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We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole
entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole
entropy through a statistical-mechanical counting of states for a scalar field propagating outside
the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking
formula S = A/(4G). Our calculation also yields a constant contribution to the black hole en-
tropy, a contribution associated with the one-loop renormalization of higher curvature ter'ms in the
gravitational action.
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I. INTRODUCTION

It is now over 20 years since Bekenstein introduced
the idea that black holes carry an intrinsic entropy pro-
portional to the surface area of the event horizon mea-
sured in Planck units, i.e. , A/Ep [1]. Hawking s dis-
covery [2] that, in quantum field theory, black holes
actually generate thermal radiation allowed the deter-
mination of a precise formula for this entropy: S =
A/(4G) = A/(4Ep ). This Bekenstein-Hawking formula
is applicable for any black hole solution of Einstein's
equations. Recently, it was shown [4—8] that when grav-
ity is described by a higher-curvature efFective action,
the Bekenstein-Hawking result is only the leading contri-
bution in an integral of an entropy density over a cross
section of the horizon, i.e. , S = $~ d x~h p, . The con-
tribution of the Einstein-Hilbert action to the entropy
density is simply the constant 1/(4G), which then yields
the expected result A/(4G). Any higher curvature inter-
actions make additional higher curvature contributions
to ps.

Our understanding of black hole entropy, though, is
only within a thermodynamic &amework, and despite a
great deal of efFort, a microphysical understanding of this
entropy is still lacking. Many attempts have been made
to provide a definition of black hole entropy using sta-
tistical mechanics. York [9] suggested that the entropy
be considered as the logarithm of the number of ways
that the "quantum ergosphere" can be excited during
the evaporation of a Schwarzschild black hole into a sur-
rounding thermal bath. This model has the unsatisfying
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We adopt the standard conventions of setting 5 = c =

k& ——1, but we will explicitly retain Newton's constant G in
our analysis. Also, we will employ the metric and curvature
conventions of [3].

feature of being nonlocal in time since this entropy in-
cludes contributions &om the entire future evolution of
the black hole. Within the membrane paradigm [10],
the entropy is associated with the thermal bath of quan-
tum fields perceived by stationary observers under the
stretched horizon. In a related approach introduced by
't Hooft [11], the entropy arises f'rom a thermal bath
of fields propagating just outside the horizon (see also
Ref. [12]). Recently, there has been a great deal of in-
terest in an interpretation of black hole entropy as en-
tanglement entropy. One deBnes a density matrix p by
starting with the vacuum state of some quantum field,
and tracing over the Beld degrees of freedom inside the
horizon [13]. The entropy is then given by the stan-
dard formula 8 = —Tr(plnp). Alternatively, Frolov and
Novikov suggest that one should trace out the degrees of
freedom external to the horizon [14]. Both of the latter
approaches should yield the same result as long as the
initial global state of the quantum Beld is a pure state
[15]. Further, Kabat and Strassler argued that the den-
sity operator constructed with such a trace has a thermal
character independent of the details of the quantum Beld
theory [16]. The latter result draws a connection between
the entanglement entropy analysis and the two previous
approaches.

Another feature common to all four of these calcula-
tions is that they yield a black hole entropy proportional
to the surface area, but with a divergent coefIicient. Thus
one must introduce a cutofF to regulate any of these re-
sults. For example, 't Hooft introduces a "brick wall, " a
Bxed boundary near the horizon within which the quan-
tum Beld does not propagate. Susskind and Uglum sug-
gested that these divergences have the correct form to be
absorbed in the Bekenstein-Hawking formula as a renor-
malization of Newton's constant [17]. Thus these calcu-
lations should be regarded as yielding the one-loop cor-
rection of quantum Beld theory to the black hole entropy
[18,19]. Furthermore these authors suggested that the
"bare entropy" may have a sensible statistical mechan-
ical interpretation in the context of string theory [17].
The latter conjecture has generated a great deal of inter-
est in understanding black hole entropy in the context of
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II. RENORMALIZATION OF THE
GRAVITATIONAL ACTION

In the study of the one-loop effective action [21], one
may start with the gravitational action

Ig= 8 x —g
A~ B o~

8mG~ 16'G~ 4m
+ +

+ ~a a'+~~a
4

ab 4 abed

where A~ is the cosmological constant, G~ is Newton's
constant, while o.dg, Pdg, and pdg are dimensionless cou-
pling constants for the interactions which are quadratic
in the curvature. The subscript B indicates that all of
these constants are the bare coupling constants. The el-
lipsis indicates that the action may also include other
covariant higher derivative interactions, but only those
terms explicitly shown will be of interest in the present
analysis. We also include the action for a minimally cou-
pled neutral scalar field:

d x —g g V' Vb +m (2)

Here we wish to determine the effective action for the
metric which results when in the path integral the scalar
field is integrated out. In the present case, this inte-
gration is simply Gaussian, yielding the square root of
the determinant of the propagator; the contribution to

string theory [20].
The purpose of this paper is to investigate the first con-

jecture of Susskind and Uglum connecting entropy diver-
gences with the renormalization of the coupling constants
in the theory. In particular, we test this conjecture by ex-
amining a scalar Geld propagating in a four-dimensional,
nonextremal Reissner-Nordstrom (RN) black hole back-
ground. We begin in Sec. II by considering the renor-
malization of the coupling constants in the gravitational
action by a quantum scalar Geld theory. We regulate the
scalar field loops using a Pauli-Villars scheme and deter-
mine the precise renormalization of Newton's constant.
In Sec. III we present 't Hooft's approach to calculat-
ing the black hole entropy. The advantage of the Pauli-
Villars regulator is evident at this stage since it can also
be used to implement a cutoff for the entropy calcula-
tion. Thus we can remove 't Hooft's brick wall (i.e. , the
explicit length cutofF in Ref. [11])and we can compare the
results with those found for the effective action. The reg-
ulated entropy takes the form S = B' A/4+ A', where A'
and B' are constants which have quadratic and logarith-
mic dependences on the Pauli-Villars mass, respectively.
In the Gnal section we compare the results of the two
previous calculations. We find that B' is precisely the
same constant found in the renormalization of Newton's
constant, while A' is related to the renormalization of
certain higher-curvature interactions. We conclude with
a discussion of these results, including a comment on the
extremal Reissner-Nordstrom black hole.

the efFective gravitational action, which is essentially the
logarithm of this result, is then given by [21] W(g)—

2 Tr ln[ —Gd;(g, m2)]. Of course, as it stands, this ex-
pression is divergent and must be regulated to be prop-
erly defined. The divergences of this one-loop effective ac-
tion, as well as its metric dependence, are easily identified
using an adiabatic expansion for the DeWitt-Schwinger
proper time representation of the propagator [22]. This
leads to a representation of the scalar one-loop action as
an asymptotic series [23]:

1 4 cLs
W(g) = — d4x g—g —)

p 8

xa„(x)(is)"e

where the adiabatic expansion coefficients a„(x)are func-
tionals of the local geometry at x. Thus, they are local
expressions constructed in terms of the metric and the
curvature tensor. For example,

a0(x) = 1, ai(x) = 8R,
(4)

180 ~8~~ 180 ~8 80 + A

In the present case of four dimensions, the ultraviolet
divergences arise as s —+ 0 in the first three terms of the
series (3).

The efFective action may be regulated using many dif-
ferent methods [21], but in the present calculation we
adopt a Pauli-Villars regularization scheme [24]. In gen-
eral, such a scheme involves the introduction of a number
of fictitious fields with very large masses set by some ul-
traviolet cutoff scale. Some of these regulator Gelds are
also quantized with the "wrong" statistics, so that their
contributions in loops tend to cancel those of the remain-
ing fields. The number, statistics, and masses of the reg-
ulator Gelds are chosen in order to render all of the ultra-
violet divergences finite. In the present four-dimensional
scalar field theory, one introduces five regulator fields: Pi
and P2, which are two anticommuting fields with inass
m, , = A@2 + m~; $8 and p4, which are two commuting
fields with mass m, , = /3@2 + m2; and P5, which is an
anticommuting field with mass m, = /4@2 + m2. The
total action for the matter Gelds then becomes

5

I = ——) f d xg —g g g,$;'gbd; + m;d,', (5)
i=p

where the original scalar is included as P, = P with mass
m, = m. Now, each field makes a contribution to the
effective action as discussed above, except that as a result
of the anticommuting statistics for P2, Ps, and Ps, their
contribution to the effective action has the opposite sign,
i.e., W(g) +2 Tr ln[ —Gg (g, m;)]. Let us focus on the
divergent terms in Eq. (3), since these are the ones for
which the regulator fields make significant contributions,
we then obtain
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In this expression, A, B', and C are constants which depend on m and p, and which diverge for p ~ oo:

4@2+ m2
A = ln

m2
p +m+ 2ln
3p +m

3p +m 3p +m 2
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(8)

Combining the scalar one-loop action with the original bare action in Eq. (1) we can identify the renorrnalized coupling
constants in the efFective gravitational action

I g ——Ig +
(Z. C) Z &1 al

8ir (G 4vr ) 16m (G 12') 4~ ( 576ir j 4' ( 1440ir )
d'*v' —g ——
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where in the action we discard the total derivative term
CIR occurring in aq. In particular froin Eq. (9) we obtain
the renormalized Newton's constant

I/(] } = elf x —g ——E~/F + BJg E~bE

1 1 B
G„G~ 12m

+

In Eq. (9) divergent renormalizations also occur for the
cosmological constant A~ and the quadratic-curvature
coupling constants n~, P~, and p~. For large values
of p, the constants A, B, and C grow to leading or-
der as ln(p, /m), p and p~, respectively, but they also
contain subleading and finite contributions. The higher
order bare coupling constants (beyond those explicitly
shown) would receive finite renormalizations from the fi-
nite terms in the one-loop action (3), but they will play
no role in the present analysis.

In the following we will actually consider a Reissner-
Nordstrom black hole, because it provides a more sen-
sitive test of our comparison between the above results
and those in 't Hooft's calculation of black hole entropy.
Thus our background implicitly includes both a metric
and a U(1) gauge potential. Therefore the complete ac-
tion should be supplemented with a Maxwell term and,
in general, additional higher derivative interactions with
the metric and gauge fields:

+A~A bE E +

Despite introducing a background gauge Geld, we con-
sider only a neutral scalar field as above, and therefore, in
the effective action, the gauge field interactions are com-
pletely unaffected by the scalar one-loop contributions.
An obvious extension of the present analysis would be to
repeat the calculations for a complex scalar field which
couples to the gauge potential.

III. ENTROPY CALCULATION

In Ref. [11] 't Hooft attempted to provide a microphys-
ical explanation of black hole entropy by considering the
modes for a scalar field. in the vicinity of a black hole. In
such a calculation one finds a divergence in the number
of modes because of the infinite blue shift at the event
horizon. To regulate his calculation 't Hooft introduced a
"brick wall" cutoff, demanding that the scalar field van-
ish within some Gxed distance of the horizon. 't Hooft
introduced this "simpleminded" cutofF as an attempt to
mimic what he hoped would be a true physical regula-
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tor arising from gravitational interactions. In the present
calculation we will Bnd that the Pauli-Villars regulator
introduced in the previous section can be used to imple-
ment a covariant cutoff in this entropy calculation, and
't Hooft's brick wall may thereby be removed. In this
way, it is possible to make an explicit comparison of the
divergences appearing in the entropy and in the effective
action.

Our calculation follows that of Ref. [11],but we con-
sider the more general case of a Reissner-Nordstrom (RN)
black hole, whose metric can be written in the form

d8 = — 1 — 1—

+ 1 —— 1 —— (& + r dO

setting

P(z) =0 for r(r++h
with 6 « r+. To eliminate in&ared divergences, a second
cutoff is introduced at a large radius L )) r+'. P(x) = 0
for r &I.

Expanding the scalar Beld in spherical coordinates
P = e' Y~~(g, &p) f(r), we find that the Klein-Gordon
equation becomes

r282 1f (r)+„.&.—[(~ —r-) (r —~+)~.f (r) I

+m'
~ f(r) = o. (14)

/I. 8+1

where dO is the angular line element for a unit two-
sphere. We assume a nonextremal RN black hole with
r+ & r, so that r = r+ and r correspond to the po-
sitions of the outer event horizon and the inner Cauchy
horizon, respectively. Results for the Schwarzschild black
hole are recovered by simply letting r ~ 0. In this
RN background we consider a minimally coupled neutral
scalar field as in Eq. (2), which satisfies the Klein-Gordon
equation

In the WKB approximation one writes f(r) = p(r)e's("),
where p(r) is a slowly varying amplitude and S(r) is a
rapidly varying phase. To leading order, only first deriva-
tives of the phase are important. In particular, Eq. (14)
yields the radial wave number k(r, E, E) = B,S:

As described above, 't Hooft's procedure consists of
introducing a brick wall cutoff near the event horizon by

The number of modes with energy not exceeding E is de-
termined by summing over the degeneracy of the angular
modes, and finding the radial mode number by counting
the number of nodes in the radial wave function:

g(Z) = jdI. (2t + 1) dr —t:(rPE)., ,
r++h

r - —1
1 ——+

dZ 2/+1 E — 1 —:1 ——+
2 +m

(16)

Above, the sum over the angular quantum number S has also been approximated by an integral, and implicitly this
integration runs over the values of 8 for which the square root in the integrand is real.

To determine the thermodynamic properties of this system we consider the &ee energy of a thermal ensemble of
scalar particles with an inverse temperature P:

Using Eq. (16) to determine the density of states we obtain

OO

PI" = dE (E) ln (1 —e ~~)
0 dE
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where an integration by parts has been used to produce the second line. The integral over 8 can be evaluated to yield

dr 1 — 1 — r' E' — 1 —" 1 —"+ m'

where the remaining integration is still taken for values
where the square root is real. The necessity of the brick
wall cutoK is clear at this point, since the integrand di-
verges with a double pole at the event horizon, i.e. , as
r —+ r+. This divergence is more easily examined by in-
troducing a new variable, s = 1 —r+/r. The free energy
is then given by

2r+3 dE 88
3~ o e~~ —1 „,s2(l —s)4(l —u+ us)2

x F —s(1 —u+ us)m2 2- 3/2

where u = r /r+, L' = 1 —r+/L, and 6' = h,/(r++ h)
h/r+. Thus, for smail values of s we have j&, ds/s2
—I/Ii', which diverges as the brick wall is pulled back to
the horizon, i.e., as h' —+ 0.

Now, rather than considering a single scalar field, we
repeat 't Hooft's calculation for the Pauli-Villars regu-
lated field theory introduced in Eq. (5). Each of the fields
inakes a contribution to the free energy as in Eq. (18),
and the total &ee energy becomes

, f ~.

[E' —s(1 —u + us)m2

s2(l —s)4(l —u+ us)2

where Lo ——A3 ——L4 ——+1 for the commuting fields and
Ly ——L2 ——L5 ———1 for the anticommuting fields. The
&ee energy of the anticommuting regulator 6elds comes
with a minus sign with respect to the commuting fields,
as is required since the role of these fields is to cancel
contributions of very high energy modes in the regulated
theory. Now, if we examine the divergence of the re-
vised free energy in Eq. (19), which arises for small s, we

find g,. 0 A; f&, ds/s = 0; there is a precise cancellation
between the original scalar and the regulator fields. Sim-
ilarly, we find that a subleading logarithmic divergence
at small s is also canceled, since P,. o A, m; = 0.

Thus, in the Pauli-Villars regulated theory we are &ee
to remove 't Hooft's brick wall. Setting 6' = 0, our

expression for the &ee energy becomes

2r+3 dE d8

3' 0 e~~ —1 o s2(1 —s)4(1 —u + us)'

5

x ) A; F —s(1 —u+ us)m,2 2- 3/2

i=0
(20)

Now, integrating over s and E we focus only on the di-
vergent contributions at the horizon and find

7r 4vr s (2 —3u)
+ 6(1 —u)P2 45(1 —u)'P'

where A and B are the same constants given in Eqs. (7)
and (8), respectively. We emphasize that Eq. (21) ne-
glects contributions to the integral which do not diverge
as p —+ oo. The entropy is then given by

2 BF s vr 16(2 —3u) mrs

BP + 3(l —u) P 45(1 —u) sPs

(22)

Choosing the inverse temperature P to correspond to the
Hawking temperature of a nonextremal RN black hole,
we set

4vrr+
)1 —tt

upon which the entropy (22) becomes

S= — +A B (2 —3u)A
4 12m 180 (23)

where A = 4~@+2 is the surface area of the event horizon.
Thus we see that the entropy contains the constants A
and B, which give precisely the dependence on the reg-
ulator mass p appearing in the renormalization of New-
ton's constant and of the quadratic-curvature coupling
constants.

IV. DISCUSSION

Note that our total free energy is actually de6ned through
the limit k' ~ 0, where the brick wall still played a role in
de6ning the density of states for the individual fields. We
assume that the results from this limiting procedure coincide
with those arising within the canonical quantization of the
Pauli-Villars regulated theory.

A. Renormalization of the entropy

The entropy (23) calculated in Sec. III and the stan-
dard Bekenstein-Hawking entropy, i.e. , SnH = A/(4G),
are related in a simple way. If the latter is written in
terms of the bare Newton's constant, then adding these
two entropies yields
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At 1 al (2 —3u)~=
4 ~ G + 12~ ~

+ 180
A (2 —3u) A+ (24)

where we have used Eq. (10) for the renormalized New-
ton's constant. Hence we find that the first contribution
proportional to B in the scalar field entropy provides
precisely the one-loop renormalization of the Bekenstein-
Hawking entropy. Thus these terms combine in precisely
the manner suggested by Susskind and Uglum [17].

Note that we must still account for the constant term
proportional to A which appears in Eq. (23). Following
the recent work on black hole entropy for higher curva-
ture effective gravitational actions [4—8] we expect that
this constant contribution to the entropy should be re-
lated to the quadratic-curvature interactions in the ac-
tion (1). In particular, we must consider

I2 —— d'x —g B'+ B B '+ B B '"
These interactions will modify the standard result for
black hole entropy, i.e., the Bekenstein-Hawking entropy,
by adding an expression of the form

B+

(25)

Here, the integral is evaluated over a spacelike cross sec-
tion of the event horizon, g& is the metric in the normal
subspace to this cross section, and e g is the binormal
to the cross section (for more details see either Ref. [7)
or [8]). When Eq. (25) is evaluated in the present back-
ground, only the last two terms make a nonvanishing con-
tribution (since R = 0 for a four-dimensional RN black
hole): AS = —8vruPs + 16vr(1 —2u)ps. Now, including
this contribution along with the previous terms in (24),
we obtain the total black hole entropy

S~ t )
——SBH+WS+8

A&1
i

—8vru
i P4 qG 12vry

+16'(1 —2u)
~ p

A

1440~)

A
1440m. )

(26)

—8' uP„+16~(1 —2u) p„,
where, as in Eq. (9), we have the renormalized coupling
constants P„=Ps —

i44O and p„=ps + i44O . Thus
both terms in the scalar field entropy (23) account for
precisely the scalar one-loop renormalization of the full
black hole entropy. Note that for a Schwarzschild black
hale (i.e. , that which arises with u = 0), the contribu-
tion af P„in Eq. (27) vanishes because the background
curvature would satisfy R p

——0. Thus, choosing a RN
background allows for a more sensitive comparison be-
tween the renormalization of the efFective action and
't Hooft's entropy calculation. The appearance of sub-

leading terms in the scalar field entropy (22), and their
interpretation in terms of higher curvature contributions
to the black hole entropy, have also been discussed in an
alternate field-theoretic calculation of black hole entropy
in Ref. [25].

A priori, one might not have expected the Pauli-Villars
scheme to regulate 't Hooft's entropy calculation at all.
In fact, though, not only do we find that the Pauli-Villars
scheme regulates the latter calculation, our results are
in complete agreement with the suggestion of Susskind
and Uglum. The divergences appearing in 't Hooft's
statistical-mechanical calculation of black hole entropy
are precisely the quantum field theory divergences asso-
ciated with the renormalization of the coupling constants
appearing in the expressions of the entropy. This identi-
fication includes both the divergent and finite contribu-
tions in the renormalization of the couplings Gs, Ps, and
p~. This precise equality, including the finite terms, oc-
curs because the combinations of masses P A;m,. lnm;
and g b.; ln m2 arise naturally in both calculations. We
have not considered here any of the remaining finite con-
tributions arising in the free energy (20). It should be
possible to identify the corresponding contributions to
the black hole entropy with finite renormalization of the
higher curvature terms arising &om finite terms in the
one-loop action (3). There is also a class of contributions
to the free energy depending on the in&ared cutofF. (Of
course, these terms cannot be avoided with the Pauli-
Villars regulator, which is an ultraviolet regulator. ) To
leading order, these in&ared terms yield the usual (exten-
sive) &ee energy for a gas of &ee scalar particles enclosed
in a volume z aI . There are also lower order terms,
which arise due to the curved space-time geometry.

B. Extremal Reissner-Nordstrom

It is not difIicult to repeat our calculations for the case
of an extremal RN black hole with r+ ——r . In this
case, 't Hooft's brick wall cutofF leads to ill-defined re-
sults [26]. The problem is that the coordinate cutofF h
cannot be converted to a proper length cutofF because
any point which is a fixed coordinate distance outside of
the extremal horizon is in fact an infinite proper distance
&om the horizon (on a constant time hypersurface). No
such problem arises with the covariant Pauli-Villars regu-
lator. However, precisely at the extremal limit u = 1, the
structure of the small s divergences in Eq. (20) changes,
and hence we must reevaluate the integral. 1A'e find that
the divergent part of the &ee energy is given by

vr 4~'
I",„t r+ H + A—

9

and the entropy which follows is

2m 16'
S,„t——r+ B+ A

9 s

Here A and D are the same divergent coefficients (7) and
(8) that appear in the scalar one-loop action and in the
nonextremal entropy. Hence, with a covariant regulator,
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we Gnd that the extremal entropy has no stronger diver-
gences than appear in the nonextremal case. In fact, the
entire result has essentially the same form as the nonex-
tremal entropy in Eq. (22).

To proceed further, one must fix the inverse tem-
perature in Eq. (28). Using the standard formula [2],
T = r/(27r) where r is the surface gravity, one finds that
the temperature is zero since the surface gravity vanishes
for the extremal RN black hole. Thus, the inverse tem-
perature P diverges, and we find that S,„tvanishes. s This
result is in accord with the recent discovery [27] that ex-
tremal black holes should have vanishing entropy, since
one expects then that the renormalization contribution
must also vanish; since the value of entropy is indepen-
dent of the coupling constants, the renormalized value of
zero is still zero. Note that the integral for the &ee energy
in Eq. (20) is finite for all u in 0 ( u ( 1. Hence, if one
could evaluate the full regulated kee energy, the result-
ing entropy would exhibit a smooth transition &om the
behavior appearing in Eq. (23) for u ( 1 to zero at u = 1.
Further the transition should occur for u —1 = O(m/p).
Thus we speculate that the total black hole entropy for
which we are calculating the one-loop renormalization
should also make a smooth transition to S = 0 in the
extremal limit, but that the precise details of the tran-
sition would depend on the ultraviolet characteristics of
the underlying theory of quantum gravity.

On the other hand, the recent investigations of ex-
tremal black holes [27] also suggest that an extremal
black hole can be in equilibrium with a heat bath of an
arbitrary temperature. Hence, one might consider leav-
ing the inverse temperature arbitrary in Eq. (28). In this
case, one has the curious result that S, q appears to rep-
resent the renormalization of some Gnite entropy expres-
sion for an extremal RN black hole. For example, the first
term in Eq. (28) would represent the renormalization of
S =

4
"+ . Previous calculations have given no indica-4G p

tion that such an entropy arises for extremal black holes,
and so one may conclude that one must use P ~ oo in
this case. Alternatively, it may be that 't Hooft's model
does not capture the full physics of extremal black holes,
and that the correct result should still be S,„q——0 even
with a nonvanishing temperature.

C. On shell or ofF shell

With few exceptions [25,28], discussions and deriva-
tions of black hole entropy focus on black hole back-
grounds which are saddle points of the gravitational ac-
tion under investigation, i.e., backgrounds which are so-
lutions of the equations of motion (see, for example,
Refs. [4—6]). We will now discuss this point in the context
of the present calculation. Our RN background, which in-
cludes both the metric of Eq. (12) and, implicitly, a vector

The same is true when using the brick wall regulator [26].

potential A = Q/(4vrr) Ch, solves the Einstein-Maxwell
equations with 4vrr+r = 4vrGQ . Demanding that the
background be a solution of the equations arising from
the total efFective action would require that the renor-
malized cosmological constant vanish, that (most of) the
renormalized coupling constants for the higher derivative
interactions vanish, 4 and that the renormalized Newton
constant appear in the above equation with r+, r, and

For the present calculations, Grst of all we note that
this question of whether or not the background solved
any equations of motion is irrelevant for 't Hooft's en-
tropy calculations in Sec. III. Further, note that if the
RN black hole is a solution of the renormalized equations
of motion, it cannot at the same time solve the bare equa-
tions of motion (which may appear mare appropriate far
Sec. III). In our discussion, though, we use the usual en-
tropy expressions [i.e. , the Bekenstein-Hawking formula,
and the higher curvature corrections in Eq. (25)J to as-
sign our (single) background a black hole entropy within
both the renormalized and the bare theories. Thus the
present calculations treat these entropy formulas as be-
ing valid ofF-shell, i.e. , valid for backgrounds which do not
satisfy the equations of motion. This possibility is sug-
gested in Ref. [25], which presented a derivation of black
hole entropy which made no explicit use of' the equations
of motion.

D. Robustness

One would like to know whether the present results
hold for arbitrary Geld theories coupled to gravity, rather
than for just a minimally coupled scalar field. One sim-
ple extension of our calculations would be to consider a
nonminimally coupled scalar Geld. The original matter
action in Eq. (2) is then extended to

1I' = —— d zi/ —g g V'PV'gP+m P +(RP

It is well known [21] that the additional coupling of the
scalar field to the curvature modifies the adiabatic ex-
pansion coefficients in Eq. (4), and therefore it affects
the renormalizations of the bare coupling constants. For
example, Eq. (10) far the renorinalized Newtan constant
is replaced by

Since R = 0 for the four-dimensional B.N background, the
metric would still solve the higher derivative equations of mo-
tion if n~ was nonvanishing. Further, because the combina-
tion R & zR " —4R &R + B is a topological density in
four dimensions which does not afFect the equations of mo-
tion, Ps = —4ps would ensure that the RN black hole solves
the renormalized equations of motion. Generically, though,
one expects for the higher derivative interactions in the efFec-
tive action [including those not explicitly shown in Eqs. (9)
and (11)] that the corresponding coupling constant must be
set to zero to ensure that the RN background is a solution.
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(29)

On the other hand, if we repeat the calculation of Sec.
III for the new scalar Geld theory, we find that the
resulting entropy is completely unchanged. The new
coupling constant ( enters the new equation of motion
(Cl —m2 —(B)P = 0, which replaces Eq. (13). The re-
mainder of the calculation is unmodiGed, though, because
R = 0 for the background RN metric. Given that New-
ton's constant is renormalized as in Eq. (29), the entropy
in Eq. (23), which is independent of $, does not prop-
erly account for the renormalization of the Bekenstein-
Hawking formula.

We see this failure as a limitation of 't Hooft's model
for the calculation of black hole entropy. It is clear
that this model does not capture the full physics of the
problem. For example, the free energy in Eq. (21) does
not contain a quartic divergence as would be expected
&om the renormalization of the cosmological constant in
Eq. (9). This omission can be traced to the fact that
Eq. (17) does not include a contribution from the zero
point energies. Of course, neglecting this contribution is
entirely appropriate for a leading order WEB calculation.

The Euclidean path integral would provide an alter-

nate approach to this calculation. In fact, this approach
provides a more rigorous &amework to study black hole
entropy. We are presently adapting our analysis to the
Euclidean path integral, and expect that it will yield the
correct renormalization of black hole entropy, even for
nonminimally coupled scalar Gelds.
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At this point, we note that in introducing the regulator
fields in Eq. (19), it may appear that choosing A, = —1 and
a Bose-Einstein distribution (rather than a Fermi-Dirac dis-
tribution) for the anticommuting fields is somewhat arbitrary.
In the Euclidean path integral, though, both of these choices
are completely 6xed.
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