one based on the gauge
group SU(2) and the other based on SO(10). The SU(2)
example is the simplest and best suited to illustrate the
approach. Here there exists a phase where SU(2) breaks
into a U(1) subgroup. The case of SO(10) studied in some
detail is more interesting &om the physical point of view.
The phase structure is richer with symmetry breaking to
various subgroups such as SU(5) or SU(5) xU(1).

The models of Refs. [2,3] and also those of this pa-
per are renormalizable in 1+1 dimensions. We work in
3+1 dimensions and calculate various properties of the
composite objects, gauge bosons and Higgs scalars, to
see how far the program can be carried out and also to
get some clues as to the requirements of a renormaliz-
able model. We compute the properties of the composite
fields by doing a derivative expansion of the large N ef-
fective action. The expansions available in the literature
do not serve our purpose as they are, to our knowledge,
also expansions in the Higgs scalar. We hence develop a
suitable derivative expansion which we use to compute
the kinetic terms and the mass terms for the composites
in the various phases.

To start with, in the next section, we review the known
models relevant to our work. First we look at the CP
model that involves a U(1) gauge theory. Then we dis-
cuss its non-Abelian generalization, the Grassmannian
model. It is based on the gauge group U(M) with the
scalars in the fundamental representation. In Sec. III,
we introduce our model, a generalization of the GM that
is capable of accommodating other gauge groups with
more general scalar representations. A suitable potential
responsible for a rich phase structure is then introduced.
In Sec. IV, we first; illustrate our approach with a simple
example based on the gauge group SU(2) and then look
at the interesting but more complicated case of SO(10).
Section V discusses the properties of the various compos-
ites. The global symmetry with its breaking patterns and.
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the resulting Goldstone modes are discussed in Sec. VI.
Section VII concludes with a discussion of the present
approach. Derivative expansion of the eHective potential
useful in Sec. V is carried out in the Appendix.

II. KNOWN MODELS

The known models that are relevant to our purpose,
the CP and the Grassmannian models, are brieQy
reviewed in this section. The simplest model is the one
that induces a U(1) gauge theory, the CP~ i model.
This is just a Geld theory involving N & 1 complex scalar
Gelds,

Z = (Zl) Z2
&

~ . .
~ ZN) i

satisfying the constraint g,. ~Z,
~

= 1. The constraint
sets their overall scale. A U(1) gauge invariance removes
in addition an angular variable. Thus the model is in
eR'ect a Geld theory of N —1 complex scalars. For conve-
nience in writing the various results, we have above rep-
resented the Z, 's collectively as a row vector Z. In this
notation, the constraint can be rewritten as ZZt = 1.
The Lagrangian is

I = PN B„ZD„Zt + (ZO„Zt) (2)

Here P is the inverse of a coupling constant. An over-
all multiplicative factor N is introduced for later con-
venience in the 1/N expansion. It is easy to verify the
existence of a U(l) gauge invariance under which each
of the Z, 's transforms with the same phase. In vector
notation, this is simply Z ~ e' Z where the phase 0 is
space-time dependent. The constraint is clearly invariant
under this symmetry. To see that it is a gauge symmetry,
note Grst that the combination iZO„Zt transforms as a
U(1) gauge field:

'iZDpZ M 'LZB~Z + 0~0.

The last term actually has a ZZt but that drops out due
to the constraint. The U(l) gauge invariance will be more
explicit, if we rewrite the Lagrangian by introducing an
auxiliary Geld A~ = iZB„Zt' as

L = PN (B„ZB„Zt—2i A„ZO„Zt + A„)
= PN D„Z(D„Z)t (4)

Here D„Z is the covariant derivative (B~ —iA~)Z. In
this form, the gauge symmetry is manifest. As shown
in Sec. V, the auxiliary field A~ that transforms as a
U(1) gauge field becomes dynamical and hence a gen-
uine gauge Beld after quantum corrections in the large
N approximation. It is a composite gauge Beld made of
the Z Gelds. Thus the model under consideration can
be viewed as an induced U(1) gauge theory or a theory
of composite gauge Gelds. This model is a special case
of the Grassmannian model; hence we study its phase
structure below as a special case of the GM.

The Grassmannian model is a generalization of the

CP model that induces a non-Abelian gauge theory.
We now have more fields, a set of them, represented col-
lectively by a M x N matrix Z with the elements Z, ,
o. labeling the rows and i labeling the columns. The col-
umn index i is an internal index or a Bavor index that
is essentially carried over &om our previous model. The
new index a, the row index, is the gauge index associated
with a non-Abelian symmetry which in the present case
is U(M). All our results should reduce to those of the
previous model for the case of M = 1. The constraint is
now

ZZt = I~,
where I~ is an identity matrix of order M. The present
Lagrangian is of the previous form (2), but now as such
it will be an M x M matrix and hence needs an overall
trace to make it a number:

L = PNtr O„ZB„Zt + (ZO„Zt)

It is again easy to verify that there is a U(M) gauge in-
variance with respect to the index o;. Under this gauge
symmetry, Z transforms as a set of N fundamental rep-
resentations. In matrix notation, this transformation
is simply Z + UZ, U being an M x M space-time-
dependent unitary matrix representing the gauge trans-
formation. This transformation does not a8'ect the i in-
dex which labels N fundamental representations. The
constraint respects this symmetry. The object A~
iZO„Z is iii the adjoint representation of U(M) and
transforms as a gauge Beld thanks to the constraint

U~„Ut+,Ua„Ut.

The role of the constraint here is to simplify the last terin
above &om iUZZtB„Ut to iUO„Ut. The gauge symme-
try becomes explicit when we rewrite the Lagrangian as
in Eq. (4) with an overall trace:

L = PNtr D„Z(D„Z)t

D„Z being the covariant derivative (8„—iA„)Z. As be-
fore, A„appears as an auxiliary Geld. but, as can be seen
at large N, it becomes dynamical and hence a genuine
gauge Geld after quantum corrections. It is a composite
gauge Beld with the Z fields as constituents. The con-
straint and the U(M) gauge invariance have the effect of
suppressing M degrees of &eedom. The theory is thus
based effectively on M(N —M) scalars. Clearly, for it to
be a sensible one, N is required to exceed M.

The constraint ZZt = I~ can be incorporated into the
Lagrangian with the help of a Lagrangian multiplier Z,
a M x M matrix. The result is

L = PNtr [D„Z(D„Z)t + ZZZt —Z

To understand symmetry breaking, and hence to identify
the various phases, we need to obtain the efFective poten-
tial. We will do this at large N. Because A& is not ex-
pected to pick up any expectation value, we will set it to
zero. The classical contribution to the effective potential
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d4k
N tr ln(k IM+Z). (10)

Here and in the rest of this article, we suppress the de-
pendence of the momentum integrals on a cutoff A. The
total effective potential is thus

d4k
V,ir = PNtr (ZZZt —Z) + N tr ln (k I~ + E) .2' 4

comes &om the Lagrangian (9) by dropping the deriva-
tive terms. Because 1/N appears in the Lagrangian like
the Planck's constant, the quantum corrections to this
contribution are expected to be suppressed by a factor
1/N B.ut there are N fundamental representations con-
tributing equally and this can offset the 1/N suppression.
The result is that at large N the effective potential for
the Z and Z fields obtained by integrating away the Z
Huctuations carries a correction

irrelevant, p is either zero or M.
Thus we have two phases. For P ) P, we have the

broken phase (p = 0) where ZZt has an expectation
value. The solution for Z has an expectation value along
all the "directions" in the fundamental representation.
This breaks U(M) completely and all the gauge bosons
are massive. For P ( P, we have the unbroken phase
(p = M) where the gauge symmetry is unbroken and the
gauge bosons are massless. P = P, is a critical point. In
fact, P ( P, is a critical line along which all the masses
vanish.

In other words, the gauge group is either completely
broken or not broken at all. There are apparently no
phases, at least at large N, where a partial breaking of
the gauge group is possible. To obtain a richer phase
structure, we invoke a generalization of these models and
study thexn at large N in the following section.

III. GENERALIZATION

To determine the various phases, we need to extrem-
ize this potential. The resulting saddle point equations
(SPE's) are ZZ = 0 obtained by varying Zt and

d4k 1p(ZZ' —IM)+, , = o (12)

,

&~ r„o't~
0 0)'

where Iz and IM „are two identity matrices of order p
and M —p, respectively. Note that ZZZt is zero with this
ansatz. Solutions for Z that satisfy ZZ = 0 can easily be
constructed. Equation (12) leads to two equations, one
in the I„sector and the other in the IM „sector:

—p+
d4k 1

(2m) 4 k2 + cr
=0,

d4k
(14)

For p = 0 there is no Iz sector and hence the first equa-
tion above would be absent. Similarly for p = M the
second would be absent. Let us 6rst show that p cannot
lie inbetween. We will do this by showing that the two
equations cannot be satis6ed simultaneously. First note
that o should not be negative for the momentum inte-
gral involving it to be well defined. Hence, from the 6rst
equation, we note that P has an upper limit P given by

d4k 1 A2

(2n)4 k2 16vr2

But the second equation implies that P, is also a lower
limit of P. To see this, rewrite it as v = 1 —P /P and
note that v2 cannot be negative. It thus follows that,
except at the critical point P = P where the question is

coming &om varying Z. Now, let us look for solutions of
the form

As discussed in the previous section, the Grassman-
nian model involves scalars in N fundamental represen-
tations of the gauge group U(M). A natural extension
is to construct models for various gauge groups with the
scalars transforming under different representations. To
our knowledge, they have not been studied in the liter-
ature. In this section, we explore an interesting class of
these models that are nontrivial generalizations offering
a rich phase structure. As usual, we are concerned with
symmetry breaking at large N.

A. Modifying the constraint

One approach, a straightforward one, is to choose some
other gauge group G in place of U(M) but to leave the
constraint ZZt = IM unchanged. In other words, we
take the Z 6elds to belong to an arbitrary representation
R of dimension M and multiplicity N of some chosen
gauge group G. We may still represent the Z fields in the
form of an M x N matrix. The transformation matrix U
is now in R acting on the matrix Z as before, Z ~ UZ.
The Lagrangian is still of the form we came across earlier
in Eq. (8), but with the auxiliary gauge field A„now tak-
ing values in the Lie algebra of G. An expression for the
auxiliary field and the form of the Lagrangian involving
the Z fields alone can be easily derived. They are given,
respectively, by Eqs. (17) and (18) given below. However,
symmetry breaking at large N remains the same. This is
because the gauge 6elds are set to zero in our discussion
of the phase structure.

A more interesting generalization occurs when the con-
straint is rnodi6ed as well. Again, we take the Z 6elds to
be in any representation R of dimension M and multi-
plicity N of a gauge group G. We look for a Lagrangian
that resembles (8). It is clearly gauge invariant with the
auxiliary gauge field A„ transforming as in (7). Note
Chat the part of the Lagrangian quadratic in A~ = A T
is proportional to
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Z„X'„tr(T.T,ZZt) = A„A„'tr(T.&ZZ'),

tr(T sZZt) = lb b. (16)

where T 's are the generators of the gauge group G and
T~g = (T~Tg+TsT )/2. Earlier in the GM, the constraint
ZZt = I~ was responsible for rendering it quadratic in
A& alone. This resulted in a well-defined expression for
the auxiliary field. A„as a composite of the Z fields. Now,
more generally, we achieve the same goal by imposing the
following constraint instead:

Here / is the Dynkin index of the representation Bdefined
by tr(T T~) = Lb b N. ote that this new constraint also
respects gauge symmetry. Using it, it is easy to obtain
the following expression for the auxiliary field:

A„= —tr T (ZB„Zt —O„ZZt)j .

Later in Sec. V, we observe that this field becomes dy-
namical at large N and is justly called a composite gauge
field constructed out of the Z's. An expression for the
Lagrangian in terms of the Z fields alone can now be
obtained:

L = PNtr(B„ZO„Zt) + PN (—tr T (ZO„Zt —O„ZZt) )

This derivation should ensure gauge invariance and this
is easily seen to be the case. Incorporating the constraint
into the Lagrangian using a Lagrange multiplier Z
Z sT b leads to an expression that agrees with (9). The
symmetry-breaking efFects could be potentially difFerent
since the matrix Z is not an arbitrary one any more.

First, we make sure that the constraint (16) is differ-
ent &om the earlier one ZZt = I~. ZZ~ = I~ clearly
is a solution of (16). Fortunately, there are cases where
this is not the only solution. The new constraint is in
some cases weaker than the earlier one. To see this, in-
troduce a Hermitian matrix W by ZZ~ = I~ + W and
observe that the new constraint is equivalent to looking
for a solution of tr(T sW) = 0. Given a W that leads
to a positive semidefinite ZZt, Z is solvable generally as
Z = (I~ + W) ~ Zo for some Zo obeying ZoZO = I~.
The earlier constraint corresponds to the trivial solution
W = 0. That there exist cases where W is nontrivial
can be seen as follows. Make the ansatz that W is in
the Lie algebra itself, that is, W = W T . Now, the
constraint tr(T t, W) = 0 simply states that the Adler-
Bell-Jackiw anomaly associated with the representation
B should vanish. That there exist anomaly-&ee represen-
tations is well known. A simple example is the doublet
of the gauge group SU(2) that yields a triplet for W.
We will use this example later to illustrate our approach.
A more interesting example is the spinor representation
16 of the gauge group SO(10) that is well known to be
anomaly-&ee. The ansatz gives a solution for W that is
in the adjoint representation 45. This is interesting, for
it is known that an adjoint scalar is a promising candi-
date to break a grand unified theory based on SO(10).
Its appearance here is quite unexpected.

In some instances, the above ansatz gives the most gen-
eral solution. This is the case with both the examples
mentioned above. This can be seen &om representation
theory. Regard W as belonging to the product represen-
tations 2 x 2 = 1 + 3 and 16 x 16 = 1+45+ 210 in
the SU(2) and SO(10) examples, respectively. The com-
ponent representations in these decompositions should
separately obey the constraint. The singlet appearing
in both cases is ruled out easily. This is because the

singlet component being proportional to identity gives
tr(T sN ) oc h s, violating the constraint. In the case of
SO(10), we need to exclude the 210 as well. It is eas-
ily observed that there exist 16 x 16 traceless Hermitian
matrices violating the constraint. This excludes 210 be-
cause such matrices can only have components along the
45 and 210, and the 45 alone cannot violate the con-
straint. It is not to be deduced, however, that the ansatz
always gives the most general solution. For instance, if
one were to pick a sufBciently large representation of the
gauge group for B, one will easily end up with more rep-
resentations that remain unsuppressed in W. But repre-
sentation theory should still be applicable to solve for W
in general.

Let us call the models as type-1 models when W solves
identically to zero and our new constraint reduces to the
old one. They are closer to the Grassmannian mod-
els discussed earlier, or rather to their generalizations
mentioned in the beginning of this section involving sub-
groups of U(M). The other models where W can be
nontrivial are referred to as type-2 models. Models based
on a reducible B are quite generally of type-2. This is
because the constraint does not determine some compo-
nents of W, for instance, those connecting difFerent sub-
representations in B. Note, however, that a reducible B
arising from an irreducible one repeated, say, q times,
though appears to be of type 2, can be recast as of type
1 by combining q and N to an overall multiplicity qN
in place of N. We prefer to view them as type-1 models
with multiplicity qN. Type-1 models are thus necessarily
based on irreducible R's.

The e6'ective potential at large N is again of the form
(11)encountered earlier. The SPE's governing the phases
are ZZ = 0 obtained by varying Zt and

t' 1
ptr Tg(ZZt —I~) + tr~ Ts

~

=0
2~ 4 ( k~I~+ Z)

(19)

obtained by varying Z. For type-1 models, the traces can
be dropped and the equation becomes equivalent to the
one we had earlier for the GM [see Eq. (12)]. Solutions
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can be sought in the same manner. The phase structure
is governed by a critical P given by Eq. (15). It is en-
sured that the ansatz for Z one makes in solving these
equations is consistent with its definition Z = Z pT g.
This is because the final conclusion involves either the
broken phase Z = 0 (for p ) p, ) or the unbroken phase
Z = oINr (for p ( p, ). This is equivalent to Z i, = 0 or
Z~i, = ob'~i, /C2(R), where Cz(R) is the second Casimir
invariant of the irreducible representation R defined by
T T = C2(R)I~, and is acceptable.

For type-2 models, the above equation can still be re-
duced to that of the GM, Eq. (12), but with a matrix W
satisfying tr(T i,W) = 0 on the right-band side (RHS):

general ones. There could be more solutions. This does
not, however, appear to be the case with the examples
mentioned earlier based on the gauge groups SU(2) or
SO(10) [see Eqs. (28) and (32) and the discussions follow-
ing thein]. An analogous situation occurs for the gauge
group E6 with its representation 27. This is perhaps il-
lustrative of a generic phenomenon or suggestive of the
need to look at larger representations that might lead
to more solutions. We do not wish to go into those de-
tails here; rather, we find it more rewarding to consider
another possibility, that of adding a potential.

d4a
(20)

B. Adding a potential

d4k

(2vr)4 kz + C2(R;)cr
(21)

The constraint on the m, 's gives

(22)

This determines cr. Individual equations simply deter-
mine the various m, 's. That this solution holds only for
p ( p, is easy to note.

The solutions obtained so far are not a priori the most
I

The factor P on the RHS makes this equation agree with
ZZt = IM +W at the level of expectation values. Again,
the solutions Z = 0 (for p ) p, ) and Z = oIM (for
p ( p ) will satisfy this equation, for W can clearly be
chosen to be zero. As before, Z = 0IM is acceptable for
irreducible R's as it follows from Z i, = oh t, /C2(R). In
the case of reducible R's, that is, R = g,. R; where each
R; is irreducible, the solution for p ( p, is a bit more
involved. We try again the ansatz Z g = 08 i, . In this
case Z is not proportional to identity. Instead, it is a
diagonal matrix taking values C2(R, )o along each repre-
sentation R;. We look for a W matrix that is also diag-
onal, with values w; along R, . Note that the constraint
tr(T i,W) = 0 requires the tu s to satisfy g,. 1;zo; = 0
where the l s are the indices of the representations R,. 's.
The SPE along R; is

The unexpected appearance of an adjoint scalar W ap-
parently did not help us in a partial breaking of the gauge
group. The situation changes drastically when a poten-
tial is introduced, leading to a rich phase structure. The
adjoint scalar, which has not played any significant role so
far, plays a major one in the presence of a potential. Note
that there is no simple way to incorporate a potential in
the canonical GM without spoiling the global symmetries
or the constraint equation. But, interestingly, the gen-
eralized models of the previous section, governed by the
gauge-invariant Lagrangian of Eq. (18) constructed with
scalars alone, do allow for potential term. s. As we will see,
the presence of a potential leads to drastically different
conclusions. These models with such phase structures
are relevant in model building.

Let us keep the potential quite general to begin with,
PNtrV(ZZt), where V(.) is an ordinary function of its
argument, a polynomial, for instance. This is expected
to be a nontrivial extension of type-2 models unlike the
case of type-1 models in which the constraint ZZt = I~
reduces this to the addition of a constant. It is conve-
nient to introduce a composite field variable X for ZZt
and write the potential as PNtrV(X). The requirement
X = ZZt can be incorporated with the help of a La-
grange multiplier Y, adding a term P¹r(YZZt —YX)
to the potential. As before, constraint (16) can be
accommodated with the help of a Lagrange multiplier
Z = Z gT g. Its effect is, as we know, to add a term
PNtr(ZZZt —Z) to the potential. After translating Y
to Y —Z for convenience, the total Lagrangian looks like

L = pNtr D„Z(D„Z)t + V(X) + YZZt —YX + ZX —Z (23)

The large N efFective potential is now computable:

d4A:
V,ir = PNtr V(X) + YZZt —YX+ ZX —Z + N tr ln (k IM + Y) .

(2') 4 (24)

The SPE's are obtained by extremizing this potential. Varying X determines Y to be Z + V'(X) where a prime
denotes differentiation with respect to the argument. Varying Z gives tr[T g(X —I~)] = 0. As before, one may look
for a solution of this in the form X = IM + W where W satisfies tr(T i,W) = 0. Varying Y and using these solutions
yields

d4k 1
(25)
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This is to be supplemented with VZ = [Z + V'
(IM + W)] Z = 0 obtained by varying Zt. This system
of equations resembles the ones obtained earlier [see Eq.
(20)], with Z replaced by Z+ V'(I~+ W). The Presence
of V'(IM+W), however, is suggestive of a difFerent phase
structure.

For type-1 models W = 0, and V'(IM + W) just adds
a constant to Z. This can be absorbed into Z because
these models, being based on an irreducible B, allow for
the addition of a term proportional to identity to E. As
expected in the beginning of this section, this is a trivial
extension. However, this is not the case for type-2 models
and we expect a rich phase structure.

An example we will use later is a potential of sixth de-
gree in Z and Zt that leads to V'(IM+ W) = oIM+bW+
cR' for some constants a, 6, and c. For a model based
on an irreducible R, the term aIM can be absorbed into
Z as we have already noted. When R' is in the adjoint
representation, the term el% can also be absorbed into
Z. As a result, the SPE's to be solved are

d4A: I

and [Z+ bW] Z = 0. These equations are difBcult to
handle analytically and we present our numerical results
for SU(2) and SO(10) below. We find that they do have
solutions for a range of parameters when P ( P, and
6&0.

Given all such solutions for P ( P„ the next step is
to determine those that are preferred energetically. The
GM solutions of Sec. II leave the gauge group unbroken
for P ( P, whereas those found here break it at least
partially. Which one is preferred is of course determined
by the effective potential. In other words, one needs to
compute Veer for all the solutions and pick the one (or
more) that has the the lowest value. We do this along
a chosen path in the parameter space of P and b that
crosses all the phases. We find that some of the new
solutions end up always having the lowest potential. In
other words, for a range of parameters, a partial breaking
of the gauge group is preferred over the unbroken case.
Details are presented in the next section. The following
expression for the effective potential at a saddle point
(SP) is used to this end:

4
V,g(SP) = —Petr (E+ bW /2) + N tr ln (k I~+ Z+ bW) .

2vr 4

We are, as always, concerned with an adjoint W for an
irreducible B. In the above expression, terms aI and
cR' have been absorbed into E for convenience.

IV. TWO EXP.MPLES: SU(2) AND SO(10)

A. Case of SU(2)

The example based on SU(2) with doublet Z's is the
simplest and the most convenient one to illustrate the
ideas presented above. The matrix Z = Z gT g is now
proportional to identity, hence chosen to be crI2. The
R' scalar, being a triplet, is taken to be along the o@
direction, that is, R = too3. First we consider the case
when the Z fields develop no expectation value. The
resulting SPE's in the presence of a potential are

P+—d4X

(2vr) 4 k' + o + bur
= Pur,

—p+ fd4k 1 = —Pto
(2n.)4 k2 + o —bio

(28)

Note that there is no solution to these equations when
6 = 0, that is, in the absence of a potential, other than the
one discussed earlier where R' = 0 and Z is proportional
to identity. In the presence of a sixth degree potential
given by V'(I~ +)W= aIM+bW+cW, these equations
do have solutions for a range of parameters. This can be
seen by treating x = (cr + bio)/A and y = (o —b )/AtU

as independent variables to determine P and tu &om the
above two equations. Given x and y and knowing m, one

obtains b &om x —y = 2bto/A2 The resu. lting equations

P 1 ( 1 1 ( 1)I ——= -»n
I 1+ — + -y»

I
1+ —I,P, 2 ( x 2 ( y)

P, b X —g

P A2 x ln(1+ 1/x) —y ln(1+ 1/y)
(29)

For the momentum integrals to remain well defined, x
and y should be positive (or zero). The region of the
parameter space of P and b is obtained by letting x and y
vary &om zero to infinity. This falls in between the curves
(a) and (b) shown in Fig. 1. There are two solutions for
a given P and b in this regime, but they are related to
each other by an interchange of x and y and should be

0.8

(il tlc

0.4
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P
0

4
0

0
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-b /A2

FIG. 1. The phase diagram in the case of SU(2) obtained
solving Eqs. (29) and (31). The efFective potential of Fig. 2
is computed along the dotted line. Parameters in the theory
are P and b, and. A is the momentum cutoK Details are given
in the text.
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treated as one. Note that all these solutions yield P ( P,
and b ( 0. Curve (a) has x = y and is the critical line.
In fact, the region below curve (a) is a critical surface
where all the masses vanish. Curve (b) has one of x, y
zero. Symmetry breaking involved here is &om SU(2) to
U(1).

There exist new solutions for a nonzero Z as well. Giv-
ing an expectation value diag(0, v ) for ZZt, the second
equation in (28) gets replaced by

pv —p+ p, = —pzv, (30)

where we have set y = cr —bv/ to zero to satisfy (Z +
bW)Z = 0. Treating x = (cr + bv/ = 2bv/)/A2 and y' =
v2P/P as independent variables to determine the others,

P 1 /' 1) 1
1 ——= —xin~ 1~ —

~

——y',
p 2 g x) 2

p, b x
p A2 *ln(1~1/x)+y ' (31)

one notes the presence of solutions in a parameter range
for positive x and y'. Here as well, we require p ( p,
and a negative b. The parameter range is the one above
curve (b) in Fig. 1. SU(2) syznmetry is now completely
broken. Giving an expectation value diag(v, 0) for ZZt
is equivalent to this case and leads to no new solutions.
A nonzero ZZt of the form diag(vi, v22) requires vi2 = v~2

and coincides with the completely broken case of the GM
discussed in Sec. II.

These are all the solutions. Now, consider all those
for P ( P, . The corresponding one of the GM leaves
the gauge group unbroken whereas those of this section
break it at least partially. As discussed earlier, the ef-
fective potential needs to be examined to determine the
preferred solution. We have chosen a path suitably fixing
y crossing all the curves, shown as a dotted line in Fig. 1.
Figure 2 is a plot of the effective potential. The upper
curve is for the GM solutions and the lower one is for the
new solutions. Note that the lower sheet ends up always
having the lowest potential. In other words, for P small,

a partial breaking of the gauge group is preferred over
the unbroken case.

B. Case of SO(10)

We now come to the second example, the gauge group
SO(10) with the Z's in the representation 16. Here the
possibilities for symmetry breaking are too many. We do
not hope to address all of them, rather simply pick one
possibility: SO(10) breaking to SU(5) or to its znaximal
subgroup SU(5) x U(1). Under SU(5), 16 of SO(10) de-
composes to 10(1)+5(—3)+1(5)where the U(l) charges
are given in parantheses. The unbroken symmetry for
Z = 0 corresponds to those generators that commute
with the ansatz for Z. To have symmetry breaking to
SU(5) x U(1), we hence choose Z = 0 and take Z b = oh s
along the SU(5) directions, p along the U(1), and zero
otherwise. Note that the a or b index runs over the
adjoint representation 45 of SO(10) that under SU(5)
decomposes to 24+ 10+ 10+ 1. Our ansatz for Z g

corresponds to having it nonzero for (a, b) along (24, 24)
and (1,1). One could have it nonzero along (10, 10) and
(10, 10) as well, but it turns out that this can be ab-
sorbed into o and p. This means that the Z matrix
is diagonal with values C2(10)o + p, C2(5)0. + 9p, and
25p along the representations 10, 5, and 1, respectively.
With C2(10)/Cq(5) = 3/2 and a suitable scaling of o.,
we may take them to 3o. + p, 20 + 9p, and 25p. The W
matrix is taken to be along the U(1) direction. ; in other
words, it is diagonal with values m, —3m, and 5m. It
is now straightforward to write down the SPE's in the
presence of a potential:

a4k 1—p+
(2~)4 k' ~ 3rr + p+ bn)

= pzv,

d4I 1—p+
(2vr) 4 k2 ~ 2o. + 9p —3btv

= —3Ptv,

d4A; 1—p+
(27r)4 k2 + 25p+ 5btv

= 5pu).

Vcff / PcNA p

FIG. 2. A plot of the eff'ective potential (with its zero ap-
propriately chosen) versus P for a path shown dotted in Fig. 1
crossing all the curves. The crossings are denoted by (a) and
(b). The upper curve corresponds to the unbroken case and
the lower one corresponds to symmetry breaking as discussed
in the text.

Consider first the case of no potential, that is, 6 = 0.
There are no new solutions. This is because the Z eigen-
values 30+p, 2o +9p, and 25p are either in the ascending
order or in the descending order (or equal) and hence one
cannot obtain the alternating signs on the RHS above.
Allowing for nonvanishing Z does not improve the situ-
ation. Note that ZZt and Z should have non-negative
eigenvalues and ZZZt = 0 requires at least 3o +p or 25p
to vanish to allow for a nonzero eigenvalue of ZZ~.

Solutions exist in the presence of a potential for a range
of parameters. To see this, as in the SU(2) case, treat
x = (3o + p+ bzv)/A and y = (2o + 9p —3btv)/A2 as
independent variables to determine P and tv &om the
first two equations and z = (25p+ 5btv)/A2 from the last
one. Given a and y and knowing z and m, one obtains 6
frozn 2x —3y+ z = 16btv/A2. Thus Eq. (32) yields
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P, b (2x —3y) /4

P A2 x ln (1 + I/x) —y ln (1 + 1/y)
' (36)

where we require

I ——= —»n
I
1+ —

I
+ -y»

I
1+ —I,P 3 f I) I (

p. 4

P, b (2x —3y+z)/4
( )

P Az x ln (1 + I/x) —y ln (1 + 1/y)

where z is a solution of

z ln
I
1+ —

I

= 2x ln
I
1+ —

I

—y ln
I
1+ —

~

. (34)
(

y)
Note that x, y, and z are required to remain positive
(or zero) to keep the momentum integrals well defined.

~ ~

Solutions exist in a certain domain of x and y, giving rise
to a range for the parameters for p ( p, and b ( 0 [6].
The results of our numerical investigation are presented.
in Fig. 3. There are in fact two solutions for a given P and
b in the region between the curves (a) and (b), and one
solution between the curves (b) and (c). In other words,
one of the solutions extends from curve (a) to curve (b)
while the other from curve (a) to curve (c). Curve (a)
has x = y = z and is the critical line. Here, too, the
region below curve (a) is a critical surface wherein all
the masses vanish. Curve (b) has z = 0 and curve (c)
has y = 0. The symmetry breaking involved here is &om
SO(10) to SU(5) xU(1) as noted before.

Solutions exist for nonzero Z. Consider giving an ex-
pectation value v for ZZt along the singlet in the de-
composition 16 = 10+ 5 + 1. In this case, the third
equation in (32) gets replaced by

pv —p+ p, = 5ptv, (35)

where we have set z = (25p+ 5bur)/A~ to zero to satisfy
(Z + bW)Z = 0. Again, treat x and y as independent
variables and determine the others to obtain new solu-
tions for positive v2 in a range of parameters:

P 3 ( ll 1 f l1'
I ——= -»n

I
1+ —

I
+ -»n

I
I+ —

I4 & *r 4

p—v = —2mlnI 1+ —I+ylnI 1+ —
I
) 0. (37)*)

Here, as well, one has p ( p, and b ( 0. The region of the
parameter space covered by these solutions (one solution
for a given P and b) is that in between the dashed curves
(b) and (d) of Fig. 3. Curve (d) has x = 0. The surviving
symmetry here is SU(5) because a nonvaiushing Z along
the singlet in the decomposition 16 = 10 + 5 + 1 breaks
the U(l) subgroup of SU(5) xU(1) as well. There are
other possibilities. Giving an expectation value for ZZ
along 5 (instead of the singlet) also leads to a solution
which falls above curve (c); solutions are also noted to
exist for a nonzero ZZt along 10 and 1 [extending above
curve (d)] or 10 and 5 [extending beyond that of 5]. All
of these, however, break the gauge group completely.

What we have in the end is a two-sheeted cover of the
parameter space above the critical curve (a) in Fig. 3.
One of them (call it the upper sheet) is through the solid
curves while the other one (call it the lower sheet) is
through the dashed curves. They meet along curve (a).
There is of course one more sheet (call it the top sheet)
for the solutions of our earlier case of the unbroken gauge
group covering all of the parameter space for p ( p, .
This too meets the other two sheets along curve (a). For
every point on any one of the sheets, there is a solution.

As we have noted earlier, there could be more so-
lutions. For instance, there is the possibility that a
solution breaking SO(10) to SU(3) xSU(2) xU(1) [per-
haps, with an additional U(1)] exists. The number of
variables and the number of equations at least match,
each being 6, but the number of equations makes anal-
ysis complicated. There are more possibilities such as
SO(10)-+SU(4), SU(4) xU(1), etc. Each case has to be
handled separately; a general treatment has eluded us.

As before, which solution is preferred is determined by
the efFective potential. For this, one needs to compute
V,ir for all the solutions and pick the one (or more) that
has the the lowest value. In the present case, this is not
an easy task given the number of possibilities involved.
Hence we will be content with doing this numerically for
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FIG. 3. The phase diagram in the case of SO(10) obtained
solving Eqs. (33) and (36). The eifective potential of Fig. 4
is computed along the dotted line. Parameters in the theory
are P and b, and A is the momentum cutoif. Details are given
in the text.

FIG. 4. A plot of the efFective potential (with its zero ap-
propriately chosen) versus P for a path shown dotted in Fig. 3
crossing all the curves. The crossings are denoted by (a), (b),
(c), and (d). The uppermost curve corresponds to the unbro-
ken case and the lower two correspond to symmetry breaking
as discussed in the text.
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the solutions found above. We have chosen a path suit-
ably fixing y in the lower sheet and z in the upper sheet
crossing all the curves, shown as a dotted line in Fig. 3.
Figure 4 is a plot of this effective potential for the three
sheets involved. The uppermost curve is for the top sheet,
the middle one is for the upper sheet, and the lowermost
one is for the lower sheet. Note that the lower sheet ends
up always having the lowest potential. In other words,
for P ( P but not close to it, a partial breaking of the
gauge group is preferred over the unbroken case.

V. PROPERTIES OF THE COMPOSITES

Here we study the various composites encountered ear-
lier, the gauge bosons and composite Higgs particles.

S,@ = —N Tr ln( D—+Z), (»)
where "Tr" stands for a complete trace, that is, a trace
over the internal indices and an integral over the space-
time coordinates. D is as before the covariant derivative
D„=0„—iA~. For simplicity, we have absorbed the bR'
term into Z. To identify the kinetic terms for the various
fields, a derivative expansion is needed. This is carried
out in the Appendix. The result is that the kinetic terms
for the Z fields arise &om

Their properties can be read ofF &om the efFective ac-
tion. Like the effective potential, the effective action at
large N is obtained by integrating away the Z fields. It
involves the original action plus a correction of the form

N dk dtd4x —tk dg t Z)
—(t—t1)ZZ) —t1 Z

2 (2~)4, t

where 17„0 is [D„,0] for any O. At the next order in the expansion, one obtains an analogous result for the gauge
fields:

4 oo tN 4 dk dt

2
d x —e dtiti(t —ti)tr F„e ' F„„e—(t—t, )Z —t, Z

2vr o t2 0
(40)

These general results are valid for any gauge group.
The two phases of the GM, the completely broken and

unbroken ones discussed in Sec. II, can be handled in this
generic setup. In the unbroken phase where 2 = o I, Z =
0 the kinetic terms for the gauge fields simplify to

1

2g2 (o /A2)
(41)

where g is the coupling constant:

d4a

g2(o/A2) 6 (27r)4 (JP + o)2

, in(1+A'/o)— 1
1+o/A2 (42)

This also follows &om the well-known contribution to
the running gauge coupling constant at one-loop order
in the presence of N fundamental scalars. In the broken
phase where Z = O, ZZt = (1 —P, /P)IM, the above
computation of the induced kinetic terms for the gauge
fields sufFers &om an in&ared divergence. Introducing
an infrared cutoff' p for k /A2, we obtain a result that
coincides with the above one with o/A2 replaced by p.
The mass terms arise &om the kinetic terms for the Z
fields that read

We now turn our attention to type-2 models, in par-
ticular to the models based on SU(2) and SO(10). The
mass-squared results we obtain are all expressible in units
of A . All our results for the kinetic terms and mass
terms involve the expectation values of the scalar field Z
through x and y [and in the case of SO(10) z as well] pa-
rameters. In the phase where ZZt g 0, the expectation
value of ZZt also appears in the expressions through v .
As we have seen in the previous section, all these param-
eters are expressible in terms the basic ones P/P, and
b/A2 by solving a set of equations. When solving the
equations, however, we found it convenient to treat x
and y as independent variables to determine P/P, and
b/A2 This helped. us to discover multiple solutions; but
once we have chosen the energetically preferred solution,
the relation between the x, y parameters and the basic
ones is one to one and is hence invertible.

A. Case of SU(2)

First we consider SU(2) and compute the induced ki-
netic terms for the gauge fields in the U(1) phase where
Z = aI2+ bno. 3 and Z = 0. Writing

PNtr (A ZZt) = N(P —P, )tr (A2 ) .
+p, g/ +p~o + + E~~o + E ~o 3)+

P'~
2 pK 2 pA 2 p, l/ (44)

The mass squared for A„ is' then N(/3 —P )g2(p). As
expected, it is positive for P ) P and vanishes at the
critical point P = P .

where o~ = (cri + icr2)/2, we obtain the kinetic terms for
the gauge bosons of the unbroken U(l) and for those of
the broken generators from Eq. (40). We have
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tr Fs„s t 't Es s ' = s —cosh(tbrc) (P„) + cosh (t —2tt)bro]bsF„„).—t&& 3 2

2

The kinetic term for the unbroken U(1) turns out to be

1 ( 1 1
c~

(45)

(46)

where g2 is given in (42), and as in Sec. IV, x = (tT + bm)/A, y = (0 —beau)/A2 Fo.r the broken generators, the result
1S

1
yGt(z y) f (47)

where

1 N d4k k2+ cr k2+ cr+ bn
ln —1G'(x y) 2(bu)) (2m)

)

2bu) k2 + o. b

The integration over k2 can be done:

1

G2(x, y)

where the functions I and J are

IbI (x+ y) I(x) —I(y) 1 J(x) —J(y)+-
8vr'(x —y)' ( 4 ) x —y 3 x —y 2

(49)

I(x) = ln(1 + x) —x ln(l + 1/x) + x,
J(x) = ln(1+ x) + x'ln(1+ 1/x) + x/2 —x'. (5o)

G (x, y) is positive for x, y positive which is the region of interest. It is a monotonically increasing function of x + y
in this region. It tends to g (x) as we approach the critical line x = y. This is as it should be, since the SU(2) gauge
symmetry is unbroken along the critical line and the kinetic terms for the broken and unbroken generators should
add up to form SU(2)-invariant kinetic terms.

The gauge bosons of the broken generators receive mass terms. This arises &om Eq. (39). Taking Z to be space-time
independent and writing

=1 + 1 — 13A„o.+ + A„o. + —A„o.3,s

one erst 6nds

tr 17„e ~ ') 17~e ' = 4e sinh[(t —t) )bu)]sinh(tqbnr)A+A„.

This yields, for the mass terms,

V (c, y) f tt crt+A„, (53)

where

)
d k k2+o.

(2vr)4 (k' + o)2 —(bu))'
1 k2+o. +bm

ln
2bm k2+ o —bm

(54)

Here too, the integral over k can be done, but it is in-
structive to rewrite the result in terms of G2(x, y). Note
that this integral can be obtained by differentiating the
one in Eq. (48) with respect to o.. This results in

~'(-, y) =--A'(*-.)'I, + —, I „2/B B& 1

),Bx By) G2 x, y

It then follows that p (x, y) is positive for x, y positive,
the region we are interested in. As we approach the crit-
ical line x = y,

&'(x y) ~ --A'(*- y)' —I, I
~

ux (g (x))
The mass squared for A+ is given by

M' = G'(x, y)V'(x, y)

m —A (x —y) —lng (x)
12 2d 2

2
asxMy.

It is thus expressible in terms of the running coupling
constant close to the critical line and vanishes along the



52 COMPOSITE GAUGE FIELDS AND BROKEN SYMMETRIES 2389

critical line as expected.
For the completely broken phase Z = diag(x, 0)A~ and

ZZt = diag(0, v ), we still have the above results but
with y = 0. The induced kinetic term for the U(l) field
now suffers from an in&ared divergence and suggests in-
troducing an in&ared cutoff p for y. The mass-squared
result obtained above, though relevant with y = 0, now
receives an additional contribution &om the kinetic terms
for the Z Gelds:

where A runs over the 24 generators. The function g2
has been defined earlier in Eq. (42). The part involving
g~(x) arises from the 10, while the one involving g~(y)
&om the 5. The factor of 3 is a consequence of the fact
that tr(T Ti, ) for the 24 T's of SU(5) is 3 times in the 10
as in the 5. For the broken generators along the 10 and
10 appearing in the decomposition 45 = 24+ 10+10+1,
we have

PNtr (A ZZt) = PN—v A„+A + PNv—(A ) . (58) 2 G~(x, y) Gz(x, z)
(60)

This makes the U (1) field A„massive with a mass
squared = PNv~g~(IJ)/2. The additional contribution
to mass squared for A+ is PNv G~(x, O)/2.

where a runs over the 10 generators and G2 is the same
function defined earlier in Eq. (49). The kinetic term for
the U(l) field is

B. Case of SO(10)

The computations for SO(10) are along the same
lines. Consider the SU(5) x U(l) phase. Here Z
diag(x, y, z)A~ along 10, 5, and 1, where, as in Sec. IV,
x = (3o. + p+ bn))/A~, y = (2o. + 9p —3bv))/A', z =
(25p+ 5bv/)/A~. One then easily computes the kinetic
terms for the SU(5) generators:

1 3 1 4
4 .g'(*) g'(y)

where the superscript 45 denotes the U(1) direction.
Note that as we approach the critical line x = y = z,
gauge symmetry breaking disappears, G —+ g and Eqs.
(59), (60), and (61) add up to forxn SO(10)-invariant ki-
netic terms as expected.

It is straightforward to compute the mass terms for the
10 and. 10 gauge bosons. First we note that

Z) g & '~~~ e '+ = 4 3e ~+"~/'2sinh g —p& x —y 2 sinh t& x —y 2

+ e i +*it sich((t —tt)(z —z)/2)sich(tz(z —z)/&)) (62)

where a A has been absorbed into the t's on the RHS.
Comparing this with Eq. (52), we get, for the mass terms,

terms for the Z 6elds:

3V (x, y) + V (x, z) A„ (63)
pNtr (A„ZZt) = pNv A„—+ pNv (A„)—. (66)

where Vz is the same function defined earlier in Eq. (55).
This gives the mass squared

This makes the U(1) field massive with a mass squared
= PNv~g (p)/2. The additional contribution to the mass
squared for the 10's is

M2= 3 + 1
G'(x y) G'(x, z)

3V'(x, y) + V'(x, z)

(64)
2 G'(x, y) G~(x, 0)

(67)

for the 10's. As x, y, and z tend to be the same,

M m -A 3(x —y) + (x —z) —lng (x).2 12- 2 2-d 2

8 - dx
(65)

Here too, one obtains an expression in terms of the run-
ning coupling constant close to the critical line. It van-
ishes along the critical line as expected.

For the SU(5) phases Z = diag(x, y, O)A and ZZt =
diag(0, 0, v ), the above results are still relevant but with
z = 0. As in the case of SU(2), the induced kinetic term
for the U(1) field suffers from an infrared divergence and
suggests introducing an in&ared cutoff p for z. The mass-
squared result obtained above, though relevant with z =
0, receives an additional contribution &om the kinetic

VI. GLOBAL SYMMETRY AND THE
GOLDSTONE MODES

All the models we discussed have a global U(N) sym-
metry. In addition to the gauge symmetry, this global
symmetry could also suffer a breakdown. It remains
to investigate this breaking and the resulting Goldstone
bosons and other massless particles if any.

In the Grassmannian model, of the two phases, the un-
broken phase retains this global symmetry. In this phase,
only Z gets an expectation value, but Z is a singlet un-
der the global symmetry. The E expectation value, how-

ever, gives mass to all the Z scalars. The model has no
massless particles in this phase. In the broken phase, Z
gets an expectation value breaking the global symmetry
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in addition to the gauge symmetry. The Z expectation
value is now zero and all of the 2AM real components
of Z are hence massless. Some of these are the would-be
Goldstone bosons, eaten by the broken gauge generators.
Because the gauge symmetry U(M) is completely bro-
ken down, they are M in number. It turns out that all
those remaining, 2AM —M in number, are the Gold-
stone bosons associated with the broken generators of
the global symmetry. There are no unaccounted mass-
less particles. To see this, choose the Z expectation value
to be of the form

Z ~ (JM) 0M, N M) )—
where I~ is an identity matrix of order M and 0~ ~
is a zero matrix of order M x (N —M). This expectation
value breaks the global symmetry &om U(N) down to
U(N' —M). The number of broken global generators is
now easily computed; they are 2AM —M in number.
Along with the would-be Goldstone bosons, they account
for all the 2AM massless particles.

Coming to our type-2 models, the global symmetry is
broken down when Z gets an expectation value. In the
SU(2)+U(l) phase or the SO(10)~SU(5) xU(l) phase
of our examples, the global symmetry remains unbroken.
Z, a singlet under the global symmetry, also picks up an
expectation value in this phase, making all the Z scalars
massive. There are no massless states. In the other inter-
esting phase of our examples, Z picks up an expectation
value along some direction, a singlet of SU(5) in the case
of SO(10). The Z expectation value in that direction
is forced to zero. This will introduce 2N real massless
states of Z. The Z expectation value can be arranged to
be of the form

We have illustrated our approach with an SU(2) exam-
ple and analyzed in some detail an SO(10) example that
could be of interest to unified models. What is remark-
able in this exercise is that a set of equations governed by
only two parameters gives rise to a rich set of solutions
with interesting symmetry-breaking patterns. There ex-
ist regions of the parameter space where SU(2) breaks
down to U(1). In the case of SO(10), symmetry breaking
to SU(5) or to SU(5) x U(1) or perhaps to some other sub-
groups is possible. These examples help realize our goal
of constructing an induced gauge theory with composite
gauge bosons having partial symmetry breaking.

We have computed the properties of the composite
fields, the gauge bosons, and the Higgs scalars, by do-
ing a derivative expansion of the large % efFective action.
Because we need an expansion that does not perturb the
Higgs field, we cannot utilize the canonical expansions
available in the literature. We have developed a suitable
derivative expansion in the Appendix and have used it
to compute the kinetic terms and the mass terms for the
composites in the various phases.

We have not addressed the issue of the renormalizabil-
ity of Grassmannian models or our generalized ones. It is
interesting to note that the theory at large N exhibits a
critical point which extends to a critical line in the pres-
ence of a potential. It is known that the critical points
or lines can, and in many cases do, soften the ultravi-
olet behavior. This softening is probably not sufBcient
enough to help renormalize the theory in four dimensions
and one may have to include other relevant operators in
the lagrangian. In this connection, we note that cer-
tain four-dimensional Grassmannian models of composite
gauge fields have been studied on the lattice and shown
to be renormalizable [4]. Their phase structures and their
relation to continuum theories remain unexplored.

where v is a column vector pointing in the singlet direc-
tion. This implies that the global symmetry is broken
down from U(N) to U(N —1). There are 2N —1 Gold-
stone bosons associated with this breaking. The remain-
ing one massless state of Z is a would-be Goldstone boson
eaten by the broken gauge generator. This is consistent
with the fact that the Z expectation value of the above
type breaks one additional gauge generator. Again, there
are no unaccounted massless states.
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APPENDIX: DERIVATIVE EXPANSION

In this appendix, we carry out a derivative expansion
of the effective action

VII. DISCUSSIONS AND CONCLUSIONS

We have presented an approach to composite gauge
bosons that allows for partially broken gauge symme-
tries. It is a generalization of the well-known Grassman-
nian models that otherwise allow for either unbroken or
completely broken gauge symmetries. In our approach, it
is also possible to incorporate interesting potential terms,
leading to a rich phase structure. Even the simplest
model based on SU(2) is not amenable to analytical han-
dling of its phases; numerical investigation is called for.
For models that are physically interesting in connection
with unified theories, even a numerical analysis of all the
phases is a challenging endeavor.

where "Tr" represents an integral over space-time and
a trace over the internal indices. In the second step
above, we have used the Schwinger representation. It
is an equivalent representation at the level of equations
of motion and at all orders in the derivative expansion
except the lowest one. The lowest order yielding the ef-
fective potential is handled separately in the paper. The
Schwinger representation involves an exponential rather
than the logarithm and is hence better suited for analysis.
We thus have to compute the "trace"
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~tD —tz d4~ —eke tr ~tD —tz iA'

(2~)4

d4 t t(ik+D) tZ—
(y)

~

~

d4k

(2m)4

d4 tk t— tZ—+t(2iIID+D ) (I)
(2m)4

(A2)

where "tr" is a trace over the internal indices. One now
expands the exponential inside the trace and computes
different terms to obtain a series representation for the
effective action. In the literature, to our knowledge, one
expands the Z term as well. This is not suited for our
purpose as we intend to keep all orders in Z. This sug-
gests that we do a perturbation theory in 2ikD + D2
alone. To this end, we use the following result due to
Feynman:

OO g t1
t(H+v—) ) dt dt dt

—(t—tg)H( V)
—(tg tg)H( —

V) ( V) t„H—
n=O

(A3)

In our case H = Z and —V = 2ikD + D . This leads to an expansion in 2ikD + D . Rearranging the terms one
obtains a derivative expansion, that is, an expansion in D:

d
OO d4k dt

Se~ ———N —Tr e' = —N d 2: —e "tra„
0 n=O 0

where a is of order D ". The calculations are quite involved. The result to order D4 is

ao —e

V —(4—41 )EQ —cl~
2 0

1
G2 = —— dtti(it—ti)Fp e Fp e

0
(A5)

where 17O for some object O is [D, O]. The result for a2 is not complete. However, our interest is in its contribution
to terms quadratic in A„with a space-time-independent Z and in this respect it is complete.

A brief account of the calculations now follows. We write the expansion (A3) symbolically as

=) ~(—V) (—V)~ . ~(—V)~,
n=o

(A6)

where again II = Z and —V = 2ikD + D . The symbol ~ denotes a "propagator" of the kind exp[—(ti —t2) JI].
The beginning and the end of a term of the above kind are indicated by black dots. First we note that only terms
with an even number of D's are relevant. Those with an odd number of D's come with an odd number of k's and their
contributions vanish after the k integration. Quite often, we make use of the following reduction to simplify results:

f(t's) O(t; i) ~1~O(t,+i) . . = d7.f(t; +~). O(t; i-) ~O(t, )
~s

(A7)

given any function f On the RHS., t; is first absent and we have hence replaced t,+i by t, and so on with t's of higher
indices. If, for instance, the function f were absent or is independent of t;, this reduction introduces t; i —t; in the
RHS. Another property we make use of to simplify results is the presence of an overall trace and a space-time integral
that lets us rearrange terms in some expressions.

Now we come to the calculations. At the lowest order we have a0 ——~ = exp( —tZ), giving us the efFective
potential. At the next order,

aq ——~ 2ikD ~ 2ikD ~ + ~D (A8)

The 6rst term can be simpli6ed:

2~2ikD ~2ikD ~ = —4k„k„~D„~D„~= ——~D ~D ~,t (A9)

where we have replaced k„k„by h~„/(2t) as the two would yield identical results after k integration. If 'D represents
the action [D, O] for any O immediately next to it, one easily verifies that
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Alternately

~D~D~ = ~g7~D~+ ~]~D2~
= ~ j7~D~+(t —t&)~D

~D~D~ = —~D'V~1~+ ~D ~1~
= —~V2 ~1~—~B~D~ +tg~D2 ~.

(A10)

(A11)

Adding the two results,

2~D~D~ = —~ jP ~]~+t~D (A12)

Putting these together, we have

(A13)

which is the result quoted earlier. The second step follows IIrom the sum of

~]~ =t~~Q
~17 ~1~ = ~1~~ ~ = (t —t, )~17 (A14)

The next coefBcient a2 can be computed along similar lines. The result quoted earlier is obtained by keeping only
terms quadratic in A~ with a space-time-independent Z. This simplifies the calculations. The leftmost and rightmost
D„'s get replaced by —iA~. This gives two A„'s already so that those D„'s in the middle get replaced by 8„. The
contributions and their simplified results are

~D2 ~D
~D2~2ikD~2ikD~ =

~ 2ikD ~D ~ 2ikD ~ =

~2ikD ~2ikD ~D2 ~ =
~2ikD ~2ikD ~2ikD ~2ikD ~ =

~O-A~8.
2--(t, —t, )~t
2

(t& t2) ~
2——(tg —t2) ~

16k„k„k~k

A~,
0.A~0. A~,
t9IJ A~ ~ 8~A~ ~,
0-A~0 A~
Ap ~ xB~ ~ xt9p ~A~ ~. (A15)

Here and in the following, a 0 immediately left to an A as in 0 A or O„A acts only on that A, that is, B.A = B„(A„),
for instance. Note that the replacement

simplifies the last contribution to

1
k„k„krak -+ (b„„bp + b„pb„+h„h p)4t2 (A16)

Adding all the contributions, one gets

(A17)

(A18)

Ihmther simplification is possible due to

f(t —t )~Q~Q~ = t, f(t —t,)Q~Q~ (A19)

f(ti —t2) ~ Q ~ Q ~ = (t —t&)f(tg) ~ Q ~ Q = (t —t&)f(t~) Q ~ Q ~,
given any object Q. In our case f(t —tq) = f (tq) so that adding and dividing by 2, we get

(A20)

(A21)
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This simplifies the total contribution to

1 2 1
2t

(—t —2tg) 8 . A ~ 8 . A ~ ——tg(t —t, )B A„~0 A„~.
t P 1 P (A22)

Note that if one were to work in the Lorentz gauge 0 A = 0 the first term will vanish and the kinetic terms for
the gauge fields will arise from the second term. We will regard the second term to be a part of the gauge-invariant
combination

(A23)

However, the (8.A)z term that this generates does not agree with what we obtained. This is to be expected since
there are other gauge-invariant combinations, for instance, 'V e ~ '~ 'V e ', that could generate them.
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