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The running coupling constants (in particular, the gravitational one) are studied in asymptot-
ically free GUT's and in finite GUT's in curved spacetime, with explicit examples. The running
gravitational coupling is used to calculate the leading quantum GUT corrections to the Newtonian
potential, which turn out to be of logarithmic form in asymptotically free GUT s. A comparison
with the effective theory for the conformal factor, where leading quantum corrections to the New-
tonian potential are again logarithmic, is made. A totally asymptotically free O(N) GUT with
quantum higher derivative gravity is then constructed, using the technique of introducing renor-
malization group (RG) potentials in the space of couplings. RG equations for the cosmological
and gravitational couplings in this theory are derived, and solved numerically, showing the inQu-
ence of higher-derivative quantum gravity on the Newtonian potential. The RG-improved effective
gravitational Lagrangian for asymptotically free massive GUT's is calculated in the strong (almost
constant) curvature regime, and the nonsingular de Sitter solution to the quantum-corrected gravi-
tational equations is subsequently discussed. Finally, possible extensions of the results here obtained
are brieHy outlined.

PACS number(s): 04.62.+v, 04.60.—m, 12.10.Dm

I. INTRODUCTION

The study of the quantum properties of grand unified
theories (GUT's) in the presence of a strong curvature
is quite an interesting issue, owing to the different appli-
cations that it can have in a number of situations. The
results of this study are important for a detailed knowl-
edge of the early universe, in particular for an accurate
discussion of the known models of inHationary universe
(see [1] for a review) and as a guide in the construction
of new models of this kind. Moreover, such a study is
relevant for a better understanding of quantum effects in
the vicinity of a black hole —in particular, for instance,
for the calculation of quantum corrections to the black-
hole entropy (a recent discussion can be found in [2]).
Furthermore, such considerations are of fundamental im-
portance for the estimation of the back-reaction effect a
quantum field has on the geometry of spacetime (for an
earlier discussion, in the &ee matter case, see [3, 4]).

The renormalization group [(RG), see [5] for an intro-
duction] turns out to be very useful in the discussion of
GUT's in curved space (see, for example, [6]). The first
investigations on these topics, which included the con-
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struction of the RG for GUT's in curved spacetime (see
[7, 8, 6] for a complete list of references), have been fol-
lowed by a lot of activity, where the subject is considered
under quite different points of view. Among the differ-
ent interesting phenomena which are specific of this the-
ory we can count curvature-induced asymptotic &eedom
[9], asymptotic conformal invariance both in asymptot-
ically f'ree [7, 6] and in finite GUT's [10], applications
of phase transitions of Coleman-Weinberg-type in infla-
tionary universes [1],curvature-induced phase transitions
[ll], and so on.

In the present paper we study the renormalization
group properties of GUT's in curved spacetime. We start
&om asymptotically free GUT's in curved spacetime and
write the whole system of RG equations for all the grav-
itational couplings. Their behavior is not asymptotically
&ee, of course. Concentrating mainly on the gravita-
tional coupling constant G, we give its general running
form in asymptotically free GUT's and provide some ex-
plicit examples for the gauge groups SU(2), Es (Sec. II).
We also discuss the running couplings for finite GUT's
in curved spacetime. The running gravitational coupling
is calculated explicitly, and it is shown that quantum
corrections to | have an exponential form, unlike in
asymptotically free GUT's, where they behave powerwise
(Sec. III).

Section IV is devoted to the use of the running gravi-
tational constant for calculations of radiative corrections
to the Newton potential. In Sec. V, in order to study
how quantum gravitational (QG) eKects may change the
qualitative picture obtained in the previous section, we
discuss the effective theory of conformal gravity by Anto-
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niadis and Mottola. This theory aims at the description
of IR quantum gravity. The running gravitational con-
stant in such a theory looks qualitatively similar to that
in asymptotically &ee GUT's, but difFerent from the one
in the Einstein theory, where quantum corrections to the
Newtonian potential have also been calculated recently
[25]

Section VI is devoted to the construction of a totally
asymptotically &ee theory of matter with R gravity.
Considering an O(N) gauge theory with one multiplet
of scalars and two multiplets of spinors as matter, and
making use of the very interesting technique of introduc-
ing potentials in RG-coupling space (similar to a c func-
tion), we explicitly construct the regimes where the total
matter-QG theory is asymptotically &ee (such a study
is carried out nuinerically). Then, in Sec. VII we com-
pare the behavior of the running gravitational coupling
in this matter-QG system with the running of G in the
same theory with QG being classical. Section VIII is
devoted to the study of quantum corrected gravitational
equations in strong curvature regime. The nonsingular
de Sitter solution of these equations with GUT correc-
tions is discussed, as well as a solution of wormhole-type.
In the concluding section we summarize our results and
outline some possible extension of the same.

where p is the mass parameter,
= (g, h, f, m, (, A, G, ai, az, as, a4) is the set of all cou-
pling constants, the P; are the corresponding beta func-
tions, and P; = (A~, P, vP) are the fields. Note that the
dependence on the external gravitational field g„ is not
explicitly shown in L,ff.

The solution of Eq. (2.2) by the method of the charac-
teristics gives (for a similar discussion in the case of the
RG-improved Lagrangian in curved space, see [12])

~. (~ ~. 4') = J-. (~",~'(t) 4'(t)) (2.3)

effective mass of the theory and, therefore, the deriva-
tive expansion technique can be used in order to obtain
the eBective action of the theory. Then, we can restrict
our considerations to the terms with only two derivatives
with respect to the scalar fields and four derivatives with
respect to the purely gravitational terms, and it turns
out that the structure of the effective Lagrangian just
mimics the structure of the classical Lagrangian (2.1).

The RG equations satisfied by the effective Lagrangian
are

8 8 8 l
+P'&& —&*4'& l

&.~(s &' 4') = o

(2 2)

II. ASYMPTOTICALLY FREE GUT'S
IN CURVED SPACETIME AND THE

GRAVITATIONAL COUPLING CONSTANT

Our considerations start &om a specific GUT in curved
spacetime, given by the Lagrangian (a multiplicatively
renormalizable one [6])

~ = ~~ + ~e~C)
1 2 1 2 1 4 1=~+M+-(& V) + —(&V — fV ——~ —

V2 " 2 4!
+i%(v"&& —~v )0,

L, g
——agB + a2C„p + a3G+ a4OB+ A — B.2 2 1

16~G
(2.1)

With an appropriate gauge group, the theory defined by
the Lagrangian (2.1) contains gauge fields A&, scalars p,
and spinors g, in some representation of the given gauge
group. As usual, the Lagrangian of the external fields
must be added to L in order to obtain a theory which
is multiplicatively renorinalizable in curved spacetime [6].
In (2.1) the cosmological constant has been chosen in a
specific form which will be convenient in order to facil-
itate the discussion of the cosmological applications be-
low.

The detailed consideration of the renormalization
structure and the RG equations for an asymptotically
free GUT of the form (2.1), based on the gauge groups
SU(5), SU(2), O(N), Es (and some others) can be found
in Ref. [6], where relevant references are listed too. Now,
since the theory is multiplicatively renormalizable, the ef-
fective Lagrangian that corresponds to the classical the-
ory (2.1) satisfies the standard RG. We shall assume that
the background fields vary slowly with respect to the

where

= P;(A;(t)), A;(0) = A, ,

d&'(t) = —&'(t)~'(t) &.(0) = 4; (2.4)

The physical meaning of (2.3) and (2.4) is that the ef-
fective Lagrangian L,ir (called sometimes the Wilsonian
efFective action [5]) is found provided its functional form
at some value of t is known (usually the classical La-
grangian serves as boundary condition at t = 0). We will
come back to the discussion of L,ff later on and, for the
moment, we shall concentrate on the scaling dependence
of the coupling constants, Eq. (2.4). Note that only using
the RG-improvement procedure can one also get the non-
local effective action, which was discussed in Refs. [35,
36] by direct one-loop calculation.

We consider a typical asymptotically &ee GUT in
curved spacetime. For studying the scaling dependence
of the coupling constants, the RG parameter will be cho-
sen to be t = ln(p/p0), as usual, where p and p0 are two
difFerent mass scales (see [6] for a rigorous discussion of
the RG in curved spacetime). The running coupling con-
stants corresponding to asymptotically Bee interaction
couplings of the theory have the form

B'g'tl
g (t)=g ~1+ 4' z)
h (t) = rig (t), f(t) = ~zgz(t),

g'(0) = g ,

(2 5)

where ez and K2 are numerical constants defined by the
specific features of the theory under consideration (see
[13—15] for explicit examples of such GUT's in flat space,
and [6] for a review). As one can see, asymptotic freedom
[g (t) i 0, t ~ oo] is realized [16], for the gauge coupling
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and for the running Yukawa and scalar couplings.
The study of this kind of asymptotically free GUT in

curved spacetime has been started in Refs. [7, 8] (for a
review see [6]), where the formulation in curved space
was also developed. Using the results in those works it
is easy to show that in such theories (for simplicity, with
only one massive scalar multiplet), one obtains

b

m'(t) = m'
~

1+ B'g't )
47r 2r (2.6)

being ((0) = (, m2(0) = m2, and where for the difFer-
ent models the constant b can be either positive [7, 8,
6], negative [7, 6], or zero [6]. Notice that the constant
one-loop running coupling ((t) = ( (i.e. , b = 0) usu-
ally corresponds to supersymmetric asymptotically free
GUT's, and also that classical scaling dimensions are not
included in the RG equations for couplings with mass
dimension, as usually happens in the RG-improvement
procedure.

Turning now to the gravitational coupling constants
[6] (see also [7, 8])

dt

da2(t)
dt

dao(t)
dt

dA(t)
dt

d 1
dt 16~G(t)

1 1 N,
(4.) '(') 6

, (N. + 6N&+12N„),120 4m 2

1
(N, + 11'+ 62N~),

m'(t)N.
2(4')2
m2(t)N, 1

(4~)2 6
(2.7)

where N„Nf, and N~ are, respectively, the number of
real scalars, Dirac spinors, and vectors and we work in
the Euclidean region. In what follows we shall consider
dynamical spacetimes w'ith constant curvature (as the de
Sitter space), so that the term in B will not appear. As
one can see, the behavior of the gravitational couplings
a2(t) and as(t) is given by az s(t) a2 s + a.2 s t, and it
is exactly the same as in the &ee matter theory with the
same field content. It is not influenced by the interaction
effects.

The most interesting quantity for us will be the gravi-
tational running coupling constant G. As one can easily
find from (2.7), it has the form

167rN, Gpm2 (( —1/6)Gt =Gp 1—
B2g2(2b+ 1)

16~N, Gpm2 (( —1/6)~ G 1
B2g2(2b+ 1)

= Go 1+ 'Gom (( —1/6) t

(' B»t) +
g

(4~)2 r
B' 'tb

I
1+

(4 )' r

(2.8)

where t = In(p/pp). As one can see, the matter quantum corrections to the gravitational coupling constant in GUT s
are larger than in the free matter theory if b ) 0.

I et us now give some examples. First of all, we consider the asymptotically free SU(2) model of Ref. [13] with a
scalar triplet and two spinor triplets. Then, one can show [7] that N, = 3, B = 10/3, b 2. In this model (with the
standard choice g2 0.41) we get, for the first nontrivial correction to the classical G,

G(t) —Go 1 + 0 9549 Gom (( —1/6) t (2.9)

As a second interesting example we will consider the asymptotically free Es GUT [17] in curved spacetime [18]. This
theory contains a 78-piet of real scalars P and two 27-plets of charged scalar, M and N. Assuming that only one
mass in the real scalar multiplet is different from zero, and choosing the initial values for the charged scalars to be
(~ = (N = 1/6 we obtain again a G(t) of the same form as (2.8). With the parameters [18] N, = 78, B2 = 32,
g = 0.41, we get

1 ( B' 'tl f B' 't) ' '
(y(t) —+ 0.97((~ —1/6)

~

1+ ~, m&(t) 0.97m&
~

1+
4 'r '

& 4 ')
Then, we obtain

167rN, Gpm~~0 972((y —1/6) .( B2g2t )
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~
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~
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2

1

~
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2b~I

'"(-) i

Gp 1+ ' 0.97 Gpm~((p —1/6) t
3

—Go [1 + 0 8985 Gom&((y —1/6) tI .

(2.10)

(2.11)
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We thus see that we are able to obtain the general form of
the scaling gravitational coupling constant in an asymp-
totically &ee GUT in curved spacetime. As we observe
from these explicit examples, there exist asymptotically
free GUT's in which the matter quantum corrections to
the gravitational coupling constants at high energies are
bigger than these corrections in the &ee matter theory.
The application of the above results will be discussed
later. The gravitational constants for other asymptoti-
cally &ee GUT's can be obtained in a similar way.

III. FINITE GUT'S IN CURVED
SPACETIME AND THE GRAVITATIONAL

COUPLING CONSTANT

A very interesting class of GUT's in curved spacetime
is given by finite GUT's (see, for instance, [19—21]). Fi-
nite GUT's in curved spacetime were first considered in
Ref. [10] (for a review and a complete list of references,
see again [6]). Of course, although finite for the interac-
tion couplings in flat space, these theories are not finite
in curved spacetime, due to vacuum, mass, and Rp2-type
divergences. Recently, quite a spectacular development
has emerged which concerns N = 2 supersymmetric mod-
els (in particular, finite) with matter multiplets, through
the definition of the exact spectrum [22]. For such theo-
ries we have (in the following we consider one-loop finite
supersymmetric or nonsupersymmetric theories)

and

g (t) = g, h (t) = Kig, f(t) = K2g (t),

(
((t) = —+

~ ( ——
~

exp(Cg t),6)
m (t) = m exp(Cg t),

(3.1)

(3.2)

where the constants ~q and v2 depend on the specific
features of the theory, and where C can be positive, neg-
ative, or zero [10]. Solving the RG equations for the
gravitational coupling constant in such a theory, we find

ttt. Goooo (( —1/6)
(

to .,
2' Cg2

X,Gpm2(( —1/6) 2c 'e
2+Cg2

Hence, as one can easily see, GUT's with a positive C
are the ones which give the biggest contribution to the
gravitational coupling constant, among all finite GUT's.

As an example, one can consider the SU(2) finite model
of the first of Refs. [21], with a SU(4) global invari-
ance and the scalar taken in the adjoint representation of
SU(2). (Notice that there is 1V = 2 supersymmetry here,
in one of the regimes of finiteness. ) In this case, we get
that [10] N, = 18 and C = 24/(47r) . As a result,

Goeo (6 —1/6)
(

o

(3.4)

As one can see, we have power corrections, of the form

, to the gravitational coupling constant. In a
similar way one can also obtain the running gravitational
coupling corresponding to other finite GUT's.

IV. QUANTUM GUTtS CORRECTIONS TO THE
NEWTONIAN POTENTIAL

As an application of the results of the previous discus-
sion, we will consider in this section the quantum correc-
tions to the gravitational potential. From the discussion
in Secs. II and III we know that the typical behavior
of the gravitational coupling constant, when taking into
account the quantum corrections, is

G(t) Go (1 + Go (1+ Bt)*o+' —1

in asymptotically &ee GUT's, and

G(t) Go 1+ Go (e
' —1)

(4.1)

(4.2)

in finite GUT's. Of course, such corrections are too small
to be measured explicitly, although they are significantly
larger than in free matter theories (due to running). In
the above scaling relations, t = 1n(p/pp).

It was suggested in Refs. [23, 24] that in the running
gravitational and cosinological constants p/pp ought to
be replaced with rp/r, i.e. , that one should change the
mass scale ratio by the inverse ratio between distances.
The support for this argument comes &om quantum elec-
trodynamics, where the well-known electrostatic poten-
tial with quantum corrections can be alternatively ob-
tained from the classical potential by interchanging the
classical electric charge with the running one, with t =
ln(rp/r) Similarly. , one can estimate now the GUT quan-
tum corrections to the gravitational potential. Starting
&om the classical Newtonian potential

V(r) =—Gmgm2
(4.3)

the classical gravitational constant in (4.3) is to be
changed with the running gravitational coupling constant
(4.1) and (4.2).

As a result, we obtain

V(r)
Gpmim2

G 2 / 11
1

rp1+ciGpmr q 6)
(4 4)

in asymptotically free GUT's, and

V(r) ' ' ' 1+.,G, 'i (--,'
i

("—') '

(4.5)

in finite GUT s. Here Gp is the initial value of G (the
value at distance rp), and ci and c2 are soine constants.

In Ref. [25] the gravitational potential has been calcu-
lated in the &arne of quantum Einsteinian gravity con-
sidered as an efFective theory (this is unavoidable, ow-

ing to its well-known nonrenormalizability [26]). It was
found that in such theory the leading quantum correc-
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V. THE GRAVITATIONAL CONSTANT IN THE
EFFECTIVE THEORY FOR THE

CONFORMAL FACTOR

In order to see how quantum gravity (QG) effects
change the results of the above discussion, we have to
consider some multiplicatively renormalizable QG (with
matter). For example, in multiplicatively renormalizable
pure higher derivative gravity (for a review, see [6]) the
running gravitational coupling has been used to construct
the QG corrected Newtonian potential in Ref. [23]. It
has been suggested there that the QG corrections in the
Newtonian potential (which are also of logarithmic form)
might help to solve the dark matter problem and some
other cosmological problems [27].

In this section we are going to discuss the running grav-
itational coupling constant in the effective theory for the
conformal factor [28], which presumably describes the
infrared phase of QG. The construction of the effective
theory for the conformal factor proceeds as follows [28].
One starts &om the conformally invariant matter the-
ory (the &ee theory, for simplicity) in curved spacetime.
The standard expression for the conformal anomaly is
known (see [29], and for reviews [4, 6]), and it can be in-
tegrated on a conformally flat background (in the confor-
mal parametrization g~„= e g„), in order to construct
the anomaly-induced action. Adding to this action the
classical Einsteinian action in the conformal parametriza-
tion, we get the effective theory for the conformal factor.
In the notations of Ref. [28] and for the flat background
g„=g~, the resulting Lagrangian is

, (&cr)' —( [2n(O„o)2 o + 'n(O„o) 4

A 4+pe (B„o.) ——e (5 1)

where p = 3/(8' G), A = A/(8vrG), ( = b+ 2b'+ 3b", and
Q /(4m) = ( —2b', being b, b', and b" the well-known
coefficients of the conformal anomaly [29] (for a recent
discussion, see [30]):

T„"= b
~

C„'. ~ + &B
~

+ b'G+ b" —B.(, 2
(5.2)

Q has been interpreted as the four-dimensional central
charge, and n is the anomalous scaling dimension for 0.

Near the in&ared (IR) stable fixed point g = 0, the
theory (5.1) has been argued to describe the IR phase
of QG [28]. Near the IR fixed point ( = 0, the inverse

tions are proportional to Go/r . As we see, in an asymp-
totically &ee GUT the leading correction is of logarith-
mic form ln(ro/r) while in a finite GUT it is powerlike

(ro/r)+g . Hence, &om the examples of Secs. II and
III one understands that the GUT quantum corrections
to the Newtonian potential can be more important than
the corresponding corrections in the effective theory of
Einstein's quantum gravity. We now turn to the study
of the gravitational constant in some model of quantum
gravity.

of the running gravitational coupling constant in the IR
limit (t m —oo) has been calculated in Ref. [31]:

2n
p(t) = (—t) '~' exp t

~

2 —2n +
o2

(5 3)

where Qo ——Q (g = 0). As a result, we obtain the New-
tonian potential with account to the quantum corrections
in such a model, as [31]

n2 p2

0
(5.4)

As we can see here, essential leading-log corrections to
the Newtonian potential appear in this model, what is
different from what happens in the case of Einstein grav-
ity.

VI. ASYMPTOTIC FREEDOM IN GUT'S
INTERACTING WITH HIGHER

DERIVATIVE QUANTUM GRAVITY

After the above discussion on the running gravitational
coupling constant, mainly for GUT's in curved space-
time, our purpose will be to look at its quantum gravi-
tational corrections in &ameworks of asymptotically &ee
theories. To be specific, we start &om a model with the
Lagrangian (here we use notations slightly different &om
those in Sec. II)

1
C CP'"~P —~ R2 1G~ G

4 P

1 „, ; 1;, 1+-g""(D v)'(&-v )'+ -(&v*v' —
,
f(v*v')'—

2 16m G SmG

+i@„[P"'D"„~—h", ~ rP'] Qq. (6.1)

We will not discuss the problem of unitarity in this the-
ory, which is still open [32] and may be solved, per-
haps, only nonperturbatively. We rather consider (6.1)
as an effective theory for some unknown consistent QG.
This model includes in its gravitational sector higher
derivative gravity (with somehow different notations for
the gravitational couplings) and in the matter sector an
O(N) gauge theory with scalars in its fundamental rep-
resentation plus nq spinor mutliplets in the adjoint rep-
resentation and n2 spinor mutliplets in a fundamental
representation. It is known [15,33] that for some values
of N, nq, n2 such a Hat GUT provides asymptotic &ee-
dom for all its coupling constants. Moreover, even taking
into account quantum gravity, one can show that asymp-
totic freedom may survive (see [34]) but under tighter
restrictions on the contents of the theory. When study-
ing the asymptotically &ee regime we look at the region

« g [34] (so that Yukawa coupling corrections may
be dropped). One can show that such a description is
consistent under radiative corrections. It is interesting
to remark that in the low-energy limit the theory (6.1)
leads to the standard Einstein action [10), similarly to
what happens in the pregeometry program [46].

The one-loop P functions for the theory (6.1) have been
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g2

dw = vg (t) dt,
(6.2)

Further, we will take advantage of the property that, in
the limit considered, A(t)/g (t) ~ b~/a~. First, we look
at the case of massless couplings only. In these condi-
tions, the total system of RG equations turns into

2
= Ps~ —— bg, —

d~

d~ — b2 10 5=p~ = ——A —id + (5+o )ld+-
d7 a 3 12

3 (+ Nf ( ———
/2 g 6)

d( — ( 1l (N + 2 — 3(N —1)
6)& 3 2 )

b~ ( 10 9 2+—,( ——(' + 4( + 3 + —~ — ('
Q ( 2 3 4(d

3caI )
%+8 ~ 9

3
f~ + [b' —3(N —1)]f + —(N —1)

4

4

33, 6——,f ~

5+3''+ g' ——(+
o, g 2(d La) 2& )

df—=By=
d7

(6.3)

where

a2=

b 2

1

(4~)"
1 2 lN( 1—(798 + 6N —5N) + —

~
np + —(N —1)n~ ~,60 10' 2 )

1 4

6
—(22N —45) ——[ny(N —2) + ng].

3
(6.4)

It is evident that asymptotic freedom (AF) in the original
couplings is determined by the existence of stable Axed
points for this new system. Note that the RG equations
(6.3) are also very useful for explicit discussions of dif-
ferent forms of effective potential in quantum matter-B—
gravity theories [11,37].

A. Without gravity

To make our discussion easier, we start by considering
the same situation when gravity is switched off. In these
conditions,

calculated in [34,6]. We will be interested in the study of
that system of equations in the t ~ oo (or high-energy)
limit, where it is convenient to make the variable changes
[34]

t9% dg

Og d7

Ou df
Of d~

(6.6)

With the sign convention here used, the existence of sta-
ble fixed points amounts to the presence of some sort of
maximum for u [if the signs in (6.6) were reversed, we
should say minimum instead of maximum]. Up to an
arbitrary constant, this potential reads

b~
4 N+8 -s b —3(N —1) ~

2 9 2
9+—(N —1)f.
4

(6.7)

First, we obtain the values of the Axed points, which
correspond to the critical points of u in (g, f) space.
Trivially, g~ = 0, but there are real solutions for f only
when

&:—[b~ —3(N —1)] —3(N+ 8)(N —1) ) 0

If A ) 0, the critical values of f are

[b —3—(N —1)] + ~A
2/3(N + 8)

Therefore, the Hessian matrix at these points is

( O'u O'u

O(&')' Oa'Of

tc 8 tt

OfOg Of ) g o y

Obviously, its eigenvalues are b~ and +v A. We need
b ) 0 in order to ensure AF in g . Thus, u can have an
extreme only when picking the minus sign, which corre-
sponds to f = fq, and then that extreme is a local maxi-
mum. In such a setup AF for f takes place. By the same
argument we conclude that f = fq corresponds to a sad-
dle point. The hypothetical case L = 0 is rather excep-
tional; there is only one solution for f and the outcome
is one vanishing eigenvalue (i.e. , the Hessian no longer
has maximal rank). Actually, while there is a maximum
along the g axis, the potential shows just an infIection
point along the f direction, typical of the cubic depen-
dence of u in this variable.

When considering only the f-dependent part of u, say

2dg

d~ g )

df N+8~ 9
d7. 3 f + [b —3(N —1)]f + —(N —1).

(6.5)

This system will be examined using the methods devel-
oped in [38], where some potentials in RG-coupling space
were introduced, so that their stability properties yield
the fixed points of the original system. One introduces a
renormalization group potential u(g, f) such that
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u&9 we realize that it has no global maximum or mini-
mum, because cubic curves are unbounded from above
or below. However, if 4 ) 0, it has a local minimum (at
f = fi) and a local maximum (at f = f2). If A = 0, it
has an inffection point at the only zero of P& and no local
extremes. On the contrary, when L & 0, u& is a mono-
tonic curve without extremes or inflection points. In the
end, it is the presence of the local maximum f = f2 that
accounts for AF.

As we have just seen, the AF scenario is determined
by 6 ) 0 and L & 0. Whether these constraints can be
met or not depends, of course, on the particular values
of N and of 6 which, in turn, depends on N, ni, and
n2. Assuming N & 2, and bearing in mind that nj 9 n2
are integers larger than or equal to zero, from (6.4) one
readily finds the condition

This constitutes an example of (discrete) numerical
boundary separating the region where the theory shows
a given behavior for v ~ oo.

Let us now see, &om another viewpoint, the meaning
of our constraints b ) 0 and 4 & 0 when looking at
the couplings themselves. In the present case, we can
integrate the RG equations (6.5). For g one has

(6.ii)

(we are taking initial conditions so that r = 0 when t =
0). It is plain, as we have said, that b ) 0 leads to AF
in g, while 6 & 0 entails boundless increase of g as 7.

grows, making perturbation theory no longer valid. With
regard to f, there are three cases depending on b, .

(1) E ( 0 (no fixed points):

ng &2. (6.10)

Then, after numerical examination of 4 for 1 & N & 10,
0 & nq & 2, and. 0 & n2 & 20, we find the following
combinations yielding AF solution: (V 3(~ i))). (6.i2)

N ng
? 0

1
2

8 0
1
2

9 0
1
2

10 0
1
2

n2
13
8
3
15,16
9,10
3, 4
1?,18,19
10,11,12
3, 4, 5
19,20
119 12 9 13
3, 4, 5

f is periodic in 7, having regularly spaced singularities
analogous to Landau poles.

(2) A = 0 (one double fixed point):

[62 —3(N —1)] 1

2/3(N + 8) 2/3(N + 8)~
(6.i3)

There is stability in the sense that f (7.) i —[b2 —3(N—
1)]/[2/3(N+ 8] as 7 ~ oo, but we still have a pole of this
coupling at ~ = 0.

(3) A ) 0 (two single fixed points):

(r) = [b2 —3(N —1) —~b, ]e ~~ —[62 —3(N —1) + ~A]
2/3(N+ 8)(1 —e —~& )

(6.i4)

[b' —3(N —1) + ~A]
2/3(N + 8)

7 Woo) (6.i5)

It is clear that now a Gnite limit exists when w goes to
in6nity. In fact,

B. With gravity

Next, we will have to deal with Eqs. (6.3), which offer
more serious difficulties than the system (6.5). Since not
all the crossed derivatives coincide, we cannot just in-
tegrate and find a potential which is a function of all
the variables. Instead, we may handle individual po-
tentials for every constant, as in [38]. If we call them
u&2, u, ug, uy, one has to require

as should be expected, because we already knew that f2
is the stable fixed point. Now, there can be no doubt
that the previous criteria are right, and this is indeed the
AF region.

Bug& 8g Ou~

Og l7 OM

Bug d( )9iif df
8( dr '

Bf d7.

(6.16)



52 GUT's IN CURVED SPACETIME: RUNNING. . . 2209

Some possible solutions are ( 8 %lsd 0 Bsm 8 Bgz 0 vs&

B(g~)~ Bg~B~ Bg~B( Og~Of

b
ugly

= ——g9

b~ 10 3 5+ a
u = ——A —M + (d'

a~ 9 2

Ou Ou Bu t9u
ctcdDg Rsl Btd8( 8MBf
0 ug 0 ug 0 ug |9 ug

B(8g~ 8(0~ 0(~ B(8f
|9 u 0 u t9 u 0 uf f f f

0 Og 0 0QJ 8 8 |9

(6.18)

5 3 (
+ —+ —JV

12 2 ( 6)'

5 s 1
6ld 6ld

%+8, b' —3(N —1)
uf 9

fs
2

b2

2. f

x 5+ 3('+ (' ——(+ f'
2(d (d 2M )

P(344s3~ 10 9+—
~

——('+ —('+ —('+ —~(—
a~ ( 8 3 2 3 16~

taken at the critical points in question (notice that this
is not a Hessian matrix, but the standard argument for
classifying fixed points leads us to handle it as such). Af-
ter this numerical work we find that in all cases where
we had AF without gravity we also have some solution
giving AF with gravity. This is easy to understand by
examining the values of the fixed points: of all the solu-
tions found for each (N, ni, nq) combination, there is at
least one whose value of ( tends to be around I/6 and
whose value of f is fairly close to fz, the AF fixed point
without gravity, which gives AF in the presence of QG.
In addition, we also find cases where QG makes possible
the existence of AF solutions which are banned without
QG (as was observed in [34]). These new situations cor-
respond to the values of N, ni, nq in Table I and depict a
shift in the boundary of the (K, ni, nq) region for which
AF existed without QG. More precisely, it is a shift by
decreasing the allowed value of n~ in one unit, as al-
ready commented in [34]. Thus, we have shown that the
O(N) GUT under discussion, interacting with quantum
R gravity, may be considered a completely asymptot-
ically free theory (for some given Beld contents of this
model). This study has been carried out by introducing
a potential in the space of RG couplings, similar to a c
function.

VII. KUNNINC GRAVITATIONAI CQUPLINC
IN ASYMPTDTICALLY FKEE O(2V) CUT VVITH

QUANTUM R~ CKAV'ITY

Now, having at hand the asymptotically free O(N)
GUT interacting with quantum B gravity (6.1) we may

(6.17) TABLE I. Values of N, n~, and nq.

Next, we obtain their critical points [which are zeros of
the P functions (6.3)] by numerical methods. Note, e.g. ,
the difference between the f coefficients in u& without
QG and in the above expression. It is not difficult to
realize that the QG contributions may get to change the
balance which makes 4 negative or positive, bringing
about modifications in the limits of the AF region, as we
shall see below.

Once we have the numerical values of all these fixed
points, we classify them according to the criterion of the
eigenvalues of the matrix

10

n2

12
7
2
14
8
2
16
9
2
18
10
2
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discuss the behavior of the gravitational coupling con-
stant. Unlike for CUT's on classical gravitational back-
grounds, we cannot analytically solve the RG equations
or the gravitational coupling constant. Instead, we have

a system of RG equations for the massive couplin s m
vr &, and A, which may be analyzed only nu-

I

merically (after the corresponding study has been done
for the massless coupling constant). This system may be
explicitly written using the calculations of one-loop coun-
terterms for massive scalars intera t 'th B-c ing wi - gravity
in Ref. [39] and the calculation of the scalar p function
in Ref. [34]. For the Lagrangian (6.1) we obtain

dA N 4 ( 1
+ + + ~+~ +WA (43 20

6) 2 i 3 3 6u)) (4 16(u2

d~ f10= p~ = KA—p
~

(u—————
~
+ Nm6)

=P 2 =v m
~ f — (N ——1)g ~+Am, (%+2 3

2 ) i 6

1, 331
4(d 2Cd )

9——
4

—
2& )I

(7.1)

A. Without gravity

Ignoring all the QG pieces, and performing the changes
(6.2) we are posed with a system of difFerential equations
consisting of (6.5) plus

coincides with (2.8) after making the notational replace-
ments N, m N, B2 —+ b2 26+ 1 m 1—
remarked as m totic

) 2b The above

Fig. 1.
y p ic ehavj. or ss clearly appreciat d

'ic ia e in

dA N m4 m' f= ——p+ AN

dp m2 f 1)
)

dm2
2 %+2 - 3= m' — f — (N —1)-

(7.2)

B. With gravity

We can solve numerically the whole system of dif-
ferential equations and examine the asymptotically free

It Is possible to estimate the type of p solution to this
system in the 1y

'
he large-r regime. Considering the most in-

eres ing case, i.e. , A ) 0 and therefore f (v) given by
(6.14) we take approximations of the type e~ —1

e and, using (6.11), arrive at

0.20

0.15

'(-) - '(o) -",
%+2

[b —3(K —1)] + 3(K —1),

(0) + 1 (5 —8/2)~
)

~(& ——.') -'(o)
b2 —8/2 g2 (0)

(7 3)

Actuall 8 is
AF for bath g2 and i.e.

y, s positive whenever we are in the tte se zngs of
or o g and f, i.e., (1V, nz, n2) combinations in the

is negative in these same cases.
As we see, under the present assumptions p(r) would
tend asymptotically ta a constant value of &0& +

m

we are left with

G(t) = G(0)(1 —16~G(O)q,

x[(1+Kb g (0)t)' ~~ —1]j ', (7.4)

where, obviously, G(0) = 1j[16vrp(0)]. This expression

H 0.10

0, 05

0.00
500 1000

g gravxtatzonal coupling G(t)FIG. 1. Runnin ~ e

= 1 /I16vr ~t~~ obtai/j p( 31 ained by numerical integration of the full
system made of Eqs. ~6.3~ writ~~&mri ten in terms of the original

G parameter t of Ref. [34]) and Eqs. (7.1), for N = 7, nq = 0,
n2 ——13. The initial values are 0 = 0

) =, f(0) = 0.5, A(0) = 0.1, p(0) = 0.1 m'(0' = 0. ,
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0.25

0.20

0.15—

0.10

0.05

0.00
10 20 30

SRc —— d x —g At
16~G(t)

+ay(t)R +ay(t)c„pc"" +a~(t)G).

(8 3)

We will consider only asymptotically &ee GUT's, where
A(t), G(t) are given in Sec. II, t = 2ln —,, a2 s(t)
a2 3 + a2 3t [see (2.7)]. Note, however, that Eq. (8.3)
is very general. In particular, it has a similar form in the
asymptotically free GUT's with B gravity of Secs. VI
and VII in strong curvature regime [however, the t de-
pendence of the running couplings A(t), . . . , as(t) is of
course difFerent]. Notice that the technique developed in
Ref. [42] may be very useful for the explicit solution of
quantum corrected gravitational field equations for non-
constant curvature.

Working in constant curvature space
FIG. 2. G(t) in presence of QG with the same initial con-

ditions as in Fig. 1, except for (a) A(0) = 0.5 and m (0) = 0,
(b) A(0) = 0.5 and m (0) = 0.5. The running gravitational
constant is quickly decreasing.

gpv
pV p2 7 p2) (s.4)

we may rewrite (8.3) expanding the coupling constants
up to linear t terms as

regime of its solutions. By plotting the gravitational run-
ning coupling, we obtain the curves a and b in Fig. 2.

VIII. GRAVITATIONAL FIELD EQUATIONS
WITH GUT QUANTUM CORRECTIONS

IN CURVED SPACETIME

Let us now turn to some other application of the run-
ning coupling constants in curved spacetime, namely to
the RG-improved efFective Lagrangian (2.3). We will
work for simplicity on the purely gravitational (almost
constant) background, supposing that for all quantum
Gelds we have zero background. In actual one-loop calcu-
lations, it turns out that, working in configuration space,
the RG parameter t is typically of the form

1 cgB+ c2m—ln
2 p2

(8.1)

1 B
t = —ln —.

2 p2
(8.2)

Note that such a regime may lead to curvature-induced
asymptotic freedom [9]. In this regime we obtain that ex-
pression (2.3) gives the leading-log approach to the whole
perturbation series:

where cq, c2 are some numerical constants, and m is
the effective mass of the theory. In the model under
discussion we have a few different masses, so there is
no unique way of choosing only one functional form for
t [12,40]. Hence, we will consider the regime of strong
curvature when curvature is dominant in (8.1). Then,
the natural choice of t in the RG-improved Lagrangian is
(see also [12, 9])

(I
SRG = const x p A+ At —

~

—+ Gt
16m qG ) P2

16 8
+(ai + a, t) —+ (as + ast) 'I

G——+/ —+Gt
/4m. 2 iG

( s—
~

16ai+ as
I)»' = 0. (8.6)

One can see that there exists a real root of (8.6) for most
asymptotically Bee GUT's (for a massless theory, see also
discussion in Ref. [9]). Hence, we have got a nonsingular
universe with a metric of the form

(1+ '" &')'
where k = 1, 0, —1 for a closed, asymptotically open, and
open universe, respectively, and

a(rl) = tan — + arctan
2 3P) 2 3P~

(s.s)

1 4
t = —ln (8.5)

2 p
where the explicit form of the constants A, G, aq, a3 is
evident from (2.7).

Now one can write the field equation which fixes P2 in
terms of the theory parameters:

(9SRG A= const ——+ 2(A + At) P
2
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as the solution of the gravitational field equations with
quantum GUT corrections. The GUT's quantum correc-
tions are here present in the form of P, which is defined
by GUT parameters from (8.6). In terms of physical tiine
T, the scale factor may be put as

a(T) ~p eTI(~~@) + ke T'l(—~~P)
2

(8.9)

Note that such a nonsingular inflationary-type (de Sit-
ter) solution in gravity theories with higher-derivative
terms (induced by quantum matter) has been discussed
in Refs. [4,9,41,42] in difFerent contexts (for a very re-
cent discussion on nonsingular cosmologies in higher-
derivative theories, see [43]).

Let us consider the closed universe (A: = 1) in (8.7).
In this case, for some choices of the theory parameters
one can find an imaginary P as the solution of Eq. (8.6).
Similarly to what happens in Refs. [44], such a solution
may be interpreted as a Lorentzian wormhole which con-
nects two de Sitter universes. However, this wormhole,
that for ]P ] Lp& has a "mouth" of the Planck size,
results from quantum GUT corrections. From another
viewpoint, working with (8.9) at k = 1 and imposing the
initial conditions a(0) = Rp, a(0) = 0 we get

a(T) = ~3Pcosh
~

t'

3P)
(8.10)

Some analysis of this solution is given in [45]. For ex-
ample, when the efFective cosmological constant is zero,
the solution (8.10) corresponds to a closed universe con-
nected through a wormhole to fIat space. In a similar
fashion one can construct the quantum corrected gravi-
tational equations in other regimes and study their solu-
tions.

IX. DISCUSSION
In the present paper we have discussed the running of

the gravitational coupling constant in asymptotically free
GUT's in curved spacetime, in the efFective theory for the
conformal factor and in asymptotically free B2 gravity in-
teracting with an O(N) GUT. The running gravitational
coupling constant has been used to calculate the leading
quantum corrections to the Newtonian potential. These
corrections have logarithmic form in asymptotically free
GUT's and in the efFective theory for the conformal fac-
tor, and powerlike form (but of different nature from that
in Einsteiinan gravity) in finite GUT's. In B gravity
with O(N) GUT, the behavior of the gravitational cou-
pling constant is numerically analyzed. Its decay rate
gets higher as the value of I, is raised.

The running coupling constants are also necessary in
other respects, particularly in the RG-improvement pro-
cedure. We have found the RG-improved efFective gravi-

tational Lagrangian in the regime of strong constant cur-
vature, and have discussed the nonsingular de Sitter so-
lution of the corresponding quantum corrected gravita-
tional field equations. The present technique is quite gen-
eral and can be applied in various situations, in particu-
lar for the construction of RG-improved nonlocal gravi-
tational Lagrangian, that we plan to discuss elsewhere.

-The other interesting field where the running gravita-
tional constants calculated in this paper play an impor-
tant role is in the quantum corrections to the Hawking-
Bekenstein black-hole entropy. The black-hole entropy
(Bekenstein-Hawking formula) has the form

AS=

where A is the surface area of the event horizon and G the
gravitational constant. It has been suggested by Susskind
et aL [2] that in the brick wall approach (e.g. , the
't Hooft cut-off regularization [47]) the quantum correc-
tions to the black-hole entropy can be absorbed in the
above formula as a simple renormalization of the gravita-
tional constant G. In this respect, taking into account the
results of our study we are led to conjecture that in the
case of dimensional regularization (where only logarith-
mic divergences are important) the quantum corrections
to the Bekenstein-Hawking formula are precisely given by
the standard renormalization of G, as discussed above in
this paper —plus some less essential contributions from
the higher-derivative terms in (2.1). This gives further
relevance to our calculations in this paper, since then,
in order to take into account GUT contributions to the
black-hole entropy one just has to use G(t) instead of G
in the formula for the entropy. Note that the quadratic
terms in the Lagrangian contribute the black-hole en-
tropy already at tree level as shown in Refs. [48, 49]. For
the charged black hole they give corrections, such as

AH 16rr (3az + 2as)Q
4G A~

Prom the results of our paper we can further infer that the
one-loop corrections will have the form of this equation
but with all the coupling constants being now a function
of t. We hope to return to this question in the near
future.
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