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Stochastic tachyon fluctuations, marginal deformations, and shock waves
in string theory
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Starting with exact solutions to string theory on curved spacetimes we obtain deformations that
represent gravitational shock waves. These may exist in the presence or absence of sources. Sources
are efFectively induced by a tachyon field that randomly Buctuates around a zero condensate value.
It is shown that at the level of the underlying conformal field theory (CFT) these deformations are
marginal and moreover all n' corrections are taken into account. Explicit results are given when the
original undeformed four-dimensional backgrounds correspond to tensor products of combinations
of two-dimensional CFT's, for instance, Si (2,IR)/RSSU(2)/U(1).

PACS number(s): 11.25.Mj, 11.25.Hf

I. INTRODUCTION

Gravitational shock waves in general relativity have
been considered in depth in the past as well as more re-
cently, with the prototype example being the shock wave
due to a massless particle moving in a flat Minkowski
background [1]. The generalization to the case where the
particle moves along a null hypersurface of a more gen-
eral class of vacuum solutions to Einstein's equations was
found in [2] and for the cases where there are nontrivial
matter fields and a cosmological constant in [3]. Explicit
results were given when the curved background geometry
is the Schwarzschild black hole in [2], and for the cases of
the Reissner-Nordstrom charged black hole, the de Sit-
ter space, and the Schwarzschild —de Sitter black hole in
[3]. Other interesting solutions representing the gravi-
tational field of massless particles with extra quantum
numbers (charge, spin), cosmic strings, or monopoles in
a 6at Minkowski background [4], or in de Sitter space
[5), have been obtained by infinitely boosting [1,2] known
solutions representing curved spacetimes. For the cases
where instead of a massless particles there is a distri-
bution of massless matter, such as spherical and planar
shells, see [6,7].

The main motivation of dealing with gravitational
shock waves is that, as was argued in [8], gravitational
interactions dominate any other type of interaction at
Planckian energies (see [9—12]) and that in an 8-matrix
approach to black hole physics [8], one needs to take into
account the interactions between Hawking emitted and
infalling particles as well as their effect on the original
black hole geometry. Thus, having the exact solutions to
Einstein's equations (and for that matter to any other
theory of gravity) of a background geometry coupled to
a distribution of massless matter moving along a null hy-
persurface is equivalent to fully taking into account all
classical back-reaction-type effects.

The purpose of this paper is to analyze gravitational
shock waves in the context of string theory. This was
partially done in [3], but &om a general relativity point
of view. However, as we shall see, the origin of such
solutions in string theory is different &om that in gen-
eral relativity. Moreover, new features will be found and
a direct connection with the underlying conformal field
theory (CFT) will be made. The paper is organized as
follows. In Sec. II, we develop the necessary formalism
and obtain the general condition for being able to in-
troduce a shock wave in a quite general class of solu-
tions to string theory with two different methods. One
is the general relativity inspired traditional method [2],
where one essentially solves the P-function equations as-
suming that they are satisfied by the background geom-
etry fields. The second method, which is new and uses
CFT techniques, reveals that the shock waves correspond
to marginal perturbations of the CFT corresponding to
the original background. It yields the same results as the
more traditional method in a straightforward way requir-
ing however much less effort. In addition, as we shall see,
it is applicable to more general situations. We also show
that random fluctuations of the tachyon field around its
zero average value effectively produce source terms for
gravitational shock waves, which nevertheless may exist
even in the absence of sources. In Sec. III, we apply the
general formalism to several cases where the background
fields correspond to tensor products of various combi-
nations of two-dimensional (2D) exact CFT's. We end
the paper with concluding remarks and a discussion in
Sec. IV. In order to facilitate the computations of Sec. II
we have written Appendix A containing components of
various useful tensors and Appendix C containing ele-
ments of stochastic calculus. In Appendix B we use the
CFT method to find shock waves on more general back-
grounds than the ones considered in Sec. II.

II. GENERAL FORMALISM AND RESULTS

'Electronic address: sfetsosofys. ruu. nl
Consider the string background in d spacetime dimen-

sions that comprises a metric, an antisymmetric tensor,
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and a dilaton Geld given by

ds = 2A(u, v)dudv+ g(u, v)h;, (x).dx'dx',

B = 2B„;(u, v, x)du A dx' + B;~ (u, v, x)dx' A dx~, (2.1)
4 = O(u, v, x),

with (i, j = 1, 2, . . . , d —2). Let us suppose that a "dis-
turbance" is introduced (whose origin and nature will be
examined later in this section) with the net efFect that the
spacetime is described by (2.1) only for u ( 0, whereas
for u ) 0 we should replace in (2.1) v + v + f(x) and
dv -+ dv + f;dx' Th.us the two spacetimes for u ( 0
and u ) 0 are glued together along the null hypersurface
u = 0 [2]. A compact way to represent the spacetime
fields is by using the Heaviside step function 6 = 8(u):

Using the results of Appendix A we find that consistency
requires the conditions

A. =g„=C „=0 at m=0. (2.6)

In addition the shift function f (x) is obtained by solving
the linear differential equation

(2.8)

c(x)—:—
/ g,„„+g4„„/, b = k —,1 (d —2 l g

A q 2
'"" '"")' A'

where all functions are computed at u = 0 and the Lapla-
cian is defined as

ds = 2A(u, v + ilf)du(dv + 6f;dx')

+g(u, v + 6f)h;, (x)dx'dx',
B = 2B„,(u, v + 8f, x)du A, dx'

+.B;~(u, v +

iaaf,

z)dx' A dx~,

Ci = 4(u, v + ilf, x).

The coordinate change

u m u, v m v —f(x)6(u), x' -+ x*

(2.2)

(2.3)

0;e v hh'~0~.
e~ h

(2 9)

The conditions (2.6) and (2.8) were derived by exam-
ining the metric P function. The rest of the equations
give no additional information. We have also included
a specific source term (with strength proportional to a
constant A:) containing a h function defined in the trans-
verse x' space and normalized with respect to the "string
measure" e@~h computed at u = 0: namely,

gives a form where various tensors are easier to compute: d xe v M(" )(x) = 1 at u = 0. (2.10)

ds = 2A(u, v) dudv +. g (u, v) h, , (x)dx'dx'

+P(u, v, x)du, (2.4)
B = 2B„;(u,v, x)du A dx'+ B;~(u, v, x)dx' A dx~,

4 = e'(u, v, x),

where P(u, v, x)—:—2A(u, v) f(x)b(u), and b(u)
d8(u)/du is a h function. In order to determine the shift
function f(x) we require that the P-function equations
that govern the dynamics of the lowest modes of the
string are satisfied:

B„„—D„D„C —4H„pgH„~ = O„TB„T,

Dg(e H"„„)= 0, (2.5)
C = d+ zn'[D 4 + (D4) —sH„„—(DT) —2V(T)],
D T+ D„@D"T= V'(T),
where the tachyon potential is V(T) Tz and C de-
notes the central charge. By assumption, in the bulk
of the space (u g 0) and with zero tachyon field, i.e. ,
T = 0, these equations are automatically satisfied by the
background fields (2.4) or equivalently (2.1). However, as
one might expect, there are extra contributions from the
boundary at u = 0 [in fact multiplied by a h(u) function].

For zero tachyon field (T = 0) these are the one-loop P-
function equations corresponding to the metric, antisymmet-
ric tensor, and dilaton fields (see, for instance, [13,14]). The
tachyonic contributions [15] are nonperturbative in the loop
expansion.

Conditions (2.6) and (2.8) are the string theory analogue
of the similar conditions found in the context of Einstein's
general relativity in d dimensions [3] and they reduce to
them for a constant dilaton Geld.

So far we have given no explanation at all about the
origin of the source term present on the right-hand side
of the equation in (2.8). Strictly speaking for a zero-
tachyon Geld it should be zero. In fact in certain cases
(but not in general) that difFerential equation with the
zero right-hand side has a solution. It can be shown (see
also [3]) that in such cases the term

—2 d zh(u)f(x)A(u, v)BuBu (2.11)

In order to cast it into that form we have used the fact that

This is nothing but the (u, v) component of the metric P func-
tion computed at u = 0 and simplified by using (2.6) and the
fact that H„;~ =0 at u = 0 [this f. ollows from the (v, v) and
(v, i,) component of the metric P function].

Had we included a H„, component in the antisymmetric
tensor we should have required that, in addition to (2.6) and
(2.8), B„, = O(u ) and B„,,„=O(u ), with n ) — and
m ) 1, near u = 0. If B„,,„=O(u) an additional nonlinear
term O(f ) seems to appear in (2.8). Since this could be a
new feature it might be interesting to explore it further.

A,„d—2g, 1+ ' +4, .— H„.,H„.,h" =0 at u=0.
g

' 2gA

(2.7)
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corresponds to a marginal perturbation of the original
two-dimensional cr-model action for the background (2.1)
in the sense that it solves the corresonding conditions as
they were found, to leading order in n, in [16] (in this
paper it was assumed that the antisymmetric tensor was
identically zero, but presumably a generalization to the
nonzero case exists). In fact it can be shown that these
conditions reduce, in our case, to just (2.6) and (2.8). Be-
fore we explain the origin of the b-function source term
on the right-hand side of (2.8), let us rederive (2.6) and
(2.8) using standard CFT techniques. We will show that
(2.6) and (2.8) are the necessary and sufficient conditions
for (2.11) to be a marginal perturbation (in fact we will
argue that it is exactly marginal) and that these condi-
tions hold beyond the one-loop approximation, i.e., are in
fact exact to all orders in a'. This method is considerably
faster and could be easily adopted to other similar situa-
tions (see Appendix B).The first step is to show that Bu
has conformal dixnension (1,0) with respect to the energy-
momentum tensor corresponding to the background (2.1)
in the limit u -+ 0 [remember the b(u) function]. The
holomorphic component of the energy momentum tensor
3.s

T(u, x) = ~(u)h(u, x), (2.15)

where w(u) is given by the stochastic integral in the Ito
calculus,

dao(t) e"", (2.16)

and h(u, x) is any deterministic function that behaves as

we can slightly relax this condition by demanding that
only its average value is zero but otherwise it can ran-
domly fluctuate. The origin of such Quctuations can be
either statistical, due to our inability to determine its pre-
cise value, or of more fundamental nature, as remnants
of stringy phenomena at high energies (ambiguity in the
usual spacetime description at Planck scale, etc.) that
effectively make, at low energies, the tachyon to appear
Quctuating, or a combination of both. We will show that
these fluctuations induce (upon taking the average of the
tachyon energy-momentum tensor) the nonzero source
term on the right-hand side of (2.8). Specifically let us
consider a tachyon T that factorizes as

h(u, x) = Qp(x)u+ O(u ), (2.17)
T = —,(: ABuBv: +:gh,.~Bx'Bx:)+:B 4:, (2.12)

where a proper regularization prescription is implied. In
general finding the operator product expansions (OPE's)
for the Gelds u, v, x is very difBcult due to nonlinearities.
However, close to u = 0 we can infer that

u(z, z)v(tv, ur) = —ln ~z —u)~ (2.i3)

B„e Q GG~"B„—A(u, v) f(x)b(u)e~ G"

where the ellipsis denotes terms that vanish as z ~ m

(and z ~ ur). Therefore Bu at u = 0 will be a dimension
(1,0) operator with respect to (2.12) and its antiholomor-
phic partner, provided that all possible anomalies arising
&om contractions with the fields u, v in A(u, v), g(u, v),
and 4(u, v, x) vanish. It is easily seen that conditions
(2.6) guarantee exactly that. Rephrasing, conditions
(2.6) guarantee that close to u = 0 the CFT for the
longitudinal part is effectively that of two &ee bosons.
Analogously Bu at u = 0 has dimension (0,1) and thus
the operator BuBu has dimension (1,1) at u = 0. Hav-
ing established that, we need to discover the condition
A(u, v) f (x)h'(u) has to satisfy in order to really be a func-
tion, i.e., have dimension (0, 0). Then the term (2.11) will
correspond to a marginal perturbation (but not in prin-
ciple exactly marginal). On general grounds, the dimen-
sion D of A(u, v) f(x)b'(u) is determined from the eigen-
value, Klein-cordon-type, equation

where p(x) is a densitylike function. Elements of stochas-
tic calculus are given in Appendix C. Using them we com-
pute the expectation values

(~'(u)) = »(u)
(~(u)~'(u)) = ~'(u)

(~"(u)) = —.
'~"(u)

(2.i8)

where the prime denotes differentiation with respect to u.
From these and the leading-order behavior of h(u, x) near
u = 0 we obtain expectation values involving directly the
tachyon Beld

(T) =o
(B;TB~T) = 2B;Qp(x)B, +p(x)u b'(u) = 0,

{B„TB;T)= i2B;p(x)(u b'(x) + 2u8(u)) = 0,

{(B-T)')= p(x) [2~(u) + 2u~'(u) + —.'u'~" (u)]
= p(x)~(u).

(2.i9)

It is understood that (2.19) hold in a distribution sense
with respect to the variable u and therefore integration
over a smooth function of u is implied.

The upshot of this analysis is that by taking the ex-
pectation value of the P-function equations and by using
(2.19) we obtain the same equations we would have ob-
tained had we set the tachyon field to zero except &om
a source term on the right-hand side of the p = v = u
component of the metric P function. Namely,

= DA(u, v) f(x)b(u), (2.14)

where g—G = g&" l~ ~h. Demanding that D = 0 and
after simplifying using (2.6), the above equation reduces
exactly to (2.8) with a zero right-hand side.

So far we have set the tachyon field to zero. However,

Notice that without taking the average the P functions are
not satisfied due to the tachyon stochastic Quctuations. How-
ever, our philosophy is that they need only be satisfied in the
"average. "



2326 KONSTADINOS SFETSOS 52

R„„—D„D„@—4(H')„„=p(z)b(u), (2.20)

gn;+n', g gm;+m', g gl;+l', C f71bw
vn' gun' 'tv 'gum' gv 'gu (2.21)

where the relation between the various integers

) (n; + m;+ t;) = 2n+ ) (n,'+ m,'. + l,') ) 2n (2.22)

should also hold. This follows from the facts that near
u = 0 there is an invariance of the theory described by
(2.1) under u, v interchange [cf. (Al) —(A4)] and that the
energy-momentum tensor must be invariant under this
symmetry. Since for regular functions around u = 0 each
derivative with respect to v contributes a power of u, it
can easily be seen that (2.21) vanishes as a distribution

thus proving that random fluctuations around a zero
tachyon background induce source terms for gravitational
shock waves in string theory. Since we are interested in
the Green's functions we chose p(x) = kb(" )(x —x').
The result for any other distribution p(x) is given by the
integral 1'[dx']f(x, x')p(x'), where the measure [dx'] is
defined according to (2.10). Let us also mention that the
central charge coincides with the value obtained by sim-

ply having a vanishing tachyon. Not only do the tachyon-
dependent terms vanish upon taking the average but also
the derivatives of them with respect to all fields (includ-
ing u) as well. Also it is obvious that in this case the term
(2.11) does not represent a marginal perturbation by it-
self. However, its conformal anomaly balances that of
the stochastically fluctuating tachyon. This is precisely
the meaning of (2.8).

In the CFT approach to deriving (2.6) and (2.8) the
backgrounds (2.1) and (2.4) are supposed to satisfy the
P-function equations to all orders in perturbation theory
in powers of n' in the standard "conformal scheme" (see
[17]), where also the tachyon equation takes the simple
form given by the last equation in (2.5). Thus, we con-
clude that (2.6) and (2.8) are indeed valid to all orders
in conformal perturbation theory in the standard "con-
formal scheme. "

The final comment is on whether or not (2.11) repre-
sents an exactly marginal perturbation. This would be
the case if we can argue that higher-order terms in f
do not spoil conformal invariance. In fact such nonlin-
earity in the f terms does appear when we consider the
P-function equations [see (A2) and (A3)]. However, in
that case one can show that these terms vanish in a dis-
tribution sense [3]. In the present case we can argue that
anomaly terxns proportional to powers of f in the Vira-
soro algebra generated by the energy moxnentum tensor
corresponding to the background (2.4) also vanish, as fol-
lows. A possible such term contains the factor

thanks to the inequality in (2.22). Let us once more em-
phasize that the term (2.11) corresponding to an exactly
marginal perturbation is a consequence of (2.6) and (2.8)
and the presence of the b(u) function, and that this is not
generally true for marginal perturbations with Abelian
chiral currents [18].

III. APPLICATIONS

In all of our applications we start with the direct prod-
uct of two two-dimensional CFT s with a metric and dila-
ton of the form (the antisymmetric tensor is zero)

ds = 2A(u, v) dudv + bU (x)dx'dx',

c'(»*) =&~~( )+& (*' *')
(3.1)

f( .
) 2 b) - @~(x)~'k(z')

N + C
(3.2)

where we denoted by N all possible quantum numbers
arising &om the eigenvalue equation

A4'~(z) = E~C'~(z). — (3 3)

Notice that since we are dealing with compact mani-
folds corresponding to the transverse metric the Lapla-
cian (2.9) is a negative definite operator. For this reason
the minus sign on the right-hand side of (3.3) implies that
EN & 0. The eigenfunctions satisfy the orthonormaliza-
tion condition

d ze~ Jh@'~(z)4~(z) = b~ ~, (3.4)

and the completeness relation

):+~(x)~N(x') = b"'(z —*'). (3.5)

namely, the longitudinal and the transverse parts are de-
coupled. The longitudinal CFT provides the "time" co-
ordinate for the metric of our model and we will take it to
be either the one corresponding to the coset SL(2,R) k/R
[19,20], or that corresponding to the flat two-dimensional
Minkowski space. As the transverse part we will take
either the compact coset SU(2)k/U(l) [23] or flat two-
dimensional space (with possibly a linear dilaton) or the
dual to the two-dimensional flat space. The coupling be-
tween the two CFT's is only due to the term (2.11) cor-
responding to the shift function f (x) which satisfies the
difFerential equation (2.8), with constant c. The solution
to this difFerential equation can be expressed as an infi-
nite sum over eigenfunctions of the Laplacian (2.9). The
result is easily found to be (we ignore possible solutions
of the homogeneous equation)

Tachyon Quctuations are not the only possible such source.
For instance, if A(u, v), g(u, v) are constant functions and
4(u, v, x) = C'(x) + ku8(u) we obtain a source term with
uniform distribution p(x) = k = const, because in this case
D D C = kb(u).

It can be shown that if we take as the longitudinal CFT
the one corresponding to the dual of the two-dimensional
Minkowski space [corresponding to the coset Es/(R 13 U(1)
[21,22]], conditions (2.6) are not satisfied.
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Notice that, in accordance with (2.9) and (2.10) the
"string measure" e~+~h has been used and not just ~h.
Also that, in the sourceless case, (3.3) is exactly of the
form (2.8). Therefore, if c & 0 and moreover coincides
with one of the eigenvalues, i.e. , c = —E~ for some N, the
corresponding eigenfunction 4~ gives the solution for the
shift function f In. the case with source, solution (3.2)
is not valid if c coincides with any of the eigenvalues E~ .
Then the solution will be given in terms of the "partner"
of the 4'iv in (3.3) which has the appropriate singular
short-distance behavior that produces a b function. (For
specific examples see [3]. An important one is gravita-
tional shock waves with sources in four-dimensional de
Sitter space. ) These cases will not be considered in this
paper. Let us also mention that for notation, conven-
tions, and various results involving special functions we
will use [24].

A. SL(2,IR) i, /IR IR R'

For this model the metric and dilaton are

2c
s = dudv + a (dxi + dx, ),

tLV —1
@ —4'~~(u v) + 4'J (+i) @~~

= ln(1 uv) QJ = 2o,'p2:1,

—oo & u, v, x, x & oo. (3.6)

0,C + 2no (3.7)
1

which after substituting 4 ~ e ' 4 becomes the
eigenvalue equation for the standard Laplace operator
in Euclidean Hat space with E ~ E —ao ~ Therefore
the eigenfunctions and eigenvalues (in a definite angular
momentum sector when ap ——0) are

1 —aPP cosg imPJ (k )
/2vr

Eg ——k + no ~

(p, 4) =

(3.8)

If we denote by c = no + ea then the solution for the
shift function is

where a is a constant and e = sgn(k), with (—k) being the
central extension of the SL(2,R) i, current algebra. For

1 the causal structure of the spacetime is that of a
black hole [20] with a singularity at future times t = u+v,
whereas for e = —1 it has the cosmological interpretation
of an expanding universe with no singularity at future
times t = u —v (see [27]). We have also allowed for the
possibility of a linear dilaton in the transverse part with
strength proportional to the constant no. In this case the
eigenvalue equation is

f( Q. P )
— b ~0(P ~~s4+P «&s0 ) ) dk tTA(f Q )J~(k )J (k I)

+ C
rn =—oo

which after using a resummation theorem for Bessel functions and computing an integral becomes
' —Kp(~cR) if c ) 0,

f(p, ~;-', ~') = b --o( -'" '-'')» I-(~) if e = 0,
—Np(~~c~B) if c & 0,

(3.9)

(3.10)

where R = gp2 + p'2 —2pp' cos(P —gV). Another way to
obtain the same result without resorting to the general
prescription (3.2) is by noticing that after substituting

1f -+ e ' f the equation for f is either the Bessel equa-
tion (if c & 0) or the modified Bessel one (if c ) 0) and
that the special functions in (3.10) are the only solutions
with the appropriate short distance logarithmic behavior
that produce the b' function. Let us xnention that the
case of Bat space in the longitudinal part corresponds to
letting e = 0 in (3.10) [but not in (3.6)] be zero. This is
in fact the analogue of the result of [1] for string theory.
Notice however that the presence of the linear dilaton in

7Even though (2.6) and (2.8) are exact expressions, for sim-
plicity of the presentation we have chosen to work in the small
n' limit corresponding to a high level (k )) 1) current algebra.
The same remark holds for the other examples we consider in
this section. The exact, in n', expressions for f, in the stan-
dard "conformal scheme" (see [17]), can be found using the
results of [25,26].

the transverse part modi6es the solution which now de-
pends explicitly on P and also it vanishes exponentially
for large R's instead of growing logarithmically.

In the sourceless case for c & 0 (c & 0) a basis of solu-
tions of (2.8) for f is given by (3.8) with the replacement
J (kp) ~ J (~~c~p) [I (~cp)]. For the case c = 0 (a =
np) a solution is f(x', x') = e ' [(x')' —(x')'].

B. SL(2,IR) i/R(dual to 2D fiat space)

In this case the metric and dilaton are

26 4
s = dudv+ a

i dp + dgP—
tcv —1 )

@ —QI)(u, v) + P~(p)~ P() —ln(1 —uv), P~ = ln(p ),
—oo &u, v &oo, 0& p& oo, PC [0, 2n.], (3.11)

where a is a constant, e=sgn (k) and the physical in-
terpretation of (3.11) is similar with that in the previous
example. The background in (3.11) can be obtained if we
write the transverse part of the 'background (3.6) (with
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2/2 QP P (3.12)

Changing variables as p = ( and substituting

y) amp —
~

rn
(
t'/4 Tg ) (s.is)

we see that F(() satisfies the Laguerre equation

F"+ (1 —21ml&)F' + 4 (E —Iml)F = 0. (s.i4)

This has as solution I aguerre polynomials provided that
E = ~m~(2n+ 1). Therefore the appropriately normalized
eigenfunctions and the corresponding eigenvalues are

no ——0) in terms of polar coordinates and then perform
a duality transformation with respect to P. Notice that
there is no linear dilaton term [as in (3.6)] for the trans-
verse part since that would not be consistent with con-
formal invariance. The eigenvalue equation to be solved
is

+., (p, 4) = 2~' m p

(s.i5)
~(2 + 1), = 0, 1, . . . , c Z —(0).

Let us point out that had we missed (3.17) we would not
be able to write down the completeness relation (3.5).
The solution for the shift function after we compute an
integral is

Notice that we have excluded the value m = 0 since
the corresponding eigenfunctions and eigenvalues become
zero. In addition to the discrete part of the spectrum
there is also a continuous one exactly when m = 0.
One way to see that is to cast (3.12) in the form of
a Schrodinger equation and read oIII' the correspond-
ing efFective potential, which turns out to be V(p)
s(m p —p ). On general grounds for m g 0 there are
only the bound states with the discrete eigenvalues (3.15)
whereas for m = 0 the spectrum is continuous with

4'y(p) = — Jo(kp), Eg = k . (3.17)
&27r

n=Om=z
(s.is)

where t" = ea and

Ip(~cp —)&Kp(~cp&) if c ) 0,
2~o(V lclp&)~o(V lclp&) i«& o

(s.i9)

is the P-independent part of the solution. In the case of c = 0 (corresponding to taking Hat Minkowski space in the
longitudinal part) the solution is found to be

f(p, P; p, P ) = 6
~

in' —) cosm(P —P[)Io(4mp&)Ko(4mp&)
m=1

(3.20)

where, as usual, p& (p&) denotes the smaller (larger) of
IP)P.

As an important remark let us mention that although
certain backgrounds might be related via a duality trans-
formation, the presence of the term (2.11) destroys (in
general) this relationship. An example is that although
(3.6) (with no ——0) and (3.11) are duality related, after
the addition of the term (2.11) with f (z) given. corresond-
ingly by (3.10) and (3.18) there is no duality transforma-
tion that relates them, because now both backgrounds
depend explicitly on the angle P and there is no isorne-
try with respect to which dualization can be done. An
exceptional case is for p' = 0, since then (3.10) does

In addition to directly solving (3.12) with 84,4' = 0, there
is another way to obtain it from (3.15). Namely, by letting
m —+0, n= —k /m —woo, x= —k p, andusing

(3.16)

not depend on P. Obviously, after dualization the new

f is given by only the first term in (3.18) (computed at
p' = 0), namely the P-independent part, corresponding
to the angular uniform distribution p(r) = (I/27rr)h(r)
[notice that, h( )(x) = (I/r)b(r)b(P)].

The solution for the shift function in the sourceless
case and in a definite angular momentum sector is for
m = 0 given by f Io(ap) if e = 1 and by f Jo(ap)
if e = —1. For m, g 0 the solution contains a con8uent
hypergeometric function, i.e.,

f O(-'(- + i) 1 -'[m[p'). '-~.-~-~P'/4

which becomes (3.15) if c is one of the eigenvalues of the
Laplacian.

C. SL(2,R) g, /RSU'(2)l, /U(1)

For this model the corresponding metric and dilaton
are
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2 26
ds = dudv+ a

~

d0 + tan —dP
'lLV —1 J

O' = P~~(u, v) + @z(0), P~~
= ln(1 —uv), Pz = ln cos20

—oo(u, v(oo, PE [0, 27r], 0C [0, z'],

(3.21)

where e = sgn(k) and a = k'/k and similar physical interpretation as before. After we change variable as x = cos0,
Eq. (3.3) becomes

(1 —x')O'C —2xB 0 + 0&4 = EC—
i —x ~ (3.22)

Further substitution,

x P) (1 x)l le' &T(x), m g Z, (3.23)

shows that T(x) satisfies a Jacobi equation

(1 —x')T" —2[lml + (lml + 1)x]T'+ (E —lml)T = o. (3.24)

A complete set of normalizable solutions to it exists (the so-called Jacobi polynomials) provided that E = n(n+ 1) +
(2n + 1)~m~, where n is an integer. Using instead of n the non-negative integer l = n+ ~m~ we eventually get

+~,-(0 4) = 2E + 1 im@ ~ 2ImI p(2ImI, O) ~
l —Im I

(3.25)
E~ = l(l+1) —m, l =0, 1, . . . , m= —l, —l+1, . . . , l,

where a compatible with (3.4) and (3.5) normalization factor has also been included. Notice that the eigenvalues
E~ are exactly what one expects &om the coset construction for SU(2)g/U(l) for states at the base of the Virasoro
modules and for high level k. The two terms that appear are the eigenvalues of the quadratic Casimirs for SU(2) and
U(1), respectively. It is now straightforward to write down the solution for the shift function according to (3.2):

OO

f (0, P; O', P') = 6) — Pi (cos 0)Pi (cos 0')-l l+1 +c
0 0').).(l+, ) cosm(y —y ), 0, 0 (, o) (, o)

l 1+1 —m +c 2 2
1=0 m=1

(3.26)

where c = ea .
It should be possible to obtain expressions (3.10) (for

no —— 0) and (3.18) by taking appropriate limits in
(3.26). The reason is that the corresponding space-
times are related via limiting procedures. Specifically,
if 0 = bp, P ~ 2P [that will efFectively change m + m/2
in (3.25)], c —

& c/b with b ~ 0 the background (3.21)
becomes that of (3.6) with no ——0. Naively the shift func-
tion as given by (3.26) becomes zero. However, if we treat
carefully the contribution coming from the l = k/b ~ oo
values in the sum (which in this limit becomes an integral
over k) and use

hm P&. ~&
I

1 ——
~

= (—1)"L,~(x),
m~ oo n)

(3.28)

lim cos

m/b2 will not be an integer. To make P again periodic
we identify points in the real line, i.e., we quotient with
a discrete subgroup of R. Then the background (3.21)
becomes that of (3.11). Then by letting l = m/b + n
and using

llm — P) cos — = J~ x (3.27)

forl = k/b, x = pkandn = m, P = 0weobtain
(3.9). Next we let 0 = 7r —bp, P —+ Pb, c ~ c/b
with b —+ 0. Because of the rescaling in P the new P will
not be periodic and the corresponding eigenvalue m +

with x =
z mp, n = 2m/b, P = 0 we obtain from

the double sum term of (3.26) a similar term in (3.18).
Obviously the case m = 0 corresponding to the first term
in (3.26) requires a different treatment since in this case
we cannot take the m ~ oo limit. In fact this term in
(3.26) becomes fo(p; p') in (3.18) after using (3.27) for
l = k/b, x = pk, n = P = 0, replacing the summation
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over / with an integral over the continuous variable k and
evaluating this integral.

I et us finally mention that if the transverse CFT is the
coset SL(2,R) ~ /IR corresponding to a "Euclidian black
hole" then we should analytically continue 0 —+ ir or
0 ~ 7r+ir and in (3.26) sum over the appropriate repre-
sentations functions for the noncompact group SL(2,R).

IV. CONCLUDING REMARKS AND
DISCUSSION

In this paper we investigated gravitational shock waves
in string theory. We started with quite a general class of
background solutions to the one-loop P-function equa-
tions and found the conditions [see (2.6) and (2.8)] that
should be fulfilled in order to be able to introduce a shock
wave via a coordinate shift. These shock waves may exist
with or without sources. In the former case the source
term was provided by tachyon fluctuations around a zero
condensate value. In the sourceless case we rederived
the same result by using CFT techniques and demand-
ing that the relevant extra term in the 2D o-model ac-
tion [see (2.11)] corresponds to a marginal perturbation
(which was argued to be exactly marginal). In the case
with sources the perturbation is not marginal by itself
but it produces the necessary anomaly that cancels the
term produced by the tachyon fluctuations, so that the
combined model stays conformal. Moreover, the CFT
method reveals that these conditions have the same form
to all orders in o.'. We also gave explicit results in some
important four-dimensional cases where the background
geometry had an interpretation in terms of exact CFT's.
Further utilization of the CFT method is done in Ap-
pendix 8 [see (83) and (84)].

From a string phenomenological point of view, the fact
that random tachyon fluctuations give rise to gravita-
tional shock waves is an important conclusion since the
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APPENDIX A: USEFUL TENSORS

The nonvanishing Christoffel symbols corresponding to
the metric (2.4) are

F„Au
2A A

2A2

A„

g v
ig ~ &g )2AFA„F
A2 ' " 2A'

( g „Fg,„'t
I-2A+2A I""

F.
ui

(A1)

hiI F
2g 2g

r;.„=—,'h'(h, „,+ h„„—h, „,).
ri g vpi

2 2g 2

Using the above expressions we find that the nonvanish-
ing components of the Ricci tensor are (we substitute
F = 2Afh [see—(2.4)])

nonlinear interactions of shock waves lead to interesting
formations [28], including black holes (see, for instance,
[6]). Questions of this nature should be further investi-
gated.

It would also be interesting to consider scattering of
particles and strings in the shock wave geometries we
have obtained and in particular associate the results (for
instance, the pole structure of the S matrix [9]) with the
CFT properties of the corresponding backgrounds.

d —2 (guAu guu 9~1 A~ d —2g„
2 l gA 9 29~) g

" 2 g

+
I

2
'"" —2 '", '" + (g„A„+g„A„)

I
Sf+2( A„„A„A„d—2 y (A„„

A A2 2gA '" '" '" '"
r ( A

d —29„A„~
A2 A2 gA )

(A„A„
tCV

A, uv d —2 g ugv
2

d —29„„& (A'„A„„'"" I+I
2 g r lA2 A

d —2 g„A„
2 9A )

(A2)

a =-I'" "-+"-laf„

d —2 (g„A„g'„9„„1
2 l gA 2g2 g )

'

B =A(-) l(d-' - -+ -ih 'd-"-+ - h b.
2 A A

'
2 A A r
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The above expressions for the Christoffel symbols and
the Ricci tensor were derived in [3]. For the reader' s
convenience we included them in this paper as well. The
components of D„D 4 with 4 = 4(u, v, x) are given by

D„D„4=
/

C'„„— '"4 „/A„
A

——(A„@„+A„C„)bf+C „b'f

bh"—f 4 —2 '" '"b f

—2 d z uAu, v, xAu, v, xOuBu.

A„=E„=g~ =4„=A„=O at u=0. (83)

Notice that because of the dependence of A(u, v, x) on
the extra coordinates u, v this term cannot be obtained,
in general, via a simple shift of v as (2.11). Demand-
ing that OuOu has dimension (1,1) with respect to the
energy-momentum tensor corresponding to (81) imposes
the conditions

D„D 4=4„
D„Di4 = 4„i

D„DC=4

D„Di4 = 4„i

A V@ vlf
'" 4'; + 4' „f;b,
g

A 4„'A'
g,v@
2g

(A3)

Notice that, among other differences with (2.6), there is
now a condition on the function A(u, v, x) itself. De-
manding that A(u, v, x)b(u) transforms like a function
and adding the source term (due, for instance, to stochas-
tic tachyon fluctuations) we obtain the linear differential
equation

DDC =4,, —I,"4 + (g„@„+g„C„)h;.
'"

h;~b fg„C „

We also compute

AA(0, v, x) —c(v, x)A(0, v, x) = 2vrkb~" i(x —x'),
(84)

1 (1,,c(v, x) = —
~

—g"g;,. „„+4„„~,

(H')„„=

(H') „„=
(H')„„=

(H')„; =

Hvij Hv&&h h + HvviHvvj h f b&

g gA

—H„;~H„I,I 6 6 — H„„iH„„~6
g gA
1 ki lj—H;~H I ih h,

g

—H„.)Hi „h~ 6'"—
g

2
. . -2Hue jHuimh

gA

H„„,H„; h ~ fb, .
Ag

(A4)

(H )vi =
2 Hvj iHimv, h h + Huvj Hvimh

1 Arn In 2
(H );~ = H;i, iH~ „h—h" — H;„„H,„„

g

where all functions are computed at u = 0 and the Lapla-
cian is defined as [cf. (2.9)]

0;e ~gAg'~ 8,e~ ~gA
(85)

It is easy to see that (83) and (85) reduce to (2.6) and
(2.8) when the background (Bl) specializes to (2.1). In
the cases where E(u, v, x) is zero at u = 0, arguments
similar to (2.21) and (2.22) show that the term (82) cor-
responds to an exactly marginal perturbation.

An example of a background belonging to the more
general class (81) is given by

2
(H; „H,„„+H; „H,

gA
+2H; „H,„„fb)h.

ds = 2V (dudv + dzdz),
V = 2t + (uv+ zz)

4 = ln V, H„p ——2e„ppO"4,
(86)

APPENDIX 8: SHOCK WAVES ON MORE
GENERAL STRING BACKGROUNDS

In this appendix we construct shock waves on more
general than (2.1) string backgrounds using the new
method based on CFT tehcniques that was introduced
in Sec. II. Consider the string background

ds = 2A(u, v, x)dudv + E(u, v, x)du

+g,, (u, , v, x)dx'dx',
B = 2B„,(u, v, x)du A dx' + B;~(u, v, x)dx' h dx~, (Bl)
4 = 4'(u, v, x).

Let us add to the cr-model action corresponding to that
a similar term to (2.11):

where C is a constant. When C = 0 this corresponds to
the direct product CFT of SU(2)i, with a timelike boson
having a background charge [29] or the Minkowski contin-
uation of the "semiwormhole" model, with N = 4 world
sheet sypersymmetry, of [30]. It is easy to show that (84)
reduces to EA = 2mkb&2&(z —z'), i.e. , the same as in the
flat space case, with solution A = k ln~z —z'~. This is
not surprising since the Einstein metric corresponding to
(86) is the Minkowski one.

It is important (in order to exclude any surprises) to
verify that (83) and (84) also follow by requiring that the
P-function equations are satisfied for the generic back-
ground (Bl). Such a tedious computation has been ex-
plicitly performed and the result is exactly (83) and (84) .
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APPENDIX C: ELEMENTS OF STOCHASTIC
CALCULUS

In this appendix we present some elementary facts of
stochastic calculus that are needed in order to prove
(2.18)—(2.20). For more details the reader should con-
sult one of the many relevant books and review articles
in the literature (see, for instance, [31]).

A stochastic integral of a representative function h(t)
of a class of stochastic processes is deGned as

(du)(t)) = 0, (du)(t)du)(s)) = h(t —s)dtds . (C3)

The second relation states that [du)(t)] = O(dt) and
therefore du)(t) should be treated as a difFerential of
order 2 in various algebraic manipulations and Taylor
expansions. It turns out that the integral I(t; to) is
not independent of the choice of the intermediate point
Tk e [tg i, tk]. The choice rg = tA, i corresponds to the
Ito calculus. For the average of two Ito integrals cor-
responding to two stochastic functions hi(t), hq(t) the
formula

I(t to) = du) (t)h(t)

lim ) h(7.k) [u)(tA, ) —u)(t), i)],
Ic=1

(C1)

t

dw(t)h, (t) .dw(s)hg(8))
ip

dt(h, (t)h, (t)) (C4)

(u)(t)u)(s)) = (s —to + u)o)i'l(t —s)
+(t —to + u)o)6(s —t), (C2)

from which one easily proves that the stochastic diKeer-
ential du)(t) obeys

where wk is a point in the interval [tk i, tk]. The stochas-
tic variable u)(t) associated with a Brownian motion sat-
isfies the properties

(u)(t)) = u)o,

is extremely useful because it converts a double integra-
tion over the stochastic variable u)(t) into a single ordi-
nary integral. For the proof of (C4) the definition (Cl)
and (C2) should be used together with the crucial as-
sumption that the stochastic functions hi(t), hq(t) are
independent of u)(s) for t ( s, namely, that

(h, (t)u)(s)) = 0, i = 1, 2 if t ( s. (C5)

Obviously, if hi (t), hq (t) are deterministic functions there
is no need to take the average on the right-hand side of
(C4). This is the case in the derivation of (2.20) in Sec. II.
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