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In the context of the standard model we extend the S-matrix pinch technique for nonconserved
currents to the case of three-boson vertices. We outline in detail how effective gauge-invariant
three-boson vertices can be constructed, with all three incoming momenta og shell. Explicit closed
expressions for the vertices 7W W+, ZW W+, and yW W+ are reported. The three-boson
vertices so constructed satisfy naive QED-like Ward identities which relate them to the gauge-
invariant gauge boson self-energies previously constructed by the same method. The derivation of
the aforementioned Ward identities relies on the sole requirement of complete gauge invariance of
the S-matrix element considered; in particular, no knowledge of the explicit closed form of the three-
boson vertices involved is necessary. The validity of cine of these Ward identities is demonstrated
explicitly, through a detailed diagrammatic one-loop analysis, in the context of three different gauges.

PACS number(s): 11.15.Bt, 11.15.Ex, 12.15.Lk

I. INTRODUCTION

The pinch technique (PT) is an algorithm that allows
the construction of modified gauge-independent (GI) off-
shell n-point functions, through the order-by-order rear-
rangement of Feynman graphs contributing to a certain
physical and therefore ostensibly GI amplitude, such as
an S-matrix element or a Wilson loop [1]. The PT was
originally introduced in an attempt to gain insight &om
perturbation theory on issues encountered in developing
a consistent truncation scheme for the Schwinger-Dyson
(SD) equations governing the nonperturbative QCD dy-
namics [2]. Specifically, one wishes to construct a SD
series which is manifestly GI already in its one-dressed
loop truncated version. This is a nontrivial task, since
the mechanism of gauge cancellations is very subtle and
involves in general a delicate conspiracy of terms coming
&om all orders.

The systematic derivation of such a SD series for QCD
has been the focal point of extensive research [3,4]. Of
particular interest in this context is the study of the
three-gluon vertex I s [5] and the four-gluon vertex I'4

[6]. In particular, as explained first in [4] and later in
[6], one attempts to construct an efFective potential 0 [7]
for quarkless QCD, which, in ghost-free gauges, is a func-
tional of only three basic quantities: the gluon self-energy

(d), the three gluon vertex (I's), and the four gluon ver-

tex (I'4), e.g. , O(d, I's, I'4). One then requires that 0 be
manifestly gauge independent for off shell d, I's, -and I'4,
e.g. , when they do not necessarily satisfy their respec-
tive SD equations. This requirement can be enforced if

A A

d, I'3, and I'4 are individually gauge independent and,
at the same time, the renormalized self energy II~ is
transverse, e.g. ,

q"rr„„=o,

order by order in the dressed loop expansion [8]. The one-

loop dressed expression for II~„ is schematically shown in
Fig. 1; we see that already at this level the fully dressed
vertices I'3 and I'4 make their appearance. It turns out
that Eq. (1.1) can be satisfied as long as d, I's, and I'4
satisfy the Ward identities (WI's)

q,"I'»~(q» q» qs) = T~~(q2)d (q2) —T„~(qs)d '(qs),
(1 2)

A

qi ~~p~~p: f bp p ('ql + q2 qs 'q4) + 'p' (1 3)

where
d '(q) = q' —11(q) . (1.4)
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FIG. 1. One-loop-dressed Feynman graphs for the renor-
malized II„(in a ghost-free gauge) necessary to implement
the gauge invariance of the effective potential. All vertices
and propagators are fully dressed.

T„(q) = g„„q„q„/q is t—he usual transverse projection
operator, f ' the structure constants of the gauge group,
and the abbreviation c.p. in the right-hand side (RHS)
of Eq. (1.3) stands for "cyclic permutations" [9].

Although this program has been layed out conceptu-
ally, its practical implementation is as yet incomplete.
One thing is certain, however: If Green's functions with
the properties described above can arise out of a self-
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consistent treatment of QCD, one should be able to con-
struct Green's functions with the same properties at the
level of ordinary perturbation theory after appropriate
rearrangement of Feynman graphs. The PT accomplishes
this task by providing the systematic algorithm needed
to recover the desired Green's functions order by order
in perturbation theory. So GI three- and four-gluon ver-
tices have already been constructed via the PT at one
loop, and they satisfy the Ward identities of Eqs. (1.2)
and (1.3) [10].

A program similar to that outlined above for QCD has
also been proposed for the case of non-Abelian gauge
theories with either elementary Higgs particles or with
dynamical symmetry breaking [11]. In an attempt to
study the general structure of the GI Green's functions
involved, the PT was extended to the case of theories
with tree-level symmetry breaking. The technical modi-
fications necessary to accomplish such a task have been
presented in [12] in the context of an SU(2) toy model.
The upshot of that analysis was that the PT, when prop-
erly applied, gives rise to GI two- and three-paint func-
tions, which satisfy the same WI as in the symmetric
(unbroken) case, provided one includes appropriate lon-
gitudinal Goldstone boson Green's functions. So, for ex-
ample, Eq. (1.1) becomes

where II„ is the GI one-loop mixed self-energy between
the (massive) gauge boson and the corresponding Gold-
stone boson. Clearly, Eq. (1.1) may be enforced if
we redefine the gauge boson self-energy to be II„'
II„„+,II with similar redefinitions for other n-point
functions. Subsequently, the PT was extended to the full
standard model (SM) [13],and several interesting appli-
cations were proposed [14—17].

Even though formal considerations similar to those of
the QCD case would provide sufficient grounds for a de-
tailed study of GI three- and four-gauge-boson vertices
in the context of the SM, such a study was precipitated
by phenomenological issues. In particular, the possibil-
ity of directly probing non-Abelian vertices in the up-
corning experiments at the CERN e+e collider LEP 2,
through the process e+e ~ W+W, has led to exten-
sive studies of anomalous gauge boson couplings, induced
either by extensions of the SM or by one-loop corrections
within the SM [18—20]. In computing the latter, issues
of gauge invariance become very important. So form fac-
tors of the W boson, such as the magnetic dipole and
electric quadrupole moments, turn out to be gauge de-
pendent when extracted &om the conventional oK-shell
pWW and ZWW vertices calculated in the context of
the Rt gauges [22]. In addition, these quantities are in-
&ared divergent and violate perturbative unitarity. All
the above pathologies can be bypassed, as long as one in-
stead extracts them &om GI ofF-shell pWW and ZWW
vertices constructed via the PT [23].

Given the relevance of GI three-boson vertices (TBV's)
both from the theoretical and the phenomenological
point of view, we present in this paper the general
methodology for their construction for the electroweak

sector of the SM. We focus on the vertices involving one
neutral and two charged incoming particles, with all three
incoming momenta ofF shell. In order to construct such
vertices, we consider a matrix element for six-fermion
elastic scattering of the form e e v ~ e e v, where the
external electrons e are considered to be massive. This
assumption is important, since, in addition to the GI ver-
tices with three incoming gauge bosons (pW+W and
ZW+W ), it enables the construction of GI three-boson
vertices where at least one of the incoming bosons is a
scalar particle (unphysical would-be Goldstone bosons
and physical Higgs boson). As we will see in what fol-
lows, the latter play a crucial role in the Ward identities,
enforcing the gauge invariance of the S matrix. In par-
ticular, in this paper we focus on the following issues.

(a) We discuss the technical difficulties involved in the
application of the PT when the necessary assumption is
made that m, P 0.

(b) We present the most general algorithm for con-
structing GI vertices involving one neutral and two
charged bosons.

(c) We explain how the requirement of the gauge invari-
ance of the S matrix gives rise to a set of WI's, relating
several of the GI vertices to each other. The derivation
is general and does not require knowledge of the explicit
closed form of the quantities involved. Most noticeably,
the WI

relates the GI vertices I'„& and I'~& to the GI
W self-energy II &. To the best of our knowledge, the
WI we present here has not been derived before within
the PT or any other &amework.

There is one additional reason why the study of the
GI vertices and WI's via the PT is interesting. As was
recently realized, there is a close connection between the
PT and the background field method (BFM) [24]. In
particular, it was shown that in all cases considered so
far the PT Green's functions may be obtained directly if
one computes the conventional Green's functions in the
context of the BFM using the special value (g ——1 of
the gauge-fixing parameter used to gauge fix the quan-
tum field [25,26]. Since, however, no formal connection
between the two methods has yet been established, addi-
tional cases may have to be considered, at least for those
Green's functions which are of particular physical rele-
vance. The method for constructing vertices referred to
above provides the &amework for such a detailed inves-
tigation.

It is important to emphasize that the closed form of the
GI TBV's obtained by the application of the S-matrix
PT does not depend on the particular process employed.
So instead of the process eev m eev, one could equally
well extract the GI TBV's &om a process of the form
bbt -+ bbt, where t and b are the top and bottom quarks,
respectively, or even a process involving gauge bosons
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IX. PINCH TECHNIQUE
FOR NONCONSERVED CURRENTS

The simplest example that demonstrates how the PT
works is the gluon two-point function (propagator). Con-
sider the S-matrix element T for the 2 —+ 2 process of the
elastic scattering of two fermions of masses mq and m2.'

e(»») + n(»2) ~ m(» i) + v2(»2). (2.1)

To any order in perturbation theory, T is independent of
the gauge-fixing parameter one has to use to define the
Bee gluon propagator. For example, in the covariant Rg
gauges the gluon propagator is given by

(2.2)

On the other hand, as an explicit calculation shows, the
conventionally defined proper self-energy depends on the
gauge-fixing parameter, in this case (. At the one-loop
level the gauge dependence of the self-energy graphs is
canceled by contributions &om other graphs, vertex, or
box, which, at first glance, do not seexn to be propaga-
torlike. That this cancellation must occur and can be
employed to define a GI self-energy is evident kom the
decomposition:

as external on-shell particles, such as WTVp —+ TV%'p.
The fact that the PT gives rise to process-independent
results had been conjectured before [12] and has been
recently proved [28] via detailed calculations. Moreover,
the PT algorithm gives rise to exactly the same answers,
regardless of the gauge-fixing procedure chosen. This has
been shown by explicit calculations for a wide variety of
gauge-fixing choices, such as the Rg gauges, the light-cone
gauge [2], the unitary gauge [29], and the background
field gauges [25].

The paper is organized as follows: In Sec. I we brieHy
review some of the features of the PT, which are relevant
to our purposes. In particular, we present a detailed anal-
ysis of the modifications necessary for the application of
the PT in the context of the SM with nonconserved ex-
ternal currents. In Sec. II the method for constructing
the GI vertices is described in detail. In Sec. III we ap-
ply the formalism developed in the previous section to a
concrete example, and we perform an explicit one-loop
calculation. In Sec. IV we outline the general method for
obtaining WI's within the PT &amework, and we derive
a set of WI's for the newly constructed TBV's. In Sec. V
we explicitly prove the first of the Ward identities derived
in the previous section, to one-loop order, in the context
of three different gauges. Finally, in Sec. VI we present
our conclusions.

T2, and T3, respectively. Moreover, such contributions
are ( dependent. However, as the sum T(s, t, mx, m2) is
GI, it is easy to show that Eq. (2.3) can be recast in the
form

T (s, t, mx, m2) = Ti (t) + T2 (t, mx, mz)

+Ts(s, t, mx, m2), (2.4)

where the T; (i = 1, 2, 3) are separately ( independent.
The propagatorlike parts of the vertex and box diagrams
which enforce the gauge independence of Tx(t) are called
"pinch parts. " The pinch parts emerge every time a
gluon propagator or an elementary three-gluon vertex
contribute a longitudinal k~ to the original graph s nu-
merator. The action of such a term is to trigger an ele-
mentary Ward identity of the form

k"p„=—g = (g+ P —m, ) —(P —m, )
= S,. x(»x+ k) —S,. x(»x), (2 5)

k„p"Px, =(Px, ——S,:(p+ k)Px, —PRS (p)
+m, PI. —m~ P~, . (2.6)

once it gets contracted with a p matrix. The first term
on the right-hand side of (2.5) will remove the internal
fermion propagator, that is, a "pinch, " whereas S x(p)
vanish on shell. Returning to the decomposition of Eq.
(2.4), the function Ti is GI and may be identified with the
contribution of the new propagator. We can construct
the new propagator, or equivalently Tq, directly &om the
Feynman rules. In doing so it is evident that any value for
the gauge paraxneter $ may be chosen, since Ti, T2, and
Ts are all independent of (. The simplest of all covariant
gauges is certainly the Feynxnan gauge (( = 1), which
removes the longitudinal part of the gluon propagator.
Therefore the only possibility for pinching in four-fermion
amplitudes arises Rom the four-momentum of the three-
gluon vertices, and the only propagatorlike contributions
come jxom vertex graphs and not &om boxes.

The generalization of the PT kom vectorlike theories
(such as @CD) to the SM is technically and conceptually
straightforward, as long as one assumes that the external
fermionic currents are conserved. For example, applying
the PT to a SM amplitude, such as e v —+ e v, with
m, = m„= 0, a (-independent self-energy for the W
boson may be constructed [13].

The situation becomes more involved if one decides to
consider nonconserved external fermionic currents, e.g. ,
fermions with nonvanishing masses. The main reasons
are the following.

(a) The charged W couples to fermions with diff'erent,
nonvanishing masses m;, mz g 0, and consequently the
elementary Ward identity of Eq. (2.5) gets modified to

T(s tfxil m2) = Ti"(t () + T2(t, mx, m2, ()
+ Ts (s, t, mx, rn2, (),

where the function Ti(t) depends only on the Mandel-
stam variable t = —(px —»xx) = —q, and not on
s = (px + p2) or on the external masses. Typically,
self-energy, vertex, and box diagrams contribute to Tj,

where

1 ++5
R,I (2.7)

are the chirality projection operators. The first two terms
of Eq. (2.6) will pinch and vanish on shell, respectively,
as they did before. But, in addition, a term proportional
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to m;PL, —m~P~ is left over. In a general Bg gauge
such terms give rise to extra propagator and vertexlike
contributions, not present in the massless case. For the
neutral Z that couples to fermions of the same mass, we
have to set m; = m~ = m in Eq. (2.6).

(b) Additional graphs involving the "unphysical"
Goldstone bosons y and P and physical Higgs boson II,
which do not couple to massless fermions, must now be
included. Such graphs give rise to new pinch contribu-
tions, even in the Feynman gauge, as a result of the
momenta carried by interaction vertices such as pP+P
ZP+P, W+P y, JIW+P, etc. , e.g. , vertices with one
vector gauge bosor- and two scalar bosons. So, for ex-
ample, all the graphs of Fig. 4 below, give rise to new
vertexlike pinch contributions to the pWW and ZWW
vertices, while in the massless case considered in [23] only
graphs (1) and R~ '2l were present.

(c) After the pinch contributions have been identified,
particular care is needed in deciding how to allot them
among the (eventually $ independent) quantities one is
attempting to construct. % hen constructing GI TBV's,
for example, in the massless case (m; = mz ——0), all ver-
texlike pinch contributions are allotted among the pWW
and ZWW, the only two vertices which contribute to the
amplitude. In the massive case we propose to study, ver-
tices such as yW W+, IIW W+, ZP W+, etc. , con-
tribute nonvanishingly to the amplitude, and they must
also be rendered GI through proper allocation of the
available vertexlike pinch parts. The details of how this
is accomplished will be presented in the next section.

Before we proceed with the construction of the vertices
and the subtleties involved, we record some useful formu-
las. In what follows we use the Feynman rules and the
conventions of [30]. The three-level vector-boson propa-
gator 4'„„(q) in the Rg gauges is given by

where

p, v pv (2.12)

is the W and Z propagator in the unitary gauge
(g~, g~ ~ ~) and

U; (q)"" = g""(q —M; ) —q"q" (2.13)

its inverse. Ehxrthermore,

g. = &'.„(q,(')&, '(q (*)"
= &'.„(q,(')U; '(q)" —q-q &.(q, (') (2.14)

and

q" = Mq—&,""(q,(') q'q"&—.(q, ('). (2.i5)

V

(eye) = (eZe)„,
z

(vP e) = (vW e)~,
VV

(2.16)

CT

(eP+v) = ' (eW+v)
M~

where q, pq, and p2 are the momenta carried by the
bosons as shown in Fig. 2.

Finally, the divergences of the currents J&, J~, J~"
of [13] are related at the tree level to the currents of the
would-be Goldstone bosons J~, J&, J& by the elementary
identities

&,""(q &') = g"" —(1 —&'), M2 (2.8)
q —M,. q2 —;M2

with i = W, Z, p and M~ = 0. Its inverse A, (q, (;)""is
given by

1
(q, ()" = (q2 —M; )g""—q"q" + —q"q . (2.9)

The propagators A, (q, (;) of the unphysical (would-be)
Goldstone bosons are given by

MI ~ 1

oui heim&
%a ~ .
%2)l II IF

iV „v

&.(q, (') =
q2 —(;M2 ' (2.io)

V

&,""(q,(.) = U;" (q) —M. & (q (') (2.ii)

with (s, i) = (P, W) or (y, Z) and explicitly depend on
On the other hand, the propagators of the fermions

(quarks and leptons) as well as the propagator of the
physical Higgs particle are (, independent at the tree
level.

The following identities, which hold for every value of
the gauge fixing parameters (,, will be used extensively
[21]:

R

pW

FIG. 2. General structure of the part T(q, pi, p2) of the
8 matrix that depends only on the momentum transfers
q, pq, p2. The solid lines without orientation represent boson
propagator s.
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III. GAUGE-INDEPENDENT
THREE-BOSON VERTICES

In this section we show how to use the PT in order to
construct gauge-invariant three-boson vertices (TBV's),
with all three of their incoming momenta off shell.

We consider the S-matrix element for the process

e (n) + v(l) + e (r) -+ e (n) + e (l) + v(r"), (3.1) (b)

where

q = n —n, pg
——l —l, p2 ——r —r" (3.2)

are the momentum transfers at the corresponding
fermion lines; they represent the incoming momenta of
each of the bosons, merging in the TBV's. The TBV's
which can be extracted from the S-matrix element of the
above process will be in general denoted as I', with
N = p, Z, y, H, L = W, P, and R = W+, P+, where
N, L, and R stand for the neutral, left (positive charge
created), and right (positive charge destroyed) legs of the
vertex.

We can extract GI improper vertices by identifying the
part T(q, px, p2) of the 8 matrix which is independent
of the external momenta n, r, l, n, r", l and only depends
on the momentuxn transfer q, px,y2. The general form of
T(q, px, p2) is shown in Fig. 2. T(q, px, p2) is GI as long
as we append to the regular vertex graphs all parts of the
rest of the graphs, which only depend on the momentum
transfers q, pq, p2. Examples of graphs containing such
vertexlike pinch parts are shown in Figs. 3(c) and 4.

The inclusion of these extra pieces cancels all
dependent parts of the regular vertex diagrams; the only

(c)

FIG. 3. Graphs contributing pinch parts to the construc-
tion of GI Z self-energies.

gauge dependence remaining stems &om the tree-level
expressions of the propagators of the boson legs. As we
will see in Sec. V, the cancellation of this residual (; de-
pendence is enforced by a set of WI's satis6ed by the GI
I'~~+'s. The final form of the GI T(q, px, p2) is a sum
of individually GI subamplitudes T~++(q, px, p2) and is
given by

T(q, px, p2) = ) (eNe)(eLv, )(v,Re)T (q, px, p2)
(NLR j
) (eNe)(eIv, )(v,Re)hz(q)kx, (px)AR(p2)I' (q, px, p2),

(NLR)
(3.3)

where all internal Lorentz indices have been suppressed. In order to extract the proper I'+~+(q, px, p2) from the
respective T~++(q, px, p2), one must strip off the three GI b, 's, by xnultiplying T (q, px, p2) with the respective
inverse propagators L . We remind the reader that the 4 may be individually constructed through the application
of the PT to appropriate four-fermion amplitudes (see, for example, [13] and [16]).

Another equivalent and more economical way to isolate the proper vertex, described in detail in [5] and [23], is
to note that the conventional self-energies of the external boson legs can be converted to the respective GI PT self-
energies, except for certain missing pinch pieces. These missing pieces may be supplemented to the self-energy by hand
and correspondingly subtracted &om the TBV's. All such terms are multiplied by an inverse tree-level propagator
(which is the characteristic structure of all pinch terms), and they remove the tree-level boson propagator connecting
them to the rest of the graph. Therefore they are efFectively one-particle irreducible, and they may be &eely added to
the rest of the one-particle irreducible terxns contributing to the TBV s [6].

Schematically, the GI TBV I'NLR will consist of the pieces

(~ =~) & 1 & (O) l & (O) 1 & (0)r„, = r„'=„+r,„——,II„„,r„,,„——,II„,r„,,R ——,II„„,r„,„„ (3 4)

where I'NLR are the conventional graphs contributing to the TBV in the Feynman gauge, I'NLR are all vertexlike
pinch parts of box diagrams (also computed with (, = 1 [31]), which are kinematically equivalent to the TBV in

question (this point will be further clarified later in this section), I'xvL xx are tree-level expressions of respective TBV s,
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and II/~ (i,j = N, L, R) is the pinch contribution to the ij-boson self-energy (again at (, = 1). Since the derivation
of the pinch parts of propagators has been extensively discussed in the literature, we will Grst focus on the technical
details pertaining to the construction of the term I'gt& in Eq. (3.4).

The pinch parts of graphs are extracted using Eq. (2.6), whenever possible. The box diagrams of Fig. 4, for
example, represent the complete set of diagrams that can contribute vertexlike parts to the plV R'+, ZW TV+, and
yW W+ vertices [32]. Depending on which of the internal fermion propagator has been removed, the vertexlike pinch
amplitudes assume one of the following forms:

2 2

(eLv). . . (PRe). ..A. . (pi)A. .. (p2) —(e7"PLe)B +.—m (ePI e)M

(vRe) (e. .N. e) 4(.p.. )4 (q) [(.e. .W+v) ~B + i M (eP+v) M ] (3.5)

(eNe) (e.L. .v) A .(.q. )A. (p )[(vW e)"B . +iM (vP e)M ].

The ellipses in Eq. (3.5) represent appropriately contracted I orentz indices, which we suppress. We note that the M
terms originate from the mass leftovers of Eq. (2.6). The factors B and M in the expressions above are in general
complicated functions of q, pq, and p2 and boson masses; however, they do not depend on the individual momenta
and masses of the external "test" fermions. Note also that they are ultraviolet Rnite since they originated &om box
diagrams. Clearly, the B's or M's may be zero for some graphs. Once all relevant pinch contributions have been
extracted, they must be judiciously allotted to the appropriate TBV's. To that end, one has to perform the following
three steps.

(i) The couplings multiplying the B and M in the RHS of the first relation in Eq. (3.5) must be rewritten as a
linear combination of the couplings of the bosons which can be attached to the corresponding fermion current. So for
the couplings of the neutral bosons on the top fermion line we write

R(1,2) Z3, a4 R'

FIG. 4. Graphs providing pinch parts to
the pWTV, ZTVR', and yWTV vertices in the
Feynman gauge. The diagrams pinching the
left fermion line as well as all types of crossed
diagrams are not shown.

H
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p—~PL ———gc(eZe) ~ —gs(eye) ~,
2

iM~m—,,PL = gM—w(eHe) + gc (eye).
2 2

(3.6)

On the other hand, the appropriate couplings for the charged bosons have already appears on the RHS of the second
and third relations in Eq. (3.5).

(ii) We use the identities given in Eq. (2.16) to rew'rite the couplings of the Goldstone bosons to the fermions as
divergences of the corresponding currents of the gauge bosons. At the end of these two steps, the pinch parts in the
square brackets of Eq. (3.5) assume the form

gc(—eZe) ~ B——
, M, —gs(eye) ~B —. .gMw (eHe)M (3.7)

[B +p .p. .M. , ](eW+v)~, (3.8)

[B + P2pM ](ziW e)~. (3.9)

(iii) The final step in transforming these expressions into the desired form of TBV s is to recognize that a tree-level
boson propagator must be attached at the point where the pinching took place. It is straightforward to make the
missing photon and Higgs propagator appear. We only need to insert unity written as a product of a propagator and
its inverse. The inverse propagator will be incorporated to the rest of the pinch expression. We emphasize that no
additional ( dependences are introduced into the pinch expressions through this process, since the part of the inverse
photon propagator proportional to (~ vanishes &om the amplitude due to conservation of the electromagnetic current
J~, whereas the Higgs propagator and its inverse are GI at the tree-level. In order to accomplish this last step for
the massive gauge bosons, we have to use the identities of Eq. (2.14), since now the relevant currents Jg and Jw are
not conserved. Finally, we obtain

pv

(eye)~ [ gsT~" (q)—B „]+ (eHe,)AH(q)[ gMwAI—I (q)JH „]

+(eZe)pAz (q) gcU (q) "z B „+—JH. . ... . + (eye)A„(q) iMzgcq" B „+—"M.. .. . . (3.10)

[B"y+»I ~" ][ w (») "+w(» &w)('W ~)p 'Mwpl+4(» &w)('& ~)] (3.11)

[B"y, + P2y~" ][Uw (P2)u +w(P2~ 6v)(eW &)p
—&Mwp2 &y(P2~ (w)(eW &)]. (3.12)

It is now evident how the pinch parts must be allotted
among the various (eventually GI) TBV's. We demon-
strate it schematically below.

From the graphs that pinch at the top (neutral)
fermion line [Eq. (3.10)], the pinch parts are distributed
as follows

U
—i( ) P(BL ~L )

PNw R

(3.14)

and from the graphs that pinch on the right [Eq. (3.12)],

U- —i( ) @(BR ~R ) ~ PNLw+

T ~( )BN ~ f PLR

g~~ —i( ) (gyn ~ Qr ~sr) fsly. PP(BR ~R ) ~ f NLQ+

(3.15)

iM gcqj ~N + ~v~N ~ ~~LR

)~N ~ f IILR

From the graphs that pinch on the left [Eq. (3.11)], we
have

The Anal step in the construction of the GI TVB's is
the inclusion of all pinch terms that have been left over
Rom converting gauge-dependent boson self-energies into
their gauge-independent PT counterparts at other parts
of the amplitude considered; they constitute the third
term on the RHS of Eq. (3.4). To begin with, it is ixn-

portant to recognize that in addition to the boson legs at-
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tached to the TBV's, the boson legs of the "monodromic"
graphs [collectively depicted in Figs. 8(e), 8(f), 8(g), be-
low] must be rendered GI. We call them "monodromic"
(one-way), because their graph structure of vertices and
edges (propagators) is that of a "Eulerian-path" or self-
avoiding curve. That is, all the vertices can be visited by
a line that does not run through an edge twice. Note that
they contain an oK-shejkl fermion propagator. In the rest
of this section, we outline how such pieces are included
in the vertices through a specific example.

I.et us concentrate on the Z self-energy legs. In the
Feynman gauge ((; = 1), the only propagatorlike pinch
parts for the GI Z self-energy originate &om the graph
shown in Fig. 3(a) and its mirror graph Fig. 3(b) and
their contribution is equal. For the Z self-energy leg at-
tached to the ZTVTV vertex, one of the above graphs
[Fig. 3(c)], is already present in the amplitude we con-
sider and supplies half of the necessary pinch contri-
bution. The other half, where the pinch would oc-
cur at the side where we now have the TBV, is miss-
ing. Therefore its pinch contribution must be supple-
mented by hand to the Z self-energy graphs and subse-
quently subtracted &om the ZR'YV vertex graphs. We
observe that this contribution to the vertex will be of the
form 2g c Iw—w(q)[Uz (q)] Az (q, (z)I' p . This
last expression is explicitly gauge dependent. The eKect
of the monodromic graphs is to precisely cancel this resid-
ual gauge dependence. To understand how this cancella-
tion mechanism works, we now concentrate on the ver-
texlike pieces originating from the monodromic graphs.
As a first step, their bosonic legs must be rendered GI; in
doing so, we note that, unlike the previous case, all the
necessary propagatorlike pinch parts are now available
[an example of a graph that contributes such a pinch term
is shown in Fig. 3(d)]. One then proceeds as usually and
first pinches the fermion propagator inside the loop and
then uses Eqs. (2.14) and (2.15) to attach boson propaga-
tors at the point where the pinching took place. At this
point one observes that the momenta accompanying the
part with the scalar propagator A, in Eqs. (2.14), (2.15)
can trigger additional pinching and remove the remaining
ferrnion propagator that was outside of the loop. Thus a
vertexlike piece finally emerges &om this part and must
be included with the rest of the vertex graphs. Clearly,
all these pieces are also explicitly gauge dependent since
they carry a b,x(q, (z) and, by using Eq. (2.11) exactly,
cancel against the relevant Ax(q, (z) part coming from
the leg attached to the TBV. In the remaining expres-
sion the tree-level propagators in the unitary gauge also
cancel and the part that needs to be appended to the
ZWW vertex is 2g c2Iww(q)I' —

p . A similar pro-
cedure must be followed case by case for all the TBV's
and will conclude the construction of a GI three-boson
vertex.

IV. VERTICES pN W+, ZW W+, yR' —R'+

In the previous section we presented the general pro-
cedure for constructing GI TBV's via the PT. In this
section we focus on three particular TBV's, namely,

I'~w w, I' w w, and I'~w w, and we describe in
detail their derivation. This section is rather technical;
we present several intermediate results, which will also
be used in subsequent sections. The final expressions for

, I &, and I'
&

are summarized in
"zw-w+ xw w+

Eqs. (4.33)—(4.35).
We adopt the following convention. The scalar parts

of boson propagators of mass M~ and momentum q will
be denoted by

A(q):—
1

(4.1)

For example, with this notation the tree-level propagator
for the W in Eq. (2.8) assumes the form

&w"(q) = g"" —(1 —&'), M, ~(q).
q2 ;M,2— (4.2)

We introduce the shorthand notation

(4 3)

where the momentum integration measure is (dk)

,&~ "l, for convergent integrals and (dk) = y4 ",
&z l„ for

dimensionally regularized integrals. Furthermore, we de-
fine the scalar integrals

&~ac —= &~cc(q, qi, qq) = f(ABC), (4.4)

Izc (q) = f (dk) A(k)B(k + q). (4 5)

The box diagrams containing vertexlike contributions,
in the Feynman gauge, are shown in Fig. 4. From the
first two diagrams of Fig. 4, which we treat as one, we
obtain

and

&.'.p = gcUz'(q);g'B~-p (4.6)

A p
—— iMzgcq~g Bp p, — (4 7)

q-~(qk+ qq)q qq~(» —q—q)-)—(4.8)

gz = g~. ~ ~ is ~ll~tted to the vertex
I'

p
w whereas JV~p to I'xp

Similarly, the graphs containing a Higgs boson (2 and
3 in Fig. 4) yield

where g B~ p is the same expression as in the case for
conserved currents [see [23), Eqs. (3.5) and (3.6)]; namely,

q Ba q = ).
qv

t(qVWV)(q q[k —i(ql q2)]„
V=y, z
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with

N„p +. N„p —— M—zg cq„gap&

JV p + JV p
—— iM—zq g cg pM,

(4.9)

(4.1o)

g &„p(Q,p&, pa) = ). gv f(WWV)G~ p(q pg pg)
V=p~z

(4.14)

with

~ = ~(Jezw+ Jzaw). (4.11)

= g«w'(P~)pg'& p+&' p+R„' p, (4.12)

where

3 2 2
p~P 9 WP2P Cps Jwwp)

We note that box diagrams which contain any two inter-
nal neutral bosons, except the Higgs boson, give a zero to-
tal pinch contribution. This is so because the pinch parts
of the direct diagrams cancel against the corresponding
pinch parts of the crossed diagram. Similarly, the pinch
contributions of diagrams with one P and one W in the
loop cancel against the corresponding contribution &om
the mirror graphs, e.g. , W ++ P.

The pinch contributions of the diagrams 1—6 of the
second row of Fig. 4, where the pinching occurs at the
leg of the W+, are extracted following exactly similar
steps. We denote these pinch contributions by B'
where i = 1, . . . , 6. In what follows the suffix "cr" is
used to denote the inclusion of the crossed graphs which
are not shown in Fig. 4. The relevant expressions of the
pinch contributions of these graphs are

&p p(q pi p2) = g p(3k+ 3» —2p2)~

+g„p(3I +» —2q).
g~~(k + 2p] —2q)p.

4
3 3S 2

+p,~P —g MWP2P gpcx JWWp )c
(4.16)

4 4 ss (1 2s )
+p~p + +p~p 9 MWP2139pn) Jwwz )2c

(4.17)

g3cMw2
+p~P — P2Pgpn JWWH)

2
(4.18)

9'Mw
+p~P P2Pgpn JZHW ~

2c
(4.19)

Note that the result of the conserved current case can be
recovered &om Eq. (4.14) if we neglect the terms propor-
tional to pq~ and p2p [Eq. (3.11) of [23]].

The rest of the diagrams give

and

!'1—2s2 )B„p ——g c
~ ~ Mwp2pg„Jwwz

2 )

(4.13) We next turn to the rest of the graphs of Fig. 4, third
and fourth rows, and isolate the pinch contributions,
which will be appended to the vertex I'

&
. We de-

"~W-W+

note them by R'& where i = 1, . . . , 9. Their explicit
expressions are

3 2

Z'p+R'p+Z'p ——. —Mw&w'(p2) p ). &v Jwwv
iMz 2c

(4.2o)

g3 82—Mw P2P WIVE k —2qiMz 2c
(4.21)

(4.22)
3 2 3 2 3 2

R~p + R~p + R~p
4 4 5 g CMW

p2p (WW&)I(: —. Mwp2pq~Jwwz+ .
8 M pi~p2p wwz.g 1 —8 2 g Mw

iMz 2 iMz 2c z8CMZ

The last term on the RHS of Eq. (4.22) cancels against the corresponding contribution &om the left, coming &om the
graphs 8 p+ Z4p + Z5p.

M26 9 Mw„
Mz 4C

(4.23)

+~p —
~ gcxP2P JZHW )Mz 2c (4.24)

3 2

'Cp+ 1q"p = .M 2
&w'(p~) p Jazw,Mz 2c (4.25)
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R p+R p
—. Mz»u HZR' 2I +(1 —2s )

iMz 4c
(4.26)

The corresponding diagrams where the pinching occurs at the left fermion line we will denote as L'
&

and 8'&,
respectively. (These diagrams are not shown. ) They are given by

Lp p(q pl p2) + p (q, p~, pi), &' p(q, pi, p2) — ~p (q, p2 pl). (4.27)

The total pinch contribution is the sum of all relevant terms. VA define

6 6

) B'„p ——g cMwpgpg„M, ) L'„p ——g cMwp) g„pM+, (4.28)

9 3
X.—p,zMzi=1

where crossed graphs are included in the sums and

6

) C'.p= .
g Z+p,

zMzi=1
(4.29)

82 1 —28 1 1
(q~ pii p~) = —

~ Jww~ + ~ Jw wz + —Jwwa + ~ Jzaw,
C 2C 2 2c

(4.3O)

~+(q, pi, p~) = —~ (q p~ pi).
The last step is to add the pinch contributions to the regular vertex graphs. Thus, if we define

(4.3l)

2 VW W+ i 3 yW W+ i
lc;= =) &,. It.= (4.32)

to be the sum of the usual graphs of the respective vertices in the Feynman gauge (depicted, respectively, in Fig. 5,
with V = p, Z, n~ = 28, nz = 34 and Fig. 6), we arrive at the following expressions for the GI TBV's:

C .', C

vz
2,3

vz
5,6

vz
7,8

X, H
21,28

].3,14

22

15,16 17,18

24

19,26

25

X, H
20,27 FIG. 5. Usual graphs contributing to the

pR'W and ZWR" vertices in the Feynman
gauge. Their corresponding expressions are
denoted as V'

p in the text. In the unitary
gauge only the graphs (1)—(8), (23), (29), and
(30) are present; they are denoted as V„'

In the context of the BFM, additional graphs
must be included.

H '
I

IIx: H
I

I

29 30 31 32 33 34
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I
I

l
~ ~

C
4

l
~ ~

~ ~

C ~
'

~ C+

4,5 6,7 8,9

10,11
z,

12,13 14

FIG. 6. Usual graphs contributing to the
ylVW vertex in the Feynman gauge. In the
text they are denoted as S„' &. None of these
graphs exist in the unitary gauge. In the
BFM additional graphs must be included,
whereas graphs containing ghosts are absent.

I
I

/I
', H

II \

I
I

InI

X
II

17 18 19 20 21

W W+ W W+r p
——I'

p ~(.—g+q T(q)~B p+ Uw (p )~B+p+ Uw (p2)pB„

2r„p[Iw—w(q) + s Iw~(pg) + c Iwz(p1) + 8 Iw~(p2) + c Iwz(p2)]
+p2pg„M + pg g„f3'+, (4.33)

"zw-w+ zw-w+rzw w rzw w
~

+ U
—

(q)pB + U
—

(p )uB+ + U
—

(p )

—2r„.p[Iww(q) + s'Iw, (p, ) + c'Iwz(p, ) + s'Iw, (p2) + c Iwz(p2)]
+q„g pMzM +p2pg„Mw JH + p& g„pMw~+, (4.34)

"gw W+ gw W+ - p ~ 2 — += r p ~g, =i —aMzq~Bp p
—iMzq JH — 'R p-

g C

V. WARD IDENTITIES

In the previous two sections we outlined the construc-
tion of a generic GI TBV and we computed the exact
one-loop closed forms for the GI I' &, I'
"gW W+I'

&
. In this section we proceed to derive a set of

Ward identities that the GI TBV's satisfy. These Ward
identities are a direct consequence of the gauge indepen-
dence of the S matrix order by order in perturbation
theory. It should be emphasized that the derivation of
the WI's does not require knowledge of the explicit closed
form of the TBV's involved.

After the construction of GI TBV's has been com-
pleted, the amplitude we consider has been reorganized
into individually (-independent structures connected by
(-dependent tree-level propagators. In other words, the
PT algorithm only cancels all ( dependences originat-
ing &om the tree-level propagators appearing inside the
loops, but a residual ( dependence, stemming from boson
propagators outside of loops, survives at the end of the

pinching process. The cancellation of this last $ depen-
dence becomes possible due to a set of WI's satis6ed by
the GI TBV. One can actually derive these WI's zoithout
any detailed knowledge of the algorithm which gives rise
to the GI TBV. All one needs to assume is that such an
algorithm exists (in our case the PT algorithm) and that
all residual ( dependences should cancel from the S ma-
trix. So once the GI TBV's have been constructed, one
should examine whether or not they actually satisfy the
required WI's, as a self-consistency check. In this section
we use the above arguments to derive the WI's and we
will explicitly check their validity at one loop in the next
section.

It is instructive to illustrate the derivation of WI's for a
simpler case, namely, the GI W propagator. We consider
the one-loop S-matrix element of the process

e (b) + v, (t) m v, (b) ~ e (t), (5.&)

with q = t —t = b —b, and apply the PT rules. As shown
in Fig. 7, the part of the S matrix which only depends
on q2 assumes the form
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1

l

I

II4 FIG. 7. GI self-energies II„,
fI+, fI„, and II~ [(a), (b), (c),
and (d), respectively].

(a) (b) (c) (d)

Tq ——(eW+v)~K+II „b,g(vW e) + (eW+v)~A~II+Ay(vP e)

+(eP+v)ALII Ag(vW e) + (eP+v)ApII~Ap(vg e). (5.2)

Using Eq. (2.16) in order to pull out the factor (eW+v)~(vW e), as well as Eq. (2.14), we can cast the above
expression in the form

(,„q'q" & - f q"q ) (—iq&) .~ iq
Tg ——( W+v)

~
Ug — Ay II„„~Ug — Ay ~

+ — ALII Ay

+
~ U~ —,a~

~

II+A~ + A~II„„~ U~ —,A~
~

(vW-e) . (5.3)

q"II „(q) ~iM II+(q) = 0, (5.4)

q"q"II„„(q)—M II~(q) = 0. (5.6)

Similarly, the requirement of gauge independence for
the S-matrix element of a neutral current process gives
rise to the following set of WI's, relating the two-point
Green's functions of Z and its Goldstone boson y:

q"II„(q) —iMzli„x(q) = 0, (5.7)

q"11„~(q)+ iMzll~(q) = O, (5.8)

q"q"II„„(q)—MzfIx{q) = 0. (5 9)

We now turn to our main objective, namely, the deriva-
tion of the WI's for the GI TBV's. We consider again
the S matrix element of the process in Eq. (3.1). Af-

In this last expression the ( dependence is carried solely
by the tree-level Goldstone boson propagators Ay(q, (~).
The requirement that Tq be ( independent gives rise to
two independent equations; the erst enforces the can-
cellation of the terms with only one Ay factor, whereas
the second enforces the cancellation of the terms with a
LyLy factor. It is then a matter of simple algebra to
show that the following WI's should hold [33]:

ter the pinching is performed, we focus on the diagrams
of Fig. 8, where now the "blobs" represent GI expres-
sions. As before, the residual ( dependence of these
graphs enters only through the tree-level bosonic propa-
gators (solid, not-oriented lines). We call these graphs,
respectively, (i) three-boson vertex graphs [Fig. 8(a)], (ii)
self-energy graphs [Figs. 8(b), 8(c), 8(d)], and (iii) mon-
odromic graphs [Figs. 8(e), 8(f), 8(g)] [34].

At first sight, the monodromic graphs do not appear
to be akin to the graphs of types (i) and (ii) (which
only depend on the momentum transfers q, pq, p2), since
they seem to explicitly depend on the external fermion
momenta n, l, r or n, l, r" through the internal ofF-shell
fermion propagators. Equivalently, one might think that
the characteristic factor {eNe)(EIv, ) (v, Re), containing
the e~ternal fermionic currents, cannot be pulled out
&om the monodromic graphs. One should note, however,
that in the monodromic graphs additional pinching can
take place, triggered by the longitudinal part of the bare
vector boson propagators, thus eliminating the depen-
dence on the internal fermion propagator. These pinch
parts are vertexlike and will therefore combine with the
graphs of (i) and (ii) in order to cancel the remaining
gauge dependence from the amplitude.

To demonstrate this 6nal cancellation, we use again
Eq. (2.11) in order to isolate the residual gauge de-
pendence of the S matrix into bare Goldstone boson
propagators only. All gauge-dependent terms will dis-
play a characteristic structure, depending on the number
and. kind of Goldstone boson propagators they contain
and the momenta they carry. Clearly, all such terms
form linearly independent combinations. A term with
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a gauge dependence of the form Az(q, (z)b~(pq, (~),
for example, cannot cancel against a term of the
form A~(p2, (~)A@(pq, (~), nor a term of the form

Az(q, (z)b, y(p2, $~). Therefore, for the final cancella-
tion to occur, the cofactors in &ont of all such linearly
independent terms must individually vanish. This last
condition gives rise to the aforementioned WI s.

Let us Grst look at terms carrying only a gauge-
dependent factor of Az(q, (z). Such terms can arise only
&om the diagrams shown in Fig. 9. In what follows we

use the WI's of the boson self-energies Eqs. (5.4)—(5.9)
as well as the WI's of the tree-level three-vector-boson
vertex

(5.10)

and pull out the common factor
(eZe) (vW+e)~(eW v) . Then the bz(q, (z) gauge-
dependent part is given by

(5.11)

where C» C„, and C are the contributions of the ver-

tex, self-energy, and the pinched monodromic graphs, re-
spectively:

(5.12)

C,", = —U (1)U~ (2)q"g [II p(l) —II p(2)] —g H" (5.1S)

(C )
"~ = gcH"~, (5.14)

with

(b)

FIG. 8. Vertex, self-energy, and mon-
odromic graphs of the S matrix for the
six-fermion process after the PT rearrange-
ment. Solid lines without orientation repre-
sent bosons. All loop expressions are now

GI, and the gauge dependence enters only
through the tree propagators of the gauge
bosons and their respective scalars. The mir-
ror image and crossed graphs of the mon-
odromic graphs are not shown.
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Graphs contributing a
gauge-dependent part of the form A(q, (z)
to the ZWW part of the amplitude.

a""= q [U '(1)iI (1)U (1) —U '(2)il p(2)U (2)]+ q Il.p(q)Uz (q)[Uw'(') —U"(2)] (s.is)

where 1,2 in the arguments means pq and p2, respectively.
Since the gauge independence of the amplitude requires that the sum |„+C„+C in Eq. (5.11) must vanish, we

arrive at the following WI's, relating the ZR'TV and yWW vertices

q"I'„p +iMzI' p
——gc[II p(1) —II p(2)]. (s.i6)

Repeating similar steps and requiring the cancellation of the Ay(1) and Ey(2) gauge dependences, we obtain the
following Ward identities, respectively:

~I zw w+ + .M Pz@ w+
&]. p~p ~ ~ pp

= gc II„&(2) —II„&(q) ——II &(q) (5.17)

phiz~~ ~'+~M i„'. ~ =gc 11„.(q)+-Ii„:(q) —11„.(1) .
C

(5.18)

A +The WI's for the I'~ vertex can be derived in a similar manner. We have

p, I'~
p +iM~I ~~p ——gs Il„p(2) —II~p(q) — II~p(q)— (5.19)

'+ iM~I z~ ~' = gs ll&. (q) + -'11&z(q) —11~(i),
8

(5.2o)

which are the counterparts of Eqs. (5.17) and (5.18). It is elementary to derive additional WI s, through straightforward
algebraic manipulations of the WI's listed above. For example, the WI

or, equivalently,

tM»-, i ~~ —iM~q-i. ~~ = gc[p-, lI~~(i) + p-, ll~~(2) + q-IIz~(q)]

p, I'
p

— q I' p~
——gc[ lip+(1) + II+p(2) + IIp (q)]

(5.21)

(s.22)
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can be immediately obtained from Eqs. (5.16) and
(5.17) after contracting them with the appropriate four-
momenta and using the WI's of the self-energies and the

A gfact that II ~(q) is transverse.
Finally, MI's where the GI TBV's are contracted with

two- or three-momenta can be easily derived by demand-
ing the cancellation of gauge dependences stemming 6.om
terms with more than one Goldstone boson propagator.

It is interesting to note that an equation analogous to
Eq. (5.16) for the I'~~ ~ vertex cannot be derived via
this procedure. The reason is simply that all residual
dependence on (~ automatically disappears from the fi-
nal expressions as a result of current conservation, e.g. ,
q"J~ = 0. In order to derive the remaining WI, one
must choose a gauge-Axing procedure such as the axial
or light-cone gauge, where the dependence of the gauge-
boson legs on the gauge parameter does not vanish as a
result of current conservation. In fact, this was the way
the PT was originally implemented by Cornwall when
constructing the one-loop GI gluon self-energy [2]. In
the axial (light-cone) gauge, for example, the tree-level
propagator for the photon reads

1A""(q, n) = —g„„— (5.23)

where n„ is the gauge-fixing parameter (in the light-cone
gauge n„n" = 0). So after using current conservation,
the n with the appropriate Lorentz index will vanish,
but the other n will survive and will only vanish if the
desired WI's are satisfied. Finally, we obtain

and

qPQ'Y'Y (q) —0

q"II~„(q) = 0,

q"II~~(q) = 0 w II~x(q) = 0,

(5.24)

(5.25)

which was first proved in [23] by an explicit one-loop
calculation. Clearly, similar WI's can be derived for the
gluon self-energy and three-gluon vertex in QCD.

All previous WI's are the one-loop generalizations of
the respective tree-level WI's. As shown in this section,
their validity is crucial for the gauge independence of
the S matrix. It is important to emphasize that these
WI's make no reference to ghost terms, unlike the corre-
sponding Slavnov-Taylor identities satisfied by the con-
ventional, gauge-dependent vertices.

The WI's derived in this section are also true in the
context of the BFM. In fact, in the BFM &amework they
are true to all orders in perturbation theory; their valid-
ity is enforced by the requirement that the Lagrangian
be invariant under gauge transformations of the back-
ground fields It should be. emphasized, however, that the
Green's functions of the background fields, which satisfy
the aforementioned WI's, display in general a residual
dependence on the parameter (g used to gauge fix the
quantum gauge fields. As shown in [27], this remaining
gauge dependence can be eliminated by the straightfor-

ward application of the PT in the context of the BFM.
The analysis presented in this section indicates that these
"naive" WI's are not an exclusive property of the BFM,
but can be recovered for any type of gauge-6xing proce-
dure via the PT algorithm. Strictly speaking, the WI's
we have presented are valid to one-loop order. This is so
because our derivation relies on the ability to construct
the (-independent Green's functions (shown as blobs in
Fig. 8) with the PT algorithm, which has only been tested
at one loop. If one assumes that this procedure of iso-
lating (-independent blobs can be generalized to higher
orders in perturbation theory, the generalization of the
WI's to higher orders will be relatively straightforward.
Even though such an assumption is rather plausible, no
such proof exists.

VI. PROOF OF THE WAR.D IDENTITIES

A. Feynxnan gauge

In this section we prove by an explicit calculation the
6rst of the Ward identities derived in the previous sec-

tion, namely, q"I'z~p ~+ + iMzl'xp ——gc[ll~p(l)—
II p(2)]. We work in the Feynman gauge, where (, = 1
for i = p, TV, Z. To that end, it is more economical to act
with q" directly on the individual graphs of I'

&
and

try to generate the RHS of Eq. (5.16). The Feynman
diagrams contributing to the GI R' self-energies of the
RHS are shown in Fig. 10. The closed expression for the
GI W self-energy has been obtained in [16], and it is

We also emphasize that all necessary cancellations be-
tween graphs or parts of graphs are evident before any of
the loop momentum integrations are carried out.

To begin with, we note that all pinch parts originating
from the top (neutral current) fermion line automatically
cancel on the I HS of Eq. (5.16) by virtue of the second
and third equations of Eqs. (3.13).

We start by considering the fermion graphs Fig. 5, dia-
gram (1), and Fig. 6, diagram (1). This subset of graphs
is automatically GI and receives therefore no pinch con-
tributions. After a straightforward calculation we obtain
(in what follows we have pulled out a cominon factor of
gc from the RHS of all equations)

q"V„p+iMz8 p
——II p(1) —II p(2), (6.2)

where IIi
p corresponds to the self-energy diagram (1) of

Fig. 10.
The remaining diagrams can be divided into three

classes depending on the type of internal boson propa-
gators they contain. Following the notation of Eq. (4.3),
these classes are denoted as (i) WWV diagrams, where
V = p, Z [Fig. 5, diagrams (2)—(22), Fig. 6, diagrams (2)—
(13)], (ii) WWH diagrams [Fig. 5, diagrams (23)—(28),
Fig. 6, diagrams (14), (15)], and (iii) ZHW diagrams
[Fig. 5, diagrams (29)—(34), Fig. 6, diagrams (16)—(21)].

WWV graphs: Vector boson graphs

II-p(q) = II p(q) IC=i + 4&.p (q) [s'Iis;(q) + c'I~z(q)]

(6.1)
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8 3

) q"V„' p ——) [II'p(1) —II'p(2)] —) g* g M* f (WWV)qrr p(q, p —kp, q- k)
i=2 i=2 V=pZ

+ ) gv fW(k+ p~)v(k)k qp+ (I vr 2)
V=pZ

—) gqv f(WWV)q (k —pq)k-(k —p~)p+(I rr 2)
V=pZ

—2g [Up,'(I) p
—Up, (2) p] fW(k+ p')W(k —pq)

—U~ (I) r )
gqv

f(IVWV)[qrkp+q"Perp(k —Pg, —kgq)]+ (I rr 2),
V=pZ

(6.3)

where the tree-level WI's of Eq. (5.10), as well as the identities given in Eqs. (4.11) and (4.12) of [23], have been used.
The notation (1 ++ 2) means to interchange in the preceeding term pi ~ —p2 and n 4-+ p. From the terms appearing
on the RHS of Eq. (6.3), only the first is part of the RHS of the WI's we attempt to prove. All other terms will cancel
against other contributions &om the remaining graphs. In particular, the leftover term of the second line will cancel
against similar terms coming &om the graphs which contain unphysical Goldstone bosons. Similarly, the terms in
the next two lines of Eq. (6.3) will cancel against corresponding leftovers from the ghost graphs. Finally, the last two
lines of Eq. (6.3), which display the characteristic pinch structure, will cancel against some of the pinch contributions
to the ZR'R' vertex. All these cancellations will become evident in what follows.

We next consider the ghost graphs [Fig. 5, diagrams (9)—(12), and Fig. 6, diagrams (2)—(5)]. We have

12 7

) q"V„' p
—) [II'p(1) —II'p(2)] —) gv f W(k+ p, )V(k)k qp+ (I ++ 2)

i=9 i=4 V=pZ

+ )
gv

f(WWV)q (k —pq)k (k —p, )p+ (I rr 2)
V=pZ

(6.4)

4
CZ) Cp

r

C
—4

CZ) Q

(2,3) (4 6) (6,7)

H, Il~' ') 0
I

FIG. 10. Feynman diagrams contributing
to the W self-energy. Graph (13) is particular
to the BFM.

(8,9) (12)

Pinch
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5

iMz) 8'p ——M2 ) gq f (WWV)(k p2p q- kppi ).
V=pZ

(6.5)

We see that the leftover terms of Eq. (6.4) cancel against parts of Eq. (6.3) as expected. The coiitribution of Fq. (6.5)
will cancel against pinch contributions to the XN N vertex. Similarly the graphs containing unphysical Goldstone
bosons [Fig. 5, diagrams (13)—(22), and Fig. 6, diagrams (6)—(13)] yield

16 9

) I"V„' p ™p).gp = 2 ' Mqq ) kv f(WWV)q'I', p(gpss —,pm+ &)
i=13 i=6 V=p, Z

+g'Mw
2

[Uw'(1)-p —Uw'(2) p] ): bv Jwwv,
V=p, Z

(6.6)

13

) q"V„'.p+iM ) S.'p = ) [il'.p(i) —11'p(2)], (6.7)
i=17 i=8

21

) q"V„* p
——II'p(1) —II'ep(2)—

i=19

g2

W(k)[Z(k+ pi) —Z(k —p2)](2k+ pi)~(2k —p2)pq8c2 (6.8)

(6.9)

The first term on the RHS of Eq. (6.6) cancels the appropriate term in Eq. (6.3) after employing the elementary
identity —gcgv2KMwv —— bvg cs—Mw, where b~ = +1 and bz = —1. The second term on the RHS of Eq. (6.6)
will cancel against pinch contributions to the ylVW vertex. Finally, we note that the leftover term on the RHS of
Eq. (6.8) contains only two internal propagators.

The pinch parts give

q" [ „2pUw (pi)~+ R„+~~Uw (p2)p] = 2[Uw (pi)~p+ Uw (p2)~p] ) gv[rwv(p, ) —rwv(p, )]
V=p, Z

(6.10)

+U '(pq)p ) g qf ( WWV)[ ~2k+ q"I'„(—k —p, , p, , k)]+ (I ++ 2),
V=p, Z

2g q I )pqgp[' ' ] 2g [Uw (pj)qgp Uw (pg)qkp][ ' ]I (6.11)

where the ellipses in the square brackets in Eq. (6.11) represent the terms of the second line of Eq. (4.34) inultiplying
~I P:

4 2 28 1 —2s) q" (&'„p+ r:„p) —g Mw[p2pq —pi qp] —,Jww +, Jwwzc 2c
(6.12)

2 s2

iMz) (R'p+l p) = g Mw [U p(pi) —U p(p2)] ) bv Jwwv,
i=1 V=pZ

(6.i3)

ikgp(22 p+g p) =g*Mp f(WWq)[(k —2q) p~p+pi (k+2q)pf, (6.14)

5 2 21 —28
iMz) (R' p+ l."p) =+g (WWZ)[k p2p+pi kp] —g Mw [p~pq —pi qp]Jwwz

i=4
(6.15)
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At this point we note that the contributions of the pinch parts cancel all the remaining leftovers of all other graphs
we have considered thus far, except for the leftover term of Eq. (6.8). If we now collect all W self-energy terms on
the RHS, we note that all pinch and. regular graphs have already appeared, except for the two graphs containing an
internal Higgs boson, shown in Fig. 10, diagrams (ll) and (12).

Next, we consider the WWH graphs

25 15 2 2, v„*. +*M & s.' =rr."(i)—rr."(~)—~, f(wwa))a. , +x, , )

i=23 i=14
g2M~

I p&~pip P2~P2p] J~~H ~ (6.16)

28

) q"V„' p
——II p(1) —II p(2)—

i=26

g
2

W(k) [H(k + pg) —H(k —p2)](2k + pi) (2k —p2) p. (6.17)

The relevant pinch diagrams of this class contributing to the ZR"R' vertex give

q (R„~p + L„~p) = [pg~pgp —p2~p2p] J~~H)5 5 g M~
2

whereas the ones contributing to the yR'W vertex give

2M2
iMz(R p + l- p) = (WWH) [k p2p + kppx ].

(6.18)

(6.19)

It is now evident that all the R' self-energy terms which constitute the RHS of the WI's have already appeared. The
only two redundant terms are (i) the leftover term of Eq. (6.8) and (ii) the leftover term of Eq. (6.18), which survives
after Eqs. (6.16)—(6.19) have been added by parts. Like the term in (i) it also contains two internal propagators. Both
terms will cancel exactly against the entire contribution of the graphs belonging to the ZHR' class, which we now
proceed to evaluate.

We will only evaluate the diagrams where the Higgs boson appears on the left. The mirror graphs, with the Higgs
boson on the right, can be treated in an exactly analogous way:

2M2
q~Vsop = —g, ~ (HZW) q&r „.p( k —p„p„k—),

2M M2
iMzS'p — (HZW)q"I'„p( k —pq, p~,—k) —g U~ (p2) p Jazw

C 2c

M M2—g (HZW)k kp+ g 2 g pIHz(q). (6.21)

The last term on the RHS of the last equation will cancel against an equal and opposite contribution coming &om
the mirror diagram S &.

2M2 s2
q"V„p ——— qp (HZW)(2k ~ pg) (6.22)

2M2 s M2 s2
iMzS p

= qp (HZW)(2k+ p~)~ —g (HZW)(2k+ pi)n(k —p2)p~

2

q"v„p — (Mz —M~) f(EIzw)(2k + p, ) (2k —p~)p

g2
+ W(k) [H(k + pg) —Z(k —p2)] (2k + pi) (2k —p2) p,8C2 (6.24)

iM~S p —— M~ IIZTV 2k+@1 2k —P2 P.Sc2 (6.25)
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The pinch parts are

2

q"I„p+iMzd p
———g pp HZW kp,2c

(6.26)

2
i,Mz(R p+'R p) = g Uiv (p2) p J~zgr,2c

(6.27)

i'(R p ~ R p) = g ~ y~p f(ssw)(2k+ ps)9 9cr 2 Mz(1 —2s ) (6.28)

When all the above equations, together with the corre-
sponding contributions &om the mirror graphs, are added
by parts, all terms on the RHS cancel among each other
as expected, except for the terms with two internal prop-
agators, from Eq. (6.24) and the mirror graph result,
which exactly cancel the leftover terms mentioned previ-
ously, (i) and (ii). This concludes the proof of the WI of
Eq. (5.16), which is a central result of this paper. It is
obvious &om the previous proof that the pinch parts are
instrumental for the validity of Eq. (5.16).

B. Unitary gauge

The fact that the WI's of Green's functions constructed
via the PT hold regardless of the gauge in which one
chooses to work can be most effectively demonstrated by
proving their validity in different gauges. Although the
usual graphs of a Green's function as well as its pinch
parts assume different forms in different gauges, when
summed they nevertheless combine into a unique expres-
sion independent of any specific gauge. In this section we
will work in the unitary gauge, where additional pinch
parts can originate &om the longitudinal parts of the
gauge-boson propagators.

We note that, even though the unitary gauge has been
traditionally considered pathological, in the sense that it
gives rise to nonrenormalizable Green's functions, in the
context of the PT it can be treated on an equal footing as
the renormalizable Bg gauges. In particular, as shown in
[29] the application of the PT in the context of the uni-
tary gauge gives rise to renormalizable Green's functions
which are in fact identical to the (-independent Green s
functions obtained in the &amework of the Bg gauges.

Applying the PT to the case of the three-boson vertices
in the unitary gauge, we have veri6ed that the WI's of
Eqs. (5.16) and (5.25) again hold true. We point out that
although the usual vertex graphs are fewer in this gauge
the graphs which can contribute pinch parts are quite
numerous, a fact that makes calculations lengthier. We
therefore do not present the entire proof of the WI's, but
only outline the steps in its derivation.

The usual pR' R'+ vertex diagrams in this gauge are
shown in Fig. 5, diagrams (1)—(8) and (23), while for
the ZW W+ vertex we have the additional graphs (29)
and (30) of the same figure. The relevant W self energy

diagrams in the unitary gauge are those shown in Fig. 10,
diagrams (1)—(3) and (11). The vertex graphs will be
denoted as 7'

p and the self-energy graphs as M' p, where
the index i counts the corresponding graphs of Figs. 5 and
10.

The interesting feature of the unitary gauge is that the
WI of the pW TV+ vertex is satisfied sepal'ately by the
usual and pinch parts, as one can verify immediately.

For the fermion graphs, Eq. (6.2) holds as usual since
they are gauge invariant, e.g. , V„p ——V p and II p

——

M p. The boson graphs give

q"V '
p + q"V '

p + q"V '
p

——gc[M p (1) —0 p (2))

(6.29)

q"V„p ——0. (6.30)

From the Higgs diagram we get

q"V„p ——gc[M p(1) —M p(2)]. (6.31)

q"V~
p

——gc[M p(l) —U p(2)]. (6.32)

Evidently, the Ward identity holds already for the
usual vertex graphs before any pinch contributions are
included. One can then verify that the vertexlike pinch
contributions in the unitary gauge (V~ p)+ (some of the
additional ones, specifI. c to the unitary gauge, are shown
in Fig. 11), when contracted with q", yield

g~(V~ p) = gc[P p(1) —P~p(2)], (6.33)

where 'P~p are the relevant propagatorlike parts to be
appended to the R' self-energy in the unitary gauge. As
shown in [29], the W self-energy obtained via the PT in
the unitary gauge is identical to the one obtained via the
PT in the context of the Bg gauges: namely,

ll~w( ) ~w + ~w (6.34)

Adding Eqs. (6.4) and (6.5) by parts, we arrive again
at the WI of Eq. (5.25).

For the pWW vertex the above equations when
summed give
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For the ZTVW vertex the proof proceeds in an anal-
ogous way. For the class of graphs i;hat are common to
both vertices pe@' and ZWW, the proof is identical.
The WI is again satis6ed separately by the regular vertex
and pinch graphs. There are, however, two additional
classes of contributions that need be considered. First,
there are the extra regular vertex graphs (29) and (30) of
Fig. 5 along with similar box graphs that will contribute
a pinch part to the vertex; all the above graphs contain
a Higgs particle. Second, unlike the photon case, the
vertexlike pinch parts originating &om boxed where the
pinching takes place at the leg of the Z (fermion line on
the top) do not vanish when contracted with q&. Since
all propagator graphs of the TV have already appeared
on the left-hand side of the WI's, the sole role of these
graphs is to provide a leftover expression which is rec-

ognized as being equal to I'
p . Of course, in the

"~w- w+

context of the unitary gauge this expression cannot be
identi6ed with a yR'R' vertex, because there are no y
6elds to begin with.

C. Feynman background Beld gauge

to background Green's functions which are identical to
the GI Green's functions constructed via the PT. No for-
mal understanding of this correspondence has yet been
established; the aforementioned agreement has been ver-
i6ed by comparing all Green's functions constructed so
far at one loop via the PT with the corresponding BFM
Green's functions. The operational reason for this iden-
tity of results is that pinching turns out to be zero in
this particular gauge. To this end we remind the reader
that pinch parts can originate in three ways: (i) &om the
longitudinal part of gauge-boson propagators, (ii) &om
three gauge-boson vertices, and (iii) &oxn vertices with
two Goldstone bosons and one gauge boson.

All these can provide the appropriate momenta which
when contracted with a p matrix will cancel a fermion
propagator. By simple inspection of the Feynman rules
of this gauge, one immediately recognizes that all the nec-
essary pieces that could generate pinch terms are missing.
First of all, since this is a Feynman type of gauge, there
are no longitudinal parts for the gauge-boson propaga-
tors. Second, one observes that in this gauge the three-
gauge-boson vertex between a background and two quan-
tum gauge fields (which is gauge dependent even at tree
level) assumes the form

In this section we prove the validity of the WI's of
Eqs. (5.16) and (5.25) in the Feynman gauge of the BFM.

In the BFM every bosonic 6eld is decomposed into two
parts, the quantum field 4 and the background field 4,
e.g. , 4 ~ 4 + 4. In the path integral one integrates
the quantum fields only, whereas the background fields
are treated as additional sources; consequently, only the
quantum 6elds appear inside loops.

The ordinary gauge transformation of the gauge 6elds,
for example, W„, a = 1, 2, 3, and B& in the case of an
SU(2) x U(1) group, is also split into two transformations.
One of them corresponds to an ordinary gauge trans-
formation, but only for the background fields R",B~,
and is therefore called a background gauge transforma-
tion. By judiciously adding an unconventional gauge-
6xing term for the quantum fields, we can promote this
transformation to a symmetry of the Lagrangian. There-
fore the Green's functions of the background 6elds are
guaranteed to be background gauge invariant, namely,
I'(W„B ...) = I'(W„B„'...). As a result of this invari-
ance, the naive WI's of Sec. V are satis6ed. Note, how-

ever, that these Green's functions depend in general on
the gauge paraxneters (xv, (xx used to gauge fix the quan-
tum fields R'„and B„which appear inside their loops.
In this formulation, S matrix elements are calculated by
forming trees of background Green's functions connected
to each other by tree-level background 6eld propagators;
at this point, the background 6elds also require gauge
6xing.

This gauge fixing is completely independent &om the
gauge fixing of the quantum 6elds, and the parameters
(xx, $xx xnay be in general different &om the parameters
(w, (a.

We choose to work in the Feynman gauge of the BFM
where (vx = gxx = (g = l. As was shown in [25,27], at
the one-loop level this particular gauge choice gives rise

I ~p —(2k + q)agpp 2qpqpa + 2q&g~p (6.36)

and

I'
p

———kpg —(k+ q) g p. (6.37)

We see immediately that by setting (g = 1 the I'+p part,
which is the only one that can pinch, disappears. Finally,
the elementary vertices of the form QQG, where P, P are
scalars (Higgs or unphysical bosons would be Goldstone
bosons) and G„a quantum gauge field (W„,B„),depend
only on the momentum carried by the background 6eld
P: namely,

I'4'4'~(q, k, —q —k) ~ q„. (6.38)

Therefore they also cannot trigger pinching. Conse-
quently, since pinching has been rendered trivial (zero) in
this gauge, one readily concludes that the Green's func-
tions constructed via the PT in any gauge will be identi-
cal to the conventional Green's functions of the Feynman
gauge of the BFM, i.e.,

IIw IIw pzw w+ pzw w+
np exp & pnp ) (6.39)

We now proceed to the proof of the WI's of Eqs. (5.16)
and (5.25). We need to consider only the usual vertex and
self-energy graphs in this gauge. The vertex graphs are
those of Figs. 5 and 6 plus the additional ones of Figs. 11
and 12. Note that for the pe W+ vertex there are
no ghost graphs in this gauge; so for this paragraph the
graphs of Fig. 6, diagrams (2)—(5), are replaced by those

I'
p (q, k, —q —k) = I'

p +
~

1 —
~

I' p, (6.35)
~)

where
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FIG. 11. Box graphs that in the unitary
gauge can provide vertexlike pinch parts. In
these graphs pinching is triggered through
the longitudinal part of the vector bosons'
propagators.

H

of Fig. 13, diagrams (2)—(5). The modifications needed
for the W self-energy graphs are that an additional graph
[Fig. 10, diagram (13)) must be included and the pinch
graph must be removed. In all these figures the external
legs are now considered to be background 6elds.

We will use the same symbols for the various diagrams
as in Sec. VIA, even though now, since we work in a
different gauge, they correspond in general to different
expressions. So V„'

&
will correspond to a ZW W+ ver-

tex diagram, S' to a yW W+ vertex, and II'& to a W
self-energy grap

By acting with q~ on the three-gauge-boson vertex
graphs, we readily obtain the following results.

For the fermion graphs,

For the gauge boson graphs,

g"V„p ——0. (6.42)

For the ghost graphs,

= gc[II '&(1) —II '&(2)], (6.43)

q"V„'p ~ q"V„'p + q"V„'p
——gc[II p (1) —II 'p (2)],

(6.41)

q"Vi, +iM Si~ = gc[lli~(1) —II ~(2)]. (6.40) (6.44)

c+ ' c ~ ~ ~ c+ ~ ~

c ) cp c„, Cg

36,37 38,39 40 41,42 43,44

FIG. 12. Additional pR'R' and ZWlV
vertex graphs of the Feynman gauge of the
background 6eld method. Together with
those of Fig. 5, they are denoted by V„' &
in Sec. VIC.

II

H: ' XI

I
XI' '8

I

45 46 48
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2, 3 22 23

I

I

I

In
I

I

H, '
I

I

In
I

I

', H
I

I

25

FIG. 13. Additional yWTV vertex graphs
of the Feynman gauge of the background field
method. Together vrith those of Fig. 5, they
are denoted by S'

& in Sec. IVC. Graphs
(2)—(5) replace the ghost graphs (2)—(5) of
Fig. 6, which do not exist in this gauge.

P, V11)12
& P V41)40 + g V43,42

perp ~ ~ (seep ~ pnp q"V„p+iMzS p
——0, (6.52)

= gc[II.'p(l) —II'.p(2)], (6.45) q"V„p+iMzS p
——0.

For the WTVH propagators,

(6.53)

q"V„p ——0. (6.46) q"V„p ——gc[II p(1) —II p(2)], (6.54)

In fact, Eq. (6.43) is identical to Eq. (6.45) part
by part, and correspondingly Eq. (6.44) is identical to
Eq. (6.46). This is so because ghost graphs in this gauge
result in ~,dentical expressions regardless of the orienta-
tion of the ghost line.

For the Goldstone and gauge boson graphs we obtain
the following.

For the R'IVV propagators,

q"V„p+iMzS p
——0,

q"V„p+iM S p
——0.

For the HZR' and ZHR' propagators,

q"V„p+iMzS p
——0,

(6.55)

(6.56)

(6.57)

q"V„p + iMzS 'p
——0)

q"V„p +iMzS p
——0,

(6.47)

(6.48)

and the mirror image graph

q"V„p+iMzS p ——0,

q"V„p+iMzS p ——o,

and the mirror image graph

q"V„p+iMzS p
——0,

(6.58)

(6.59)

(6.6o)
= gc[ll'.p(l) —II'.p(2)], (6.49)

(6.5o)

q"V„"p+iMzS"p+iMzS'p+iMzS4p = 0, (6.6l)

q"V„p+iMzS p+ iMzS p+iMzS p
——0. (6.62)

q"V4'p ——g [II'sp(l) —II' p(2)], (6.51) The rest of the Goldstone boson graphs give

q"V„p+ q"V„p+ q"V„p ——gc[II p(l) —II p(2)]

g3
Z(k)W(k+ p, )(2k+ p)) (2k+ p, —q)p

g
3

+— Z(k) W(k —p2) (2k —p2) p (2k —p2 + q)

(6.63)

a(k)W(k+ p„)(2k+ p, ) (2k+ p, q)p

H(k)W(k —p2)(2k —p2)p(2k —p2+ q)

q"V~-p + q"'~~-p + q"V'-'p = gc[ll-"p(') —ll."p(2)]
g

3

8c

+9
8|-

(6.65)

(6.66)
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3
q"V"& +iMzS'& —— H(k)W(k+ p, )(2k+ p, ) (2k+ p, —q)p

Z(k) W(k —p2) (2k —p2) p(2k —p2 + q)~,g (6.67)

3
q"V

& + iMz S &
—— Z(k) W(k + p~) (2k +p, )~(2k +p, —q)ts

g3
H(k)W(k —p2)(2k —p2)p(2k —p2+ q)8c (6.68)

We observe that the leftover integrals of the above four
equations, Eqs. (6.64)—(6.68) cancel.

Adding Eqs. (6.40)—(6.68) by parts, we arrive at the
desired result.

VII. CONCLUSIONS

In this paper we have extended the S-matrix PT with
nonconsereed currents to the case of three boson vertices,
with all three incoming momenta off shel/. We have out-
lined in detail how the e8'ective gauge-invariant three-
boson vertices can be constructed, and we have given
explicit closed expressions for the vertices pW TV+,
ZW W+, and yW W+ in Eqs. (4.33), (4.34), and
(4.35), respectively. The GI three-boson vertices were
shown to satisfy naive tree-level Ward identities, which
relate them to the GI gauge-boson self-energies previ-
ously constructed by the same method in [16]. The
derivation of the aforementioned Ward identities relies
on the sole requirement of complete gauge invariance of
the S matrix element considered. In particular, no knowl-
edge of the explicit closed form of the three-boson vertices
involved is necessary, as long as they have been rendered
individually ( independent. The validity of one of these
Ward identities has been proved explicitly, through a de-
tailed diagrammatic one-loop analysis, in the context of
three difFerent gauges. The above proofs convincingly
illustrate the gauge-invariant nature of the entire proce-
dure. Most noticeably, the proof of the Ward identity
in the unitary gauge supplies additional evidence that
the PT endows the Green's functions computed in the
unitary gauge with several desired theoretical properties,
as already shown in [29] for the simpler case of the W
self-energy.

Of particular interest is the further exploration of the
recently advocated connection between the PT and BFM.
Speci6cally, all cases studied thus far show that the PT
Green's functions coincide with the BFM Green's func-
tions, computed at (g = 1. Unfortunately, no general
proof of this point exists yet. In Sec. VIC we presented
a heuristic argument based on the structure of the Feyn-
man rules in this particular gauge, which supports the
general validity of this hypothesis, at least at the one-
loop level. Because of the lack of a rigorous proof, how-
ever, additional individual cases may have to be exam-
ined. To that end one will have to construct physically
relevant Green's functions via the PT and then compare
them with the analogous Green's functions of the BFM at
(g ——1. The general methodology presented in Sec. III
and the closed explicit expressions reported in Sec. IV
provide the starting point for such a detailed comparison.
Furthermore, the general character of the Ward identi-
ties derived in this paper may provide additional clues
towards a formal understanding of the PT algorithm. Re-
sults in this direction will be reported elsewhere.

Finally, we would like to point out that the Ward iden-
tities derived in Sec. V have already found application in
the study of resonant amplitudes, most noticeably for the
processes pe ~ p v„v, and Ze ~ p vpv, and they
are crucial for the gauge-fixing parameter independence
and U(1) electromagnetic gauge invariance of the final
answer [35].
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