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EfFective action for high-energy scattering in gravity
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The multi-Regge e8'ective action is derived directly from the linearized ~gravity action. After ex-
cluding the redundant field components we separate the fields into momentum modes and integrate
over modes which correspond neither to the kinematics of scattering nor to that of exchanged par-
ticles. The e8'ective vertices of scattering and of particle production are obtained as sums of the
contributions from the triple and quartic interaction terms and the fields in the efFective action are
defined in terms of the two physical components of the metric Quctuation.
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I. INTRODUCTION

The study of high-energy scattering in gravity is con-
sidered as a way to learn about the yet unknown quan-
tum theory of gravitation. At energies of the Planck scale
quantum gravity effects become important.

At high energy and small momentum transfer the elas-
tic scattering is described by the eikonal approximation.
In this approximation the amplitude can be obtained by
summing all graphs with the exchange of an arbitrary
number of noninteracting gravitons between the scatter-
ing particles [1, 2] as well as from the classical gravita-
tional shock wave solution [3], i.e. , the gravitational Geld
of a particle moving with the speed of light [4, 5].

In Yang-Mills theories the contributions of s-channel
multiparticle intermediate states dominate the contribu-
tions of eikonal-type. Unlike in gravity, simply because
of the higher spin, the exchange of one more graviton re-
sults in an additional power of 8 and the contribution of
multiparticle intermediate states appears as a correction
to the eikonal approximation. Because the eikonal con-
tributions sum up to a phase, these corrections are more
important than it seems from the erst glance to the per-
turbative expansion. Quantum eft'ects enter in fact just
with these multiparticle contributions.

Corrections to the eikonal have been calculated [6—8].
There is an approach to the improved eikonal [7], where
the multi-Regge effective action is used. This action in-
volves the effective vertices of scattering and particle pro-
duction appearing in the multiparticle amplitudes at high
energy with all pairs of particles in s channel having large
subenergies, i.e., in the multi-Regge kinematics.

The multiparticle amplitudes in this kinematics can
be obtained from the elastic amplitude at high energy
by t-channel unitarity. It is enough to know the elastic
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amplitude to get by unitarity and gauge invariance the
effective vertices [9—11] and the multi-Regge efFective ac-
tion [12]. The effective vertices can also be obtained from
string amplitudes [13,14].

In the case of Yang-Mills theory (including ferrnions,
QCD) I ipatov and the authors have found a way to de-
rive the multi-Regge effective action directly from the
original action [15]. We write the action in the axial
gauge, choosing the momentum of one of the incoming
particles as the gauge vector. After eliminating the re-
dundant fields we split the fields into parts, correspond-
ing to momentum ram. ges determined by the multi-Regge
kinematics. The essential step is the (approximate) inte-
gration over the "heavy" modes.

In the case of grav. i.ty the direct relation in this spirit
between the original action and the multi-Regge effective
action has not been investigated. The aim of the present
paper is to fill this gap.

The multi-Regge effective action is a tool to study the
high-energy periphercI. l scattering both in gravity and in
Yang-Mills theory. In the latter case it allows reproduc-
ing easily the results of the leading logarithmic approxi-
mation (gluon Reggeization, perturbative pomeron) and
provides the basis for a systematic improvement (gener-
alized leading logarithmic approximation) including the
exchange of an arbitrary number of Reggeized gluons in-
teracting with each other in order to obey the unitarity
in all subenergy chanlaels.

There is an effective action for high-energy peripheral
scattering both in Yang-Mills theory and in gravity [16]
obtained by shrinking the longitudinal dimensions. It
reproduces the eikona~, l approximation and the erst cor-
rection involving the e,ffective particle production vertex.
The contributions wit. h more than one additional particle
in the 8-channel interraediate state deviate from the ones
from the multi-Regge effective action. In particular the
leading logarithmic approximation is not reproduced.

In the present paper we extend our procedure of sepa-
rating modes and of integrating over heavy modes to the
case of pure gravity. tiVe choose the axial gauge with the
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momentum of an incoming particle as the gauge vector.
The physical degrees of freedom can be represented by
two independent matrix elements pi i, pq2, where p;z is
defined by the transverse components of the metric g;~,
i, j =1,2:

g,, = e~ p;~, det(p, ,) = l. (1.1)
The elimination of the redundant Beld components in
gravity is much more involved compared to the Yang-
Mills theory. The result appropriate for our purposes is

I

obtained [17—19] by specifying the gauge fixing as

g =g, =0, g + =2e~~'. (1.2)

~t = —0 2[0 p"0 p;, ].
1 -2 (1 3)

The action is determined by the Lagrangian [17],

This leads to constraints, which can be solved in closed
form to eliminate g++, g+; and @. In particular one finds

16vrG l:= e~(40+0 @ —0+p"0 p;~)

e~~ p—~ —0.0 g ——0 QB&g ——0 f 0&pi, ~ + —0 p Bi p&I
——e p 0 R BB&',

R, = —e~(0 p~"0;p~i, + 0,@0 @ —30 0;g) + Bi,(e~p~"0 p;~)
2

'2 (1.4)

We parametrize

h
&* =( )'. Sph=0,

and use the complex Beld defined by the two independent elements of the matrix h, by

1
(611 &612) ~

2

Complex notation will be used also for two-dimensional transverse momentum and position vectors as in [15]. Our
notation is close to that in [20]. Unlike [20] we define z~ = zo + 2:s and this leads to the coefficient 2 in g+ in (1.2).
The representation of the linearized action given in the latter paper turned out to be a good starting point for our
analysis:

g(2) + g(3) + g(4) +.. .
l:~'~ = —26*(0+0 —00*)6,
l:~ i =2o.((0 6*0 6)0* 0 6+0 6*60* 0 '6 —20 6'0*60*0 '6+c.c.),
l:~ l = 2n ( 2iB (0—6*0*0 6 —0 0*6*6)i + i0 (0 6'0*6 —0 0*6*0 6)i

iB (0 6*0*6—0*6'0 6)i —3iB '(0 6'0'6)i + 30 (0 6*0 6)0 (06*0*6)
+[0 '(0 6*0 6) —h*h][06'0*6+ 0'6*06 —00*0 '6*0 6 —0 6*00*0 '6]). (1.7)

A factor (8vr G) ~ has been included into 6, n
(4vrG) ~ . For simplicity of notation we understand the
diBerentiations acting on the nearest Beld only and put
brackets otherwise.

We understand the inverse derivatives as operators de-
fined by Fourier transformation from the momentum rep-
resentation with the zero mode excluded.

Compared to the Yang-Mills case our analysis here is
more involved not only because there are more interac-
tion terms but also because the integration over the heavy
modes has to be performed with higher accuracy.

After introducing the separation of modes we study
first the contributions in (1.7), which are relevant for the
elastic and inelastic scattering of a high-energy particle
in an external gravitational Beld. The source of this Geld
is actually the other incoming particle. It is natural to
choose the momentum of that particle as the gauge vec-
tor. It can be useful to think of such processes, when
reading Secs. II, III, and IV. We obtain the efFective ver-
tices for scattering (for particles with momenta close to

the momentum of the incoming particle which is not the
gauge vector) and for particle production. For the latter
vertex we have first to derive the induced vertex arising
from the integration over the heavy modes.

In Secs. IV and VI we study the contributions in (1.7),
which are necessary beyond the ones considered before for
elastic and inelastic particle-particle scattering. The re-
sulting efFective vertex for scattering with momenta close
to the one of the other incoming particle, the momen-
tum of which is the gauge vector, can be written without
derivation by parity symmetry. To obtain this vertex as
a sum of contributions from the quartic terms 8( ), the
original triple vertices 8( ), and the induced vertices is
essential for making our argument complete. In this way
we show that in the multi-Regge kinematics the leading
contributions of all these terms result in the multi-Regge
efFective action with three relatively simple vertices.

The involved analysis for the other scattering vertex
is the price for the simplicity in obtaining the Grst two
vertices by working in the particular axial gauge. For
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extending our procedure to covariant gauges it would be
necessary to understand how to introduce the separation
of modes in the presence of redundant fields. The trace of
the gauge choice in our final result is erased, when intro-

I

ducing a complex scalar field for the scattering gravitons
by the nonlocal relation P = —oj 26. The multi-Regge
efFective action for pure gravity can be written with the
Lagrangian [12]

+,~ = —2P (8+~ —~oj )~ ~ P+ 2A++~~ A + 2a(0 0 P 0 0 P)A++ + 2o.(8+8 P 0+0*2$)A
+2n((g' g 8 A++ —Boj*A OB*A++)P+ c.c.}.

II. SEPARATION OF MODES

The multi-Regge e8'ective action applies to high-energy
scattering p~p~ ~ kok1. kn+1, where the momenta
of the produced particles obey the conditions of multi-
Regge kinematics. We write these conditions using the
notation s = (p~+p~), s, = (k, +k; i), k; = q, —q;
and referring to the Sudakov decomposition

p 1k" = (k+p~+ k p~) + K"
s

(2.1)

as

k+i « &+i 1, k; && k i+1,

z, j =0, 1, ..., n+1,
n+1 n

si=s
4 ~ I

i=1
(2.2)

It is known that the leading logarithmic contribution to
the scattering ampltitudes arises from s-channel interme-
diate states obeying this condition. Using the efFective
action we restrict ourselves to these contributions. In-
termediate states not obeying (2.2) lead to corrections
to the efFective vertices and to additional (nonleading)
efFective vertices [21]. We use the complex notation
for transverse vectors, e.g. , for the transverse momenta

+ ie, and use the light-cone components for the
longitudinal part of vectors. The derivatives with re-
spect to coordinates are defined with the normalization
0+x =t9 x+ =i9x=O x = 1.

We consider the linearized gravity action (1.7). The
gauge vector corresponds to p~. We separate the field
modes according to the kinematics (2.2):

h ~ h1+h+hg, (2.3)
I

We shall obtain the relation of the fields involved to
modes of the field h.

There is no doubt about the gauge independence of
the result, because we know an independent derivation
operating merely with on-shell amplitudes.

where h1, h, and hz contain correspondingly the modes
of the momentum ranges

~i: Ik+k-I » l~l' - lvl',
h: k+k- —IKI'I —l~l'

h~: k+k-I « I&l' - I&l'.
(2 4)

The momenta of hz are typical for exchanged particles,
and the ones of h are typical for scattering particles.
In the generalized leading logarithmic approximation the
dominant contributions correspond to the particles in the
s-channel intermediate states strongly ordered in longi-
tudinal momenta and close to mass shell. Therefore we
replace the second line in (2.4) by

Ik+k- —l~l'I « I&l'. (2.5)

This implies in particular that longitudinal derivatives
acting on h can be approximately replaced by trans-
verse ones: 8+8 h 00*h. We keep the notation h
for the particular modes of scattering particles and write
h, whenever the other modes are included.

The modes h1 corresponding neither to the kinematics
of scattering nor to the one of exchanged particles are to
be integrated out.

We consider first the part of the action (1.7) vrith ki-
netic and the triple interaction terms, l.~ ~ + Z~ ~. With
the separation (2.3) the kinetic term decomposes:

l:~ ~ = —2h*, (B 0 —BB*)h, —2h*(B 0 —BB*)h

+2h,*66*he. (2.6)

In the first term the longitudinal part in the d'Alembert
operator clearly dominates. We shall see that (diff'erent
to the Yang-Mills case) the contributions proportional to
the ratio Irl /k+k for the modes hi are important.

In the triple interaction terms the kinematical configu-
ration, where a field to which the inverse of 8 is applied
corresponds to a scattering particle with large k, is sup-
pressed. We denote by h the field with all modes and by
hq fields with modes h or hq with momentum compo-
nents k much smaller than the ones of h involved in the
considered vertex. We introduce

A++ ——8 (8' hg+ 8 h;), A+ ———iB (0* hg —8 h,*), A+ = 2&: &*4, (2.7)

The tilde will be omitted in the case when only the modes hz are involved. We define currents as the following bilinear
expressions in h:

J =i(h* g h),

T = (T')*, T
J' = i(h* g h, ),

2
—(0 h*B*h + B*h*B 6),
= Oh*Oh, T* = (T)',

J = (J')*, j = h*h. (2.8)
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With this notation the separation of modes h, ~ h + hq leads to the following contribution of the triple interaction

~~'+l = 2 ~f W, —J 3', —r*A, —r 2 *,

+T*h, +Th,* —ii*0 A++i JO A+ —2qB A++) (2.9)

III. INTEGRATION OVER THE HEAVY MODES

The essential step in deriving the effective action is
the integration over the modes h~. This will be done
approximately by evaluating the action just at the saddle
point. To obtain the main contribution it is enough to
consider the action determined by Z~ +~+2~ ~. The value
of the action at the saddle point is determined by

8(' = 2h ' *(0 c) —c)B*)h 'l (3.1)

where hz is the solution of the equation obtained by
variation with respect to h~:

The interaction of a particle with large k is dominated
by the first term, giving a contribution O(k ). The next
three terms give contributions O(k ) and the remaining
ones contribute to O(ko ). There are no helicity flip ver-
tices up to this accuracy.

The effective vertices for the scattering of a graviton
with large k are the contributions of (2.9) when one
restricts the currents to the modes h and the fields A to
the modes h, q. Here we restrict ourselves to the effective
vertices leading to contributions O(s ) to the amplitudes.
The leading efFective vertex for scattering with large k
is given by the first term in (2.9), and in the following
analysis only the first four terms will be relevant.

I

We see immediately that in 8& l the contribution O(ks )
in the product of the leading terms cancels giving up to
total derivatives a result proportional to

(0 h*B h)(9 (0+ A~+A++). (3.4)

1 ++
&++ = —(&+ &++ ~- &++)

+(0(B~'A++A+ —A++(9+ 'A+)

+BA++I9+ 0 A++ + C.C.). (3.5)

We have expected the result to be proportional to the
current T . In the calculation it emerges &om the can-
cellation of many terms with other structures.

Now we interpret (3.5) as the quartic terms emerging
from the integration over the t-channel modes h, q with
an action determined by the kinetic term, the leading
efFective scattering vertex &om (2.9), and the induced
triple vertex

(3.6)

This is the reHection of the elementary fact that there is
no dipole radiation in gravity.

Evaluating l:~ l we keep only terms O(k ), i.e. , with
two derivatives acting on h. We obtain

Here and in the following we use the notation

= —0'(M*) '(8*2h, +0'h,*) = —0 (M*) 'A++,

(a~a — ) a,a=a—a( a (a aA~~) + ah(a A—~)'
2

a(a ax„)). - = ——8 ((I*) (8* h, —0 h,*). (3.7)

We write the solution inverting formally the d'Alembert
operator. For the Inodes h, q the term with the longitudi-
nal derivatives is the leading one, but the next correction
has to be kept when applied to the first term on the
right-hand side (RHS). We take into account that the
momentum component k of A is much smaller than the
one of h, and that its component k+ is much larger. Also
here we have to keep the first correction proportional to
the ratio of the small to the large k+ components:

8 68+

+o)o)'(M+'A++) + —M+'(&'&+ —&&+)
2

—a aa x, —a a x; —aa ax;).
(3.3)

IV. THE EFFECTIVE PRODUCTION VERTEX

The contribution of the triple interaction terms to the
configuration where one field carries a component k
much smaller than the k of the other two flelds (2.9)
involves two cases. One is the case of scattering, where
both fields in the currents are of type h. The other is the
case of production, where one field in the currents is of
type hz and the other of type h, .

We write the contribution of the leading term in (2.9)
in the second case using the notation (3.7):

2(' +l = —2n(8'(A —io) A' )h+ c.c.)A++. (4.&)

The contribution with A is irrelevant for the leading
efFective vertices.

Also the induced vertex (3.6) contributes to produc-
tion. In this case one of the fields in X++ carries the
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modes h (A~'&) and the other the modes hq (A). The con-
tributions where the modes hq are in 0 A++, 0+ A++ or
in A+, A+ are small. Thus we have

Zl„„+l = —2nD(9*A [(9 (9+'A+~'+lA++

+(—0(o[+ 'A~+ l'A++)

+8+ (9'A+l'+(9A++ + c.c.j].
Using (2.5) and (2.7) we rewrite this as

Cl„~ +l = —2nM*A [(9'8 hBA++
B*(0—'hA++) + c.c.].

(4.2)

(4.3)

+l = —2 (a" A a'A
—(9(9*A (9(9*A++)0 h+ c.c. (4 4)

The quartic terms do not give a leading contribution to
the production. The elastic and also the inelastic scatter-
ing of a particle with large A: in an external gravitational
field is determined only by the triple interaction terms.

V. THE QU'ARTIC INTEKACTIGN TEAMS

To lowest order the peripheral scattering of two quanta
at high energy is determined by the quartic and the triple

We obtain the effective production vertex as the sum of
(4.1) and (4.3):

interaction terms. The latter contribution is obtained by
contracting one vertex in the kinematics (2.2) with an-
other one, where the Geld of type hz now has a momen-
tum component A: of the same order as the largest A: of
the other two Gelds involved. I et us extract &om Z~ ~ in
(1.7) the contribution to this kinematical configuration,

~ + Z~ ~. Each of the three fields in the
vertex can be in the modes hq. Z~ ~ corresponds to the
case where the field with the inverse derivative in C~ ~

in (1.7) is hq. This contribution may seem unnatural.
Indeed we shall see now that it just cancels to a large
extent the contribution &om the quartic terms g~ ~ to
particle-particle scattering. The remaining contributions

~ will be considered in the next section.
From C~ & in (1.7) we obtain

'l = 2n T A++ —J A+ —T*A+ —T A+

i * 1-2——J*o) A++ —JB A* ——jB A++ . (5.1)4 +

We consider an action deterinined by Q~s+l in (2.9),
l in (5.1), and the kinetic term and integrate over

hq. We keep only the terms arising &om the leading
term in Z~s+l, because we are interested in the O(k )
contributions to the scattering only. In the kinematics
for which Z~ +~ is written the momenta k of the fields
in Z~ ~ are much smaller. We obtain

i = —4 T OB'8 T —8 (BT* O*T ) — 808'—'+ —(9 (OJ* —o[*J) + O(k ). (5.2)

The first current T is understood to carry large k
The contribution of the quartic terms to scattering becomes more transparent when we rewrite them using the

currents (2.8) as

8 O'T —8 T* ——8 B*J + —0 J*
4 4

—2i& B*T —0 T* ——8 o[*J

+ O' J* —0 8'j+ (9—(h'B*B 'h)3i 2

2

+ a ' -'a*J
2 2

2 2

—3 iD
' T* + —(9*J ——(9 J*

4 4

+(8 'r &)[88 &
—a (88 a 'h —h-+ h'88'8 'h)[).--

We pick up the terins giving a contribution O(k ) to the scattering,

g(4) 2 2@v gg*g —4' g —3 g~e + ye~ 3g—2gg* - + g—2 gJe g*J 3g—2

(5.3)

+2[8'8 '(88 'h'h) + 88 '(h. 8*8 'h) —88 'h'8'8''h[ —(88 8'h*h+h'8'8'8 'h,)). (5.4)

In (5.2) we wrote only the contributions, where T
carries the large k . Here in (5.3) each of the two cur-
rents in every term can carry the large momentum k
Therefore the first term in (5.4) contributes twice and its

I

contribution thus cancels the one of the first term in (5.2)
in the sum. The contributions from (5.3) where a non-
leading current carries the large A: can be disregarded.

We analyze C~ ~+ 8,-„& using the fact that the Gelds
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in the curly brackets in (5.2) and (5.4) carry relatively
small k and large k ~ and that the modes 6 obey (2.5).
First we observe that the term in square brackets in (5.4)
is approximately equal to 0 t9+j and therefore does not
give a contribution O(s ) to the scattering. Also the last
term in (5.4) is approximately proportional to the latter
expression. Further we have in the considered kinematics

BT* + B*T = 0+T + —0 (0*6*06+06*0*6),
2

(5.5)

where again the first term is negligible. This allows us to
write the leading contributions as

l:~ l + C~„= 2n T—0 '( 00'6*6 + 6*00*6
+306'0*6).

(5.6)

We interpret the result as arising kom intergrating over
hq with an action determined by the leading term of E~ +~

in (2.9), the kinetic term, and the induced triple vertex

l:,.'„' = 4n00 0-'A (00'6'6+ 6'00*6+ 306*0*6).

(5.7)

Including this induced vertex we have to remove the
contribution Z~ ~, i.e., the one where the fields with
0 play the role of A, and the quartic terms l:~4l

from which it was generated. Therefore we have now
two types of exchanged fields; writing A++ and A is
not any more convenient notation for the same object. In
Feynman graphs the exchange lines obtain arrows related
to the longitudinal momentum ordering. When A++ and
A become independent, the normalization of their ki-
netic term changes by a factor of 2.

VI. THE OTHER EFFECTIVE
SCATTERING VERTEX

We write now the second contribution C~ ~ of the
original triple vertex to the configuration involving one
field 6& carrying relatively large k

l:~' 'l = 2nf 0*'(A —iB A' )[—60*'0 '6] —20 '0*'(A —iB A' )[0*60'0 '6]
—0 '0'(A +iB A' )[0'6*0*'0 '6] —20 '0*0'(A +iB A' )[0 6*0*0 '6]+c.c.). (6.1)

The contributions with A' can be ignored here.

We write also the contribution l:,„& of the induced vertex l:,.„& in (3.6) to the scattering, i.e. , to the case where both
fields in X++ carry modes 6 with k+ relatively large. We apply (2.5) and (2.7) and disregard contributions which do
not give the second power of the large k+'.

l:I„~l = —nBB*A ( [0+(0 '6+ 00* 6*)(0*0 6 —30* '6*) + c.c.]
—20+(0 '6+ 0* '6*)(0*0 '6+ 00* '6*)). (6.2)

We extract first the terms, which would contribute to helicity-flip scattering and show that they cancel in the sum.
We apply (2.5) and obtain, from (6.1),

l~qI, +q. q. ——2nB* A [ 60* 0—6+ 0*0 60*0 6]+
2nB* A 0[—0~0 60 '6]+ c.c.

Disregarding a term proportional to 0+A we have, from (6.2),

l:,.„~ ~gg+g g. = 2nBB*A [0*0+0 60 6+ 0+0 60*0 '6]+ c.c.,
which indeed cancels in the sum against (6.3).

Now we look at the helicity-conserving terms in l:~ l in (6.1):

lip p„= 2n( AB (6*0* 0—6) —20 'A [0*0 (6*0*0 '6) + 0 (6*0* 0 '6)]
—0 'A [30'0*(6*0*6)—0'(0*6*0*6)]+ c.c.).

Using (2.5) and disregarding total 0+ derivatives we transform the term in the second set of brackets as

0*(0 6*0*0 '6+ 06*00*0 6+ 6*0'0 0 '6+ 0*60 0 6') + c.c. = 0 [0*(0 6*0 '6) + c.c.]+0+(. .).

In the same way we obtain the relation

6' (00*) 6 + c.c. = 2(00*6*00*6)—0 (Bah*0+ 6) + 0+ (. .),

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

which can be used to transform the second term in the last set of square brackets of (6.5) as

0 (0*6*0*6)+ c.c. = 200*6*00*6+[00*(00 6*6) —(00*) 6*6+c.c.] = 0(0+6'0+6—) + 00*(00'h*h+ c.c.).
(6.8)
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Therefore (6.5) reduces to

d' "[,, =au( x 8~(h'8'~8 ~h) ~ (8—+h'8+h) + 28'(8 8 'h'8'8 'h) + c.c.+2 +

—8 88'A [38(h*B*h) —(88'h'h) ~ c.c.] (6.9)

The second term cancels in the sum with the induced vertex 8,.„& in (5.7) resulting from the cancellation between
the quartic terms and the contribution of Z~ ). The first term in (6.9) has to be added to the helicity conserving
contribution of Z,.„z in (6.2) from the induced vertex arising from the integration over hi. The latter can be written
as

]p,.g = —2nA (88') [8—8' h'8 'h] —28 8'[8 8' 'h'8 'h]+1

3= —2nA 8 B~h'8~8 h+ 48iBh'8~8 h+ 28~88' h*BiB'8 h+ —8+h'B~h
2

1—-a,a'a'-'a*a, a*'a-*a2+ (6.10)

We transform the first term in (6.9) using (2.5):

c~ ~[g.g + LP~ = 2aA a[h*a —a h]+ 2a'(aa 'a~h 'a~a h') + —[a+a a+a) + C.C'.

)
.

1
(6.11)

This cancels the contribution of 2,.„& ]g-g up to the last term in (6.10). This remaining term is the efFective vertex for
scattering of partices with large k~ in the gauge (1.2). Transforming to the gauge, where the other incoming particle
momentum p~ plays the role of the gauge vector [i.e. exchanging indices + and —in (1.2)], the result looks similar
to the first eff'ective scattering vertex with the indices + and —exchanged:

g(s —2) ~ g(~ —4) ~ g(—) 2~+ (8 828m —2heB 8+28—2h)

(8+h~g)'8+hats) ). (6.12)

With the results (2.9), (4.4), and (6.12) for the efFective
vertices we recover the kn'own result (1.8) for the efFective
action.

VII. CONCLUSIONS

We have established the direct relation of the multi-
Regge ective action in gravity to the Einstein-Hilbert
action. The method of separating modes according to
the multi-Regge kinematics and of integrating over heavy
modes worked out first for the Yang-Mills case has been
extended to the case of gravity. In an axial gauge with the
redundant metric components excluded we established
the relations of the fields describing scattering (P, P*) and
exchanged (A~~, A ) gravitons to momentum modes
of the two independent physical fields of the metric Quc-
tuation (h, h'). The fields describing exchanged gravi-
tons can be considered as pre-Reggeons.

The extension turned out to be more than a straight-
forward exercise. We had to understand the contribu-
tions of involved interaction terms to the peripheral high-
energy scattering. Compared to the Yang-Mills case
higher accuracy is required in the kinematical approxi-
mations referring to the momentum orderings imposed

by the multi-Regge kinematics and in particular by the
mode separation. The physical reason for this is simply
the absence of dipole radiation.

Being an effective action the applicability of (1.8) is re-
stricted clearly to the kinematical region for which it has
been derived. For -.xample, the exchanged fields A have
a purely transverse propagator. But this would generate
wrong contributions, if one forgets about the condition
(2.4) on the momentum range. Actually these conditions
should be incorporated into the action by damping fac-
tors or by cutouts.

In the case of QCD we have understood earlier [15]
how to deal with fermions in the derivation of the eKec-
tive action. Combining this with the experience from the
present analysis it will be not difficult to generalize it to
supergravity and to the coupling of gravity to matter.

We have restricted ourselves to contributions resulting
in the leading e8'ective vertices which are related to the
exchanges of gravitons contributing each with an addi-
tion power of s. Including s-channel intermediate gravi-
tons results in corrections proportional to one power of
lns for each loop. In view of this it would be desirable
to include into the effective action also the nonleading
graviton exchanges, which do not change the power of
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8 of a given contribution to the amplitude. The corre-
sponding effective scattering vertices are the second to
fourth terms in 2( +i in (2.9). However this requires a
further improvement of the kinematical approximations.

There are ideas about the extension of the approach
to covariant gauges, which should be tried first in the
Yang-Mills case. Also the approximation used here in
the integration over the heavy modes can be iInproved
with some effort.

It is important to extend the analysis to the full gravity
action, including the terms of all orders in the metric

Huctuation h. We see now good reasons to hope that
this can be done.
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