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Fluctuations of the Casimir pressure at finite temperature
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Using standard techniques of quantum field theory at finite temperature T we determine the
correlation function for the photon field in the presence of two parallel conducting plates and apply
it to investigate the fluctuations of the Casimir pressure. Theoretical estimates of these Quctuations
are given. We study especially the cases of the low and the high temperature limits. In the high
temperature limit we substitute the Planck distribution by the Rayleigh-3eans distribution leading
to a classical correlation function. This function allows a derivation of the Casimir pressure, but not
of its Quctuations because these functions cannot be multiplied. Therefore, the Quctuation of the
Casimir pressure in the high temperature limit has to be determined from the complete expression
at finite temperature. The resulting Huctuations are rather large. For measurements over long times
these Huctuations increase with T whereas the corresponding Casimir pressure contains the factor
T only. The leading term of the Quctuations is independent of the distance d between the two plates.
It is identical to the one plate case or twice that of the free case. Only the nonleading corrections
depend on d and special assumptions of the properties of the plates.

PACS number(s): 11.10.Wx, 03.70.+k, 11.10.Gh, 12.20.Ds

I. INTR.ODUCTION

In quantum theory the physical state is characterized
by the expectation values of observables and by their
fluctuations. Especially interesting is the ground state,
which is the vacuum state for vanishing temperature. Im-
portant observables are the electromagnetic Geld strength
[1],pressure, and energy densities [2].

Here we consider a two-plate system with supercon-
ducting plates. We deGne the Casimir pressure as the
difference of the pressure on the different sides of the
plate. Its fluctuation and correlated problems have been
studied only recently [2—4]. These investigations should
be extended to the case of a ground state at Gnite tem-
perature.

The correlation functions, as special Green's functions
which depend on the space-time points and on the tem-
perature, have to be determined. Therefore, we apply a
real-time technique of the quantum Geld theory at finite
temperature which at least is correct for the case of &ee
fields [5]. We use two procedures. First, we obtain the
Wightman-like functions according to standard relations
from the given time-ordered functions [6]. Second, we
use the operator formalism [7]. Both approaches lead to
the same functions. Because of the vanishing mass of the
photon field, it is possible to derive reasonably explicit
analytical expressions. It turns out that the correlation
functions consist of the contributions resulting &om the
zero-point fluctuations and. the temperature-induced fluc-
tuations. This structure influences the fluctuations of
the electromagnetic Geld strength, the pressure, and the
Casimir force.

*Present address: Daumierstrasse 13, D-04157 Leipzig.
t Deceased.

Our aim is to investigate the fluctuations of the
Casimir pressure, initiated by Barton [2], for ground
states at Gnite temperature. Technically, we follow the
methods applied in [4]. It is important that the pres-
sure components be already bilinear functions of the pho-
ton field, so that we have to study expectation values of
four Geld operators. By application of Wick's theorem,
we obtain products of two Green's functions so that the
fluctuations contain now a multiplicative mixing between
vacuum- and temperature-induced fluctuations as well as
their expected additive superposition.

Specifically, we investigate measurements of the pres-
sure fluctuations at the inner side of a plate of the two-
plate system. The proposed measurement is local with
respect to the position on the plate, but extended over a
sufficiently long finite-time interval (long-time measure-
ment). We determine the temperature-dependent cor-
rection terms of the pressure fluctuations in comparison
with the already known vacuum contributions [2,4]. We
obtain quite difFerent correction terms for "thin" plates
P exp (

—P &) and "thick" plates P s, where P is the
inverse temperature T and d is the distance between the
plates. As in the vacuum case [4], the fluctuations are
more sensitive to special properties of the plates, i.e. ,
whether they are "thick" or "thin, " than the pressure it-
self. The reason is that long-time measurements detect
the low-energy part of the spectrum which itself is dif-
ferent for the considered plates. Note that both types
of plates describe ideally conducting plates satisfying the
classical boundary conditions [4]. They difFer in the treat-
ment of the mode propagating parallel to the plates.

We study the high-temperature limit of &ee quantum
electrodynamics, performing this limit in the two-point
correlation function by substituting the Planck distribu-
tion by the Rayleigh-Jeans distribution. The vacuum
part of the correlation function can now be neglected
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and the temperature-dependent smooth part changes to
a generalized function with bad multiplication properties.
The classical correlation function for the electromagnetic
potentials contains spacelike correlations; lightlike corre-
lations are present, but suppressed. However, the correla-
tions of the electromagnetic Beld strength contain space-
like correlations as well as b-type lightlike correlations.
This is explicitly demonstrated for free blackbody radia-
tion.

For the two-plate system, we derive the Casimir pres-
sure directly in this limit [8—ll], but not its fiuctuations.
The reason is that the classical correlation functions can-
not be multiplied as needed. This result is remarkable
because at finite temperature these functions can be mul-
tiplied without difficulties. The vacuum part represented
by a Wightman function can be generally multiplied and
the multiplication of the temperature-dependent part as
a smooth function also gives no difficulties. In the high-
temperature limit, the correlation function appears as
a generalized function, deBned on the real axis only.
The resultant b-type distributions cannot be multiplied
without arbitrariness. Thus fluctuations of the Casimir
pressure cannot be considered using correlation functions
taken in the limit. This means that a theory based on
the classical two-point correlation function will run into
difficulties if it is necessary to multiply Green's functions
with identical arguments. These problems can be solved
by going back to the theory at finite temperature, car-
rying out the necessary calculations, and performing the
high-temperature limit as the last step.

We Bnd that for measurements over long times the
leading behavior of the fluctuations is distance indepen-
dent and corresponds to the fluctuations in the presence
of one plate or twice that of the free space. The nonlead-
ing terms depend on the special properties of the plates.
If we compare the order of the power behavior with re-
spect to P l for P -+ 0 of the Casimir pressure (P)
with that of its fiuctuations (P), then the fluctua-
tions are remarkably large.

We will now proceed in the second section to study the
necessary Green's functions. In the following section, we
will investigate the fluctuations of the Casimir pressure
at low temperature. In the fourth section, we will con-
sider the limit of very high temperature. Appendixes will
contain a procedure for determining the correlation func-
tions in the operator formalism and explicit expressions
for Green's functions.

II. CREEN'S FUNCTIONS AT FINITE
TEMPERATURE IN THE PRESENCE

OF PLATES

A. General considerations

For the determination of temperature-dependent ex-
pectation values, we need a formulation of quantum Beld
theory at Bnite temperature T. There are, in principle,
two approaches, the imaginary and the real-time tech-
nique [6]. Here we are interested in the real-time tech-
nique because we expect a temperature and a time de-
pendence of the correlation functions.

In our case we have additional difIiculties due to the
presence of boundary conditions. However, these prob-
lems are already solved for Feynman propagators at van-
ishing temperature [12]. The generalizations to nonvan-
ishing temperature are straightforward [11].

In most cases, it is sufIicient to have a technique on the
level of Feynman diagrams. So it is quite natural to con-
struct the Wightman-like functions &om the propagators
as known from standard quantum field theory. We apply
this procedure, as well as in the case of temperature-
dependent Green's functions.

For simplicity, we consider a scalar field theory with
the field operator P(x). The Wightman-like function
(P(x)P(x')) p can be defined with the help of time-ordered
functions (TP(x)g(x')) p.

(&( )&(*')) = o( —*')(T0(*)&( ')) + o-(*' — )(T*&(*)&(*')) .

The temperature-dependent time-ordered functions can be expressed by the propagators at T = 0:

(T&(x)&(z'))p =
—,Dp(z *')

e*"' ' ' (D'(ko, x, x') + sinh 8[D'(ko, x, x') —D'*(k, x, z')])
z 27r

c ( dko 'Io ~0 —~'D'(x, x') + ——. e'"'~ ' ' sinh 0[D'(ke, x, z') —D'*(ko, x, z')]i ' i 2'

and, analogously,

(T*tj&(z)y(x'))p = — Dp (x, x') = —. D'—.*(x,x') + —. —e'"' ' 'l slnh e[D'(k, x, x') —D *(k,z, x')].
L 27t

Here we use the notation for the propagator at vanishing temperature,
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(T&(x)&(x')) = , D—(xx')

D'(x, x') = e'"'~*' *'~D'(ko, x, x'),
27r

(4)

and the temperature-dependent weight factors

2 = 1
cosh 0 =

~„ t, sinh 0 =

where P = 1/(kT) In t. his way, we get a representation consisting of two parts. The first contribution is the Wightman
function for vanishing temperature. The second part is temperature dependent and does not satisfy the standard
analytic properties of the Wightman functions:

(&( )&(*'))i3 = (&(*)&(*'))+ —,
e'"'~*' *0 sinh 0[D'(ko, x, x') —D'*(k,ox, x')] (6)

Dp (x, x') = D (x, x') + Dp(x, x'),

D'(* *') = '"" ~* -* l. h'e[D (k. , *-,*-') —D.*(k„-,*-')].
27t

(7)

In the presence of boundary conditions, the temperature-
dependent Wightman-like function 'D& (x, x') can be ob-
tained by replacing in Eq. (7) the free space functions
D, D, and D ' by the functions 'D, 'D, and 'D *

which fulfill the necessary boundary conditions. We
check that Eq. (6) is correctly constructed by an inde-
pendent determination of these functions. As in the case
of a vanishing temperature [4], it seems helpful to have
an operator formalism [7]. Detailed considerations are
given in Appendix A.

The generalization to quantum electrodynamics is not
trivial. We want to take into account the boundary con-
ditions [12] for ideal conductors and a covariant gauge
condition. For ideal conductors, the boundary conditions
Eq ——B = 0 can be written in terms of the electromag-
netic potentials A~ by

where n~ denotes the normal vector of the surface S.
For the case of parallel plates perpendicular to the x3
direction, we get the following general structure of all
Green's functions [4]:

'9p'9 s c-(0[TA„(x)A„(y)/0) = i
/

gP„— I D (-x —y, x3 y3)

Bgg BD 0+'L O~
I D & —g

—in„n„D (x —y),

where 'D'(x, y) denotes the scalar Feynman propagator
satisfying the Dirichlet boundary condition, D (x —y)
a &ee Feynman propagator, and D a special Feynman
propagator. In the physical situation, we are considering,
the third direction plays a special role. Therefore, we
write x = (x,x, x ), and v runs &om 0 to 2.

Now we specify the properties of the plates. We may
assume that these ideal plates are infinitely "thin" or
"thick. " In either case, we have the same boundary condi-
tion (8), but the mode propagating parallel to the plates,
not subject to the boundary conditions, can be treated as
a plane wave extended over the full x3 axis or restricted
to the "inner" region between the two plates. For "thin"
plates, we consider the complete three-dimensional Eu-
clidean space, whereas for "thick" plates, the space be-
tween the two plates only. Both cases are idealized ones
and do not involve the penetration depth of electromag-
netic waves into the metal of the plate [13,14]. If the
penetration depth is to be used, it is best used for the
wave propagating parallel to the plates. Both assump-
tions lead mostly to the same physical results; but in
special cases, differences can be seen [4].

Now to continue the explanation of (9), for "thin"
plates D'(x —y) is the standard free space Feyninan
propagator and D:—0. For the case of "thick" plates,
we make sure that the free propagator is de6ned in the
physical region correctly; i.e. , it should correspond to a
self-adjoint operator. For the special case of two-plate
systems, we have to take into account that D is a third
contribution.

Formally, the same tensor representations are valid
for all other types of Green's functions in electrodynam-
ics. With the help of these formulas we can now write
down immediately the corresponding expressions for the
temperature-dependent Wightman-like functions:
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(A„(z)A„(z') )p = i 'D~ (x, x')

0
Dp zA'p Ag/Dp o—1 )

Here we use z = (z, z, z ) = x —x'. The scalar temperature-dependent Green's functions are constructed according
to the rules (7) given above. In the presence of boundary conditions Eq. (7) reads

'D (x, x') = 'D (x, x') + e'"' ' ') sinh 0['D'(kp, x, z') —'D'*(k px, x')].
27r

More specific expressions can be found in the following subsection and Appendix B.

B. Special Creen's functions

Now to study explicit expressions for temperature-dependent Green s functions, we consider the cases of free space,
one plate, or two plates. Taking into account the general structure of Eq. (7), an investigation of the scalar Green s
function is suKcient.

Exec space

We use the conventions and notation of [15]:

Dp (x —x') = D (x —x') + D~(x —z'), (12)

where D (z —z') = i I ( ), exp[ik(z —z')]8(k )0(—kp). The temperature-dependent contribution D& has the explicit
form

Dp(z, z') =i
—PiAoi

ik(o; —o.")p(k2)
(2~) s 1 —e —P I

ko
I

d'k .-- -, e ~"
(

iko( xooo) + iko( o —x—oo)) ik(o: x')—
2kp(2~)' 1 —e—i'k ' (14)

In Eq. (14), kp is the positive expression kp ——~k. Equivalent representations are

OC)

D z
4vr' - (zp —ie8„p —inp) ' —zn= —oc

(15)

27r 7r 7r
coth —[[zg —(zp —ie)] + coth —[[zg + (zp —ie)]

4vr22~zgP I P )
The last expression will be used in studying the high-temperature limit.

2. Presence of one @tate

All functions for the case of one plate can be obtained by an application of the re8ection principle using the
corresponding formulas of free space. For this reason we write down only one representation as an example:

z 7r 7r 7r
(z, z') = — coth —(zp —ie —~zt) —coth —(zp —xe+ ~zg)4~' 2~ZAP P

7r ~ 7r
coth —(zp —i e —

~

zq ~)
—coth —(zp —ie + ~zi ~)4~ 2I;, IP P

(17)

where
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Note that in this case D vanishes identically.

8. Presence of trso plates

The case of two plates is more complicated. We write down the expressions valid for the space between the two
plates. For the regions outside the two-plate system, the Green's functions are those for the case of one plate.
According to the representation (10), we need the scalar Green s function D2 &

satisfying the Dirichlet boundary
condition at the plate positions xs ——0 and xs ——d. For T = 0, these functions are given in [4]:

2i'D, (x, x') =

exp (
—'„((—xs + xls) ) —1

OO 2d k~;k(- -,
) . nX . nX

e ' sin z3 sin x3
2 0n=1

(
1 1

exp (*q (( —xs —x~s)) —1 exp ('q ((+ xs +. xs)) —1

1 1

exp (
—'„((+ xs —x', )) —1

(18)

(19)

q' = (*,—*', —'.)' —(» —x', )' —(» —x', )'.
From these expressions follow the corresponding representations for T g 0. Here we write down a Fourier represen-
tation

,.k (- -
) . nrr . nrr

2~ 'd - 2kpn=l
—pko—iko(xo —xo) + (

iko(xo ——xo) + +iko(&0 —&0))
1 g

—Pko (20)

and an expression based on the reflection principle [9],

'D2 &(x, x') = ) ) [D (xp —xp + inP, (x —x')~, xs —x's + 2ld)

D(xp —xp—+ inP, (x —x') ~, xs + xs + 2dl)]. (21)

The temperature-independent part in Eq. (20) corresponds to (18) and (19). It shows the presence of the x-space sin-

gularities resulting &om the vacuum Buctuations contained in D2 . Such resonances appeared if the distances between
the considered events correspond to a classical light signal n-times reHected at the plates. The Fourier representation
(20) shows explicitly the frequency distribution. The important point is that the temperature-dependent part of the
weight function of the spectrum is exponentially suppressed for very high &equencies. Consequently, this part of the
correlation functions is smooth and does not contribute to singularities produced by the temperature-independent
zero-point fluctuations.

In the case of two "thick" plates we have to modify the free space Green's function by introducing a periodicity
condition, namely, that the period equal the distance between both plates, and by taking into account the function

D& that contains the discrete mode propagating parallel to the plates:

d3k
D (x —x') = i —e'"~ lh(k )[8(—kp) + sinh 0].

(2rr)2 2d
(22)

III. PRESSURE FLUCTUATIQNS

In this section, we study the Auctuations of the Casimir
pressure [8,9,13,16] at low temperature. For this pur-
pose, we determine the correlation function for the pres-
sure components of the energy-momentum tensor. As a
quantum field theoretic Green's function, it contains sin-
gularities on the light cone. Therefore the Quctuations

of locally measured quantities, which are taken at the
same space-time point, are divergent. Experimentally,
local observables are measured over finite space and time
intervals. By taking into account the measuring process,
we obtain finite expressions for measurements over long
(44), (45) and short times (46), (47).

For observables, we use the diagonal elements of the
energy-momentum tensor T» or the Casimir pressure
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[9,11,17]. From the component Tss, the Casimir pressure
on a plate located at x3 ——a can be obtained as the
difference of T33 across the plates:

p(x) = T»(x3 —a+ e) Tss(xs ——a —e).

In our case we choose a = 0. For the energy-momentum
tensor we use the symmetric tensor

Tgv = F„Fpv —4gpvF~~F (24)

with the Geld strength F& ——0&A„—0 A&. The essen-
tial information for the fluctuation of an observable is
contained in the expectation value

~(* *') = (T»(~)T»(~'))P —(T»(*))P(T»(*'))P
= (T»(&)T»(&') I)P. (»)

Of course, the correlation functions need symmetrization:
I

(T»(*)T»(*'))P ~ 2[(T»(&)T»(&'))P

+(T»(&')T»(~))P]

which is omitted for convenience. When integrating with
the function describing the measuring process, the sym-
metrization is realized automatically.

For the determination of the correlation function in
&ee quantum electrodynamics exist difFerent approaches.
It is possible to apply gauge-invariant methods [9,16], re-
lying on the Green's functions for the electromagnetic
Geld strength, or Schwinger's source theory. These meth-
ods may be perhaps easier to apply than the standard
quantum Geld theoretic method based on the electromag-
netic potentials used here. But in our case we can apply
results obtained earlier [4]. The regularization procedure
we use is the point-splitting technique. We apply the
Wick theorem in order to obtain [4]

(Tpp(*)Tpp(~'))P —(Tpp(*))P(Tpp(*'))P = ~*"~*"([Dp+(* ~') —,'D (* ~—')][Dp+(~~') ——,'D (~, ~')]

+[Dp(»&')+Dp (& *')+ 2D (»~')][Dp(~ ~')+Dp (V u')

+2D (~ ~')])ly *.w (26)

where we have taken into account the general structure of Green's functions in the presence of two plates (10) and
the notation introduced in Appendix B [see (B12)—(B14)]. The indices pp are suppressed in part, they are included
in the definitions

gxy pAgx gy
p

g*y (~)gp'g*gy
p A&

whereby the matrix ~"~ 6;z reads

(„)h gp g~p, n—g p, orP ynP-
+g~p g~p) o.' = p9 = p, .

It is not diFicult to remove the point splitting because all undeGned terms are subtracted automatically according to
the definition of the correlation function (25). We get a well-defined generalized function. All expressions consist of
two-point correlation functions of the potentials. So all properties of these correlation functions are refIected by the
corresponding properties of stress fluctuations. Moreover, the pressure fluctuations (26) contain products of Green s
functions, each consisting of a temperature-independent and a temperature-dependent parts. Therefore, zero-point
fluctuations are multiplied with temperature-induced Buctuations.

The fluctuation of the Casimir pressure on a plate located at xs ——0 can be reduced to the correlation function (26)
due to the relation (23). One obtains, for ideally conducting plates,

(p(~)p(*'))Pl .=w. =o = (T»(~)T»(*'))PI*.=*.'=o+ + (T»(~)T»(~'))P I*.=*.'=o-'
The reason for the absence of mixed terms originates &om the fact that physical modes cannot propagate across the
plates of ideal conductors. Therefore, we consider only one side of the plate. For the case of "thick" plates, this is
clear. For the case of "thin" plates, difFiculties may arise &om the mode propagating parallel to the plates. This mode
is present on both sides of the plates and the corresponding fluctuations are correlated on either side of one plate.
Mathematically, this mode contributes as one point of a continuous spectrum. So it can be neglected. It follows that
the fluctuations in the presence of "thin" plates are reduced in comparison with those for "thick" plates.

We give a Fourier representation for the fl.uctuation of the Casimir pressure on the inner side of the plate at x3 ——0:

~2,P(& —&' d) —= (T»(&)T»(&'))Pl*.=-;=o
2 2

8d' ~,~ (2vr)2 (2')' ( d ) ( d ) pop'

&((e
—~(i+i ')(s —~') [1 + E(p)][1 + E(p')] + e+~(i+i ')(~—s') E(p)E(p')
'" '"* *'[ +&( )]E( ')+"*'"""**'E( )[ +E( ')l)
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where E(p) = (e) ~("'( —1)
Within the modifications due to temperature dependence, this result is identical to the expressions derived in [4].

For "thin" plates, the summands with n = 0 and n' = 0 have to be excluded. We note the appearance of the last two
contributions in Eq. (28) containing the factors

e+'(J —J ') (+—~')
(29)

Later we show that these terms essentially change the behavior of the Huctuations.
The correlation function (28) contains singularities for (x —z ) ~ 0. Consequently the fluctuations of the local

observable p(z) diverge:

(Ap(z))' = ([p(*) —(p(z))]') = (p(*)p(*)) —(p(*))'
= W2 p(z, x) = oo.

Experimentally, local observables are measured over the finite space and finite time intervals T = f f(z)Tss(z)dz
described by the function f(z). We factorize the function f(xo, z~) according to f(zo, x~) = g(z())h(x~). As an
example we choose [2,4]

g(z()) = —g, dz()e '"' 'g(z()) = e "' h(zJ ) = h~ l(zJ ).
7 1+"

This means we perform a local measurement over a finite time characterized by the parameter v. The function g(xo)
is normalized to unity; moreover, g(ze) has the property lim ~o g(zo) = b(zo). With these functions, the fluctuation
(AT)2 is expressed by means of the correlation function W2 p(x, x') as

(doT ) = f dxdx'f(x)f(x'))P p(x, xo'), x = (xo, xo, xo). (30)

Combining the foregoing equations with Eq. (28), we obtain

(»)'=
Sdo ~, (2x)oPo (2x)oP' ( d )~ ( d J
x( p[—2(p + p'o) ]([1+E(p)][1+E(p')] + E(p)E(p'))
+ exp( —21» —pol~)([1+ E(p))E(p') + E(p)[1+E(p')B) (31)

with J, = ~+ (—"„) and p'() —— '& + ("& )~. The fluctuations depend on the three parameters d, P, w:

(AT) = „f—)
(32)

Realistically the temperature is low and so w « P, and the characteristic time w of a measuring process is large in
comparison with the time interval necessary for a light signal to traverse the plate distance so d (( 7. These are the
conditions for which we explicitly determine fluctuations. Equation (31) is treated in two parts (ATi) and (AT2)
with

(»-)' = (».)'+ (».)' (33)

We carry out the angle integration and shift the variable p~ ~ po = p to obtain

(ATi)

(n'. i '
&")

OO OO OO) ) dp dp'exp[ —2(p+ p')~]([1+E(p)][1+E(p')] + E(p)E(p'))
n= —OO ~'= —OO d

nial.

n'7r
x (pp') + — p — p'

and
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(AT2)

p id).

OO OO OO) . ). "p,
,

dp'exp( —2lp —p'l~)([1+ &(p)l&(p') + E(p)[1+&(p')])
n= —oon =—oo d d

x (pp') + — p
&n~l

'
&n~l

'
&n'~)

'
+ lE") &") &")

In the f1rst expression the integrals factorize according to

(&Tv)' =, d, ([(IA:i+Iaiz)'+Ig~z+ —,'(6~ —I i+I~iz —I iz)'
27l 2d

+-2'(Iaiz —I iz)'+ (I i+I iz)'+I„'gz]
+-,'[(I»+ I»z)'+ I,'.z]+ ( ', [(I»-+ I»z)(I»+ I.0z) + I»zI»z]
—

2 [(I„g + I„gz) (IA0 + IA, 0z) + I„jzIk0z])), (36)

with

OO

IAg ——) dpp e
amn=l

OO

Iaiz = ) . dp p'e '"
nn'

n=1 d

(n~&
I„g ——) dp

n=1

(n~~I„gz=) dp
n=1

Igp= dip e
p

1
ePJ

-2Tpe

-2TP 1
e» —1'

(38)

(39)

(4O)

(41)

1
ePu 1

(42)

Z
dz(a0+ a)z+ a2z'+ . .)

7 w Z 7 w Z~ a, —) —+ a) — ) —, + . . . , (43)
p A: ip)

The integrations and sums can be performed at least ap-
proximately.

The expression (35) for (b,T2)2 cannot be factorized in
general. However, in the limit P/~ m oo, we are able to
take into account asymptotic expansions of the type [22]

(b,T )p)) ))~ ———
ds 2 exp —4&—")

(' ~pl+ exp —
i +

2T ( d
(45)

(AT )& «& ——
2

+ O((2~) d )

The P-independent terms following from (ATq) 2 coincide
with the results of [2] and [4). Measurements over long
times are sensitive to the low-energy spectrum of the
fluctuations. For "thick" plates this spectrum starts at
pp = 0, whereas for "thin" plates the lowest state lays
at p0 ——vr/d. Consequently, we see a powerlike behavior
for "thick" plates and exponential suppression for "thin"
plates with respect to the parameter v.

Particularly interesting are the contributions from
(AT2) because of the new structure exp( —2lp0 —p0]w) in
Eq. (31). The contributions &om the region p0 p0 to
the pp and pz integrals are responsible for a power behav-
ior with respect to 7 . This means that in contrast to the
case of vanishing temperature for "thin" plates appears
a power behavior with respect to w. The exponential
decrease of the Buctuations with respect to the inverse
temperature P is not influenced by this mechanism.

Note that both cases describe ideal conducting plates
and lead to the same Casimir pressure. So it is very
interesting that the fluctuations may distinguish between
special properties of the plates. Also measurements over
very short times of fluctuations at vanishing temperature
are different for "thick" and "thin" plates. A calculation
shows that, for "thick" plates,

so that, in the exponential exp( —2lp —p'l), p or p' can be
neglected and the integrals factorized. Finally we obtain,
for "thick" plates,

3 1 1 3 1 1
~)P))~))d 210~2 d2 ~6 25~2 ~3d2 P3 ~(

and, for "thin" plates,

6 2 3
2~)s~4 (27 )vd~2 16(27.)sd

+O((2~) d ). (47)

and, for "thin" plates,

(44) For measurements over very short times, the leading
terms coincide for both cases although the nonleading
terms are different. The reason is that spatially local
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measurements over very short times test essentially the
x-space singularity of the correlation function (28) [2,4]
which is identical for both cases.

This result is in agreement with a calculation starting
—pl%0 (from Eq. (14) in momentum space using '

~~„,~

-+

&~& ~

. Note that

IV. HIGH- TEMPERATURE LIMIT [e(lzl zo) + e(lzl + zo)1 = 28(—z ). (49)

Finally we consider the limit of very high temperature.
Of course, this problem involves unphysical issues. Nev-
ertheless, this limit is theoretically interesting. We are
able to deBne correlation functions in this limit. These
"classical" Green's functions cannot only be used to de-
termine fluctuations of the Beld strength but also the
high-temperature limit of the Casimir effect. However,
the classical Green's functions are generalized functions
which cannot be multiplied without difFiculties. There-
fore, fiuctuations of the Casimir pressure (which contain
products of two Green's functions) are not well defined
if we use the two-point Green s functions in the high-
texnperature limit. An investigation of these Quctua-
tions has to start &om Gnite temperatures. The high-
temperature limit has to be performed as a last step only.

Dp(»x')lp o =
4 .—(z')+ '. (50)

But for time-dependent fluctuations we need a four-
dimensional theory. The following question has not
been answered: Is it possible to reconstruct the four-
dimensional function (48) knowing the function (50)
only?

Let us consider the case of Beld-strength fluctuations

It seems to be that at very high temperature there are
neither causal propagations nor time-dependent correla-
tions. Therefore the resulting Green's function may cor-
respond to a three-dimensional theory by setting z0 ——0:

A. Free space (Fp-(x)FV - (*'))p = O„".
,„.(Ap(x)Ap (x'))p

Let us perform the high-temperature limit P ~ 0 of
the scalar Green's function (16) for free space, for which
we obtain

p (* x') lp~o = 4, 2
[e(lzl —zo) + e(lzl+ zo)] (48)

I

where 0, , is a differential operator. Its structurePV;P V

follows from the definition of the Beld strength. Together
with the free space Green's function (A„(x)A„(x'))p =
ig„„D&, we obtain for the blackbody radiation at very
high temperature,

(I"~-(x)+~ - (x'))p o = i&„".
,„.~pp 4,

l ~
o-(—z')

(~ '~o~o goo' 8„) e'd k i( )b(k )
2' 3 0

TlTl flak
g (

2),

(52)

The differentiations of the 0 functions create b functions and its derivatives. These functions are responsible for
lightlike correlations. This is interesting because for finite P g 0 the temperature-dependent part of the correlation
function does not contain singularities. The singular behavior is a consequence of the limit P ~ 0. The special
structure of the Geld-strength correlations as generalized functions does not allow their multiplication because the
products h(z~)b(z2), etc. , are ill defined. This means that within the theory at infinite temperature we cannot inves-
tigate energy and pressure fluctuations without arbitrariness.

B. Presence of two plates

Next we investigate the Green s functions for the two-plate system in this limit. We discuss two representations.
First, we perform the limit P -+ 0 in Eq. (20) and get
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sD —
( I)~

~ -L —»z(zz —zz) . & e
—&&0(&0—&o) e+»o(&o —&o)

p X) X pmp- e ~ sin x3sin, x3 e
(2vr) 2d - 2ko O' PLpn=1

(54)

Second, we apply the reflection principle. Inserting the foregoing result (48) for the Green's functions of f'ree space at
infinite temperature into a partially summed version of Eq. (21) we get

D2,p(x x') Ip-+o = ) 2 [e(lz) —
I zo) + e(lzi —

I
+ zo)]4vr'2 z

) 2 [e(Iz+,il zo) +' e(Iz+, &I + zo)]
4vr2 2)z+ i)P

(55)

where

—,~ = [ ~+ s-, il
2 2 1/2

Z X X )

11/2 2 2 2
+, l = [ J + s+, 1J & J —zl +z2,

Z3 $
—X3 X 3 + 2ld~ Z3+ $

—X3 + X 3 + 2ld.

This series contains timelike correlations introduced by the terms with I g 0. Because of the reflections lightlike
correlations correspond to timelike distances which are the origin of long time correlations [20]:

i m 8( —zo + [z& + (xs —xs + 2ld) ]) 8( —zo + [z& + (xs + xs + 2ld) ])
4~' P [z' + (x —x' + 2ld)']'~' [z' + (x + x' + 2ld)']'~' (56)

If we restrict ourselves to spacelike distances, we can write

+oo
1 1

4~'P - [z' + (x, —x', + 2ld)']'&' [z' + (x + x', + 2ld)')i/2

Relying on this formula, we derive the Casimir eÃect in the Rayleigh-Jeans limit. We use the expression for the
Casimir pressure (23), so we have to determine [11]

(T (**')),* * = —(~.*&* +~,*-&*')['D (* ')+D ( *')]I* *. (57)

This equation includes a divergent part which has to be compensated by an infinite pressure acting on the other side
of the plate. This subtraction is automatically performed if we restrict ourselves to the distance-dependent part of
this expression. A short calculation leads to

&(d &)I
&(3)

(58)

This coincides with the high-temperature limit of the standard result for the Casimir eKect [8,9,11].
In the case of the two-plate system, we do not discuss the expression for the field-strength Huctuations or its

connections to quantum optics [1,18—21]. Instead, we consider directly the fluctuation of the Casimir pressure.
Because of the bad multiplication properties of the Green s functions in the high-temperature limit, it makes no sense
to insert these functions into the correlation functions for stress fluctuations (26).

For this reason, we start our calculation f'rom the well-defined fluctuations Eq. (31), at finite temperatures. We
consider measurements over long times in the limit of very high temperatures, i.e. , 7./d )) 1, ~/P )) 1. The
contributions (34) froin (ATi) can be calculated essentially in the same manner as before. It turns out that its
contributions for large 7 can be neglected in comparison with the contributions (35) from (AT2) . The complete
expression (35) is valid for "thick" plates. By a reduction of the summation according to

+oo +oo +oo +oo +oo +oo

—, ). & []=-Q):[]+-,) []-=.+):[]-=. +-, []-=.,-=.,
n= —oo n'= —oo n=1 nl =1 =1 n'=1

(59)

it is split into contributions describing the fluctuations for "thin" plates (the first sum) and a remainder. To begin
with, we look for the contributions corresponding to "thin" plates. To exploit the presence of a large parameter w/P,
we introduce new variables p = K+ + e and p' = v+ —v. and get
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(~+ —"& )
8K+

—47-) ~
—(~+ —"~ )

n'~') t' n"~'& n'~2 n"~2
x (p'p)'+

2
p' —

d,
p' —

d, + d. d, (E(p)+E(p')+2E(p)E(p')).
) &

" )
(60)

For large w, the K integration can be approximately performed. We take the expression inside the square brackets
and E(r+, K ) at r = 0. This leads to a factor 4 . By this approximation (E+E'+ 2EE') reduces to 2[ ~„+
( z„)2].So we are left with the expression

1 1 2
(bT2 ' —— —2 dK+2 +

(27r)' 2d' 4~ e~~+ —1 (e) ~+ —1n=i ni=i

1(,
X tC + — K+ 2 +

„2 2) ( I2 2 2 2 I2 2

d2
' + d2 d2 (61)

where

n') n
R= & n)n'

n=n'

n 7r.I

2d '
nor ~

2d 7

nor
2d '

is change of the lower integration boundary results &om the K integration where we were interested in the leading
power behavior. Accor ingly, we reorder the sum g & p &

= p & p & + p & p =z + E
the contributions of the erst and the second sums are equal. For n' ) n, we denote n' = n+l so that we get two

I

independent sums over n and l. In the integral, we change the variable e+ ——x + d so that the resulting integral
runs from zero to infinity. Iiurthermore, we take into account the integral [22]

~ (n+l)~
d

OO OO 2p (n+1) m

dxx +
n=i ~=i gP+ —p d

(62)

I'(a + 1) 1 1 I'(a + 1) d
P-+~ ~ - k- (e~-"." —1)2 P.+' P'~' (

A:=1
(63)

e last expansion used in (63) has the character of an asymptotic expansion. It is possible to determine the correction
terms as powers of 1/p. Using formulas of the type (62) and (63) we obtain

(AT2) ~~n'&n=l + ~n&n'=1

(b.T2)22 n~=O, n=l + ~n=O, n

4gp 1 168 1 31
~4 ) P7(2~) ~s Ps(2~)d 2m2 P (2~)d

88 1 9 1

(
80—+ .&(5)P.(2 )d 2«4)Ps(2 )d. +

(+T2)tt=o tt'=o = + 2 &( ) ps( ) 2 + '

(64)

(65)

(66)

(67)

For " hin" plates contribute the terms from the sums g, & z, p &, z, and g z. »r 'thick plates we
have o take into account additionally the contributions of P, o z, P o z, and th«erm with 'a = 'a' = o.

Collecting these terms we obtain

480 1 80 1 13 1
4 PT(2 ) 3 Ps(2 )d 2 s Ps(2 )d2

480 1 2 1
(&T-)'I ~-'.-» =, ('(6) „+—.( (4), , + ". .

"thick" 7l 27 7r 2'r d
(68)
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For both cases we find the same leading behavior. More-
over, the distance-independent leading term is twice the
result for free space or the result corresponding to one
plate (at the position of the plate). It seems to be rea-
sonable, then, that in the limit of very high temperature
the nonleading terms are distance dependent and reQect
special assumptions.

These fluctuations diverge as (P) 7 for P +0-. This
concerns the pressure Quctuations in &ee space as well as
the Casimir pressure. If we compare the power behavior
with respect to P of the Casimir pressure (P) with
that of its fluctuations (P) ~ for P —i 0, then the
Huctuations seem to be remarkably large.

Note that the fluctuations (44), (45) calculated in
a low-temperature approximation and for mesurements
over long times (v )) d) are always finite, and its
temperature-dependent corrections vanish for P —+ oo.
On the contrary, measurements over very short times
(46), (47) reflect the singularities of the correlation func-
tions. They are divergent for 7. ~ 0.

If we would try to calculate the high-temperature Huc-
tuations (68) of the pressure directly &om the Green's
functions of a theory formulated at infinite temperature,
then we get divergent results. We have to take into
account that the time-dependent Green's functions for
the electromagnetic field strength at T -+ oo are gener-
alized functions (53) which cannot be multiplied with-
out difBculties. The additional singularities should then
transforin to additional powers of 1/P so that the re-
sults (68) should be recovered. This is a general problem
even concerning pressure and energy fluctuations in Bee
space. In connection with a formulation of a theory in
the high-temperature limit, this has to be investigated
further. Alternatively, a theory in the high-temperature
limit can be obtained using the imaginary-time formula-
tion of quantum field theory. Then the following question
has to be answered: Is it possible to reconstruct the four-
dimensional time-dependent theory in this limit too?

APPENDIX A: GREEN'S FUNCTIONS IN THE
OPERATOR FORMALISM

Our aim is the derivation of the representations (7)
and (10) in an alternative way. The field is described
by A& ——(A~, A„) where A& is the field operator and

A„ the "ghost" field. The mode expansion of the field
operators reads

d3k
A„(x) = ) e'„[a;(k)f, (k, x) + aJ(k) f,+(k, x)],

where f;+ describes the field modes and a; and at are
the destruction and creation operators, respectively. An
analogous representation is valid for the "ghost" field op-
erators:

d3k
A„(x) = ) e'„[a;(k)f, (k, x) + a+(k) f+(k, x)].

(A2)

The essential point of thermo field dynamics [7] is the
application of a rotated space of states. In contrast with
the standard formalism, the ground state satisfies the
conditions

n;(k, P))p = 0, n;(k, P))p = 0, (A3)

with destruction operators which are connected by the
original creation and destruction operators by a Bogoli-
ubov rotation

( a;(k) & ( cosh8 sinh8 ) ( o'.;(k, P) l
q ot(k) p g sinh8 cosh8

y ( dt(k, P) )

ACKNOWLEDGMENTS
( u. (k) l~

( cosh8 sinh8 ) f o, (k, P) l~
( (i, (k) ) q sinh8 cosh8

y I ck,. (k, p) ) (A5)

For interesting discussions D.R. is indebted to G. Bar-
ton, K. Scharnhorst, D. Welsch, and W. Weller as well
as M. Bordag, W. Kolley, D. Ihle, K. Schmiidgen, and S.
Trimper.

Substituting the creation and destruction operators a,
and a; according the relations (A4) and (A5) and forming
the vacuuin expectation values (A„A„g)p, we obtain, for
the Green's functions,

(A„(x)A (z'))8 = —f d k) e'„e*gs(f; (k, x)f+(kz')+ sinh 8]f, (k, x), f+(k, ') + f+(k, z) .f (k, x')]), .(A6)

(A„(x)A (x'))8 = —f d k) e'„esgs(f,+(k, x)f (k, z')+sinh 8]f,+(k, z)f (kz')+ f, (k, x)f+(k, x',)]). ,
. (A7)

(A„(x)A (x'))g = (A„( )A (x'))8 = —jd k) e'esgssinhgcoshg]f(k x) f+(k x') d,.- f+(k x)f (k x')]. (AS).
Finally, by introducing standard notation, the mode summation leads to the well-known Green s functions for vanishing
temperature:
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D „(e,e') = ef geg) e'„e'„g;,f, (k, e)f+(k, e'), (A9)

D„' (e, e') = feg g) e'„e' g(ef(g, ,.e)f+ (g .e') + f+(k,, e)f (|'e, e')]. (Aio)

The modes f;+ have to satisfy the appropriate boundary conditions. Equation (A6) is in accordance with the corre-
sponding Eq. (7). We have confirmed that both procedures agree.

APPENDIX B: PHOTON GREEN'S FUNCTIONS BETWEEN PI ATES

To clarify the differences between Green's functions for the two-plate system with "thin" and "thick" plates, let us
first consider the case of "thin" plates [4]:

( 8„8
g2
0 1)

'D„„(x,x') = gp-—P ~ S'D, (*-*,*., *.) +
a2

( a„-a„-&
g„„D + gp„- — " " D (z —z', zs, zs).')

D (x —x') (Bl)

(B2)

This expression is valid for the inner and outer regions of the two-plate system. D and D2 denote the standard
Green's functions

d4k
D (x —x') =i e' {* )b(k )8(—k()),

(2ir) '
OO 22i, d k~ 'j{ e), n7r . n7f

, ). e ' sin x3 sin x3
2m' 2d 2ko

= D (z —z') + D (z, z').

(B3)

(B4)

Formula (B4) is valid between the two plates. Outside the two-plate system, the expressions valid for one plate is
used.

"Thin" and "thick" plates difFer by the treatment of the mode propagating parallel to the plates. For "thick" plates
we have [4]

a„-a.-& .'D„„(z,x') = gp„- — " 'D2 (x —x', zs, zs) +
a2

~'-;- {) &, (0 o
Dg(z z')+

I {) ~ ID (z z')
o

(B6)

The additional contribution for "thick" plates D (x —x') is built up from the discrete mode propagating parallel to
the plates. An equivalent expression reads

a„-a„-
(x, z ) = g D& + gp- — D (x —z', zs, zs) —n&n D (z —x').") (B7)

The functions D& and D are given by

d3k 1

(2.) 2d n= —oo,n+0

(.- -, 2irn
exp

~

if(*- —z) -' (» —*',) ~
S(k2)O( —k, )d

d3k
D ( — ') = ' —.-'"{*-*')S(i')O(-k. ).

(2ir)2 2d

For explicit calculations, it is useful to apply the representation

sQ — sD —+ sD— (Bzo)
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'D+ —— ) exp[ —ip(x —x )] (B11)

Additional relations are 'D = D + D, 'D+ ——D+. The transition &om "thick" to "thin" plates is eR'ected by
setting D to 0 and the substitution D& —+ D . The thermal Green's functions are obtained according to the rules
given in Sec. II:

(A„(x)A (x') )p = i 'Dp (x, x')

=i
I g 2,p

t' a„*a„*')
Zggv DP + X gyv

circle' )

t9Is OV

g2
0

Dp znp nv D

0
Dp —in„n Dp—I)

(B12)

The function D& is de6ned as the difference between the Green s function D& satisfying the Dirichlet boundary
condition and the free space function D&, i.e. , D& ——D& —D& . One further speci6cation of the function D followers

&om the structure of the x3, x'3 dependence

Dp (x, x') = Dp (x —x', xs —x's) + Dp+(x —x', 3x+ x s).

In fact the Green's functions splits according to

'D2 p(x, x') = 'Dp (x, x') +'Dp +(x, x'),
'Dp (x, x') = Dp (x, x') +Dp (x, x'), 'Dp+(x, x') = Dp+(x, x').

(B13)

(B14)
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