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Two-dimensional gravitation and sine-Gordon solitons
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Some aspects of two-dimensional gravity coupled to matter fields, especially to the sine-Gordon
model, are examined. General properties and boundary conditions of possible soliton solutions are
considered. Analytic soliton solutions are discovered and the structure of the induced space-time
geometry is discussed. These solutions have interesting features and may serve as a starting point
for further investigations.
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I. INTR.ODUCTION

Since the first purely pedagogical study of two-
dimensional gravitation [1] there has been considerable
interest in that topic for the last years [2—8]. Apart from
being an interesting subject in itself, two-dimensional
models proved to be very useful tools for studying ef-
fects, whose description are rather complicated in real-
istic four-dimensional gravitation. Examples are gravi-
tational collapse [3], black holes [4], cosmologies [5], and
quantum efFects [6].

Unfortunately, it is not possible to use the Einstein
equations in twodimensions, because the Einstein action
is a topological invariant and, therefore, the Einstein ten-
sor is identically zero. Several suggestions were made to
circumvent this problem: Jackiw [7] and Teitelboim [8]
proposed a model which they essentially got by dimen-
sional reduction of the three-dimensional Einstein action
supplemented with a cosmological constant and an auxil-
iary field. Mann et al. [9] extended this model by giving
dynamical content to the auxiliary field. Another ap-
proach was pursued by Callan et al. [10] who considered
a string-theory-inspired action. With the help of a new
parameter it is possible to unite various actions into one,
as was shown by Lemos and Sa [ll]. These difFerent
models will be briefly reviewed in Sec. II.

Much of the analysis of two-dimensional models was
concerned with vacuum solutions (especially black holes
[4]), but it is of course possible to include also di8'er-
ent kinds of matter couplings to study the mutual influ-
ence of matter and gravity. A very useful example is the
above-mentioned model of Callan et al. [10], coupled to
massless scalar fields, because it is exactly soluble on the
classical level. Also, quantum e8'ects, such as Hawking
radiation, can be analyzed. It is therefore interesting to
see, if any other matter-field models allow analytic clas-
sical solutions as a starting model for considerations of
quantum effects.

As has been well known for many years, there is such a
Inodel in fat space-time, namely, the sine-Gordon-model,

whose nonlinear interaction potential provides classical
particlelike kink solutions [12]. It proved to be very useful
for studying quantization techniques of nonlinear baryon
models such as the Skyrme model [13]. Skyrmions cou-
pled to gravity were analyzed recently by Heusler et al.
[14]. Therefore, it is suggestive to study the gravitational
sine-Gordon model, which is the main purpose of this pa-
per.

In Sec. III some features of the sine-Gordon model in
flat space-time and their generalization to curved space-
time are discussed. General aspects of the gravitational
sine-Gordon model and its equations of motion are con-
sidered in Sec. IV and furthermore, the boundary condi-
tions for possible soliton solutions are examined. Some
speculations on simple modifications of the sine-Gordon
model are presented. In Sec. V various types of analytic
solutions are listed, and the structure of the kink and of
the space-time for these different solutions is discussed.

II. TW'O-DIMENSIONAL MODELS FOR
G B.AVITV'

It is well known that the Einstein tensor G„vanishes
identically in two dimensions. Therefore, it is not possi-
ble to use the usual Einstein equations

G„„=8vrGT„

As a consequence, one has to think about suitable al-
ternatives. Jackiw [7] and Teitelboim [8] suggested the
so-called constant-curvature model

(2)

In four dimensions this is simply the trace of the vacuum
Einstein equations with cosmological constant. It is use-
ful to have an action whose variation gives the equations
of motion. In four dimensions such an action is (for the
vacuum equations)

(3)

'Electronic address: Stoetzelophys. ualberta. ca.
It is also possible to construct a two-dimensional action
leading to (2), but involving an auxiliary scalar field:

0556-2821/95/52(4)/2192(10)/$06. 00 1995 The American Physical Society



52 TWO-DIMENSIONAL GRAVITATION AND SINE-GORDON SOLITONS 2193

I = d xN —g R+A (4)

Varying N immediately gives (2), whereas the variation
with respect to the metric yields an equation for the field
¹ This action can also be understood as a dimensionally
reduced form of the three-dimensional Einstein action. It
is then easy to include matter interaction in this model
by adding a matter term to the action:

This is a Brans-Dicke-type action in two dimensions [15].
For u = —1 one obtains (12) and for w = 0 one re-
discovers the Jackiw-Teitelboim model (5) (apart from a
slightly different matter coupling). The model of Mann
et al. is covered by the limit u ~ oo [16]. The variational
equations for this general action are

R = 4ld(p' p
—p' p p)

Ng g(R—+ A+ ~eM),2

where ZM is the matter Lagrangian and e a coupling
constant. In this case the variational equations are

1N,. p —g pN'", .„=—2KNT p,
(6)

with the energy-momentum tensor defined as

+~@ = gnp~M 2
8'g ~ (7)

One important aspect of this model is that the energy-
momentum tensor is not covariantly conserved.

A natural extension of the Jackiw-Teitelboim model,
which yields a conserved energy momentum was sug-
gested by Mann et aL [9] who gave dynamical content
to the auxiliary field. The action is then (omitting the
cosmological constant)

p;i ~ —gj vy™;~—2(~ + 1)y i y v + gpv(~ + 2) V
' p;~

4 Ke T~~ (i5)

Which of these difFerent models may be regarded as two-
dimensional general relativity is more or less a matter
of taste. In the following Sections I prefer the model of
Mann et al. for several reasons. First, this model yields
as one equation of motion the analogue of the trace of
the Einstein equations R T. Second, it may be ob-
tained as the limit ~ + oo of the Brans-Dicke action
(13) which, in four dimensions, actually gives the Ein-
stein model of general relativity [16]. Third, it can be
considered as the D —+ 2 limit of D-dimensional grav-
ity, as was shown by Mann and Ross [17]. The fourth
reason is rather pragmatic, but nonetheless important in
the search for analytic solutions: the equations are not
too complicated.

III. SINE-'GORDON MODEL

I = ~ d2 zgp,

Instead of (6) the equations of motion now read

'".„=—R, (9)

Before considering the coupled system of gravity and
sine-Gordon model, first, I would like to review some of
the main features of the latter in Hat space-time.

The sine-Gordon model is a two-dimensional model for
a massless scalar-field P with a sinus-type self-interaction,
given by

@; 4'; +24', —', g (4' 0; +-44"; ) = —& Zsc = ', 8"yO„y —U—(-y) (i6)

with

Taking the trace of (10) yields, together with (9),

'~T = —R.iP

This equation is in direct analogy to the trace of the
four-dimensional Einstein equation R T.

A rather difFerent approach was pursued by Callan et
al. [10] who used a string-theory-inspired action to ana-
lyze black hole evaporation by Hawking radiation:

Is~ = — d xQ g(e ~ [R + 48—"pO„p] + KZM ) .

Lemos and Sa [11] recently proposed a model which
unites all these difFerent actions into one by introducing
a constant parameter

U(P) = 2m sin —= m (1 —cos P) .
2

(i7)

This Lagrangian was extensively studied as a tool for
testing difFerent soliton quantization methods, which was
of great interest in the study of solitonic baryon models,
such as the Skyrme model [13]. Another subject of anal-
ysis appeared after the discovery of Coleman [18] that
the sine-Gordon model (describing bosons) is equivalent
in a certain sense to the two-dimensional Thirring model
(describing fermions). Therefore, the sine-Gordon model
was very &uitful in the study of difFerent aspects of quan-
tum field theory, and there is some hope that this might
also be true for the gravity-coupled sine-Gordon model.

An especially interesting feature of the potential (17)
is that it admits soliton solutions. Consider the equation
of motion for the Lagrangian (16) in the static case

1
IBD = — d xg—g(e ~[R —4u8"yO„p] + v.CM) . gV' = m sing, (18)

(13) which has the solution
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P = 4 arctan e+ (19)

'8 = —,'[P" + 2U(P)] = P"=, . (20)
cosh [m(x —xp)]

'R has its maximum at x = xp, which may therefore be
regarded as the position of the soliton. In the following
I take xp ——0. The mass of the soliton is

M= dx'R x =8m.

The most important property of the solution (19) is that
one can assign a conserved soliton number to it, which
may be defined as the spatial integral over the zeroth
component of the obviously conserved current

This solution connects two successive minima of the po-
tential U(P) or, in other words, two distinct vacua of
the sine-Gordon model. Examining the energy density
for the solution (19) reveals another important feature of
solitons, namely that its energy is bounded and restricted
to a certain area of space, which makes it possible to as-
sign a mass and a size to the soliton. The energy density
is

R= ——vT —A, (27)

plus equation (10) for the auxiliary field g, which is re-
garded as a consistency equation without any physical
meaning. T in (27) is the trace of the energy-momentum
tensor defined in (7):

bdsG
+p, v —tv ~ bg&"

= & 4»-4 —,'g, -[~ 4~—4+ 2U(4)] . (28)

where ZsG is the Lagrangian (16), g is the necessary aux-
iliary field as introduced by Mann et a/. , R is the scalar
curvature, g the determinant of the metric tensor g~„[I
use the signature (—,+, +, +)], A is a cosmological con-
stant, and v is the coupling constant which is required to
be positive. Otherwise, the action would rather describe
an antigravitational sine-Gordon model. An example for
a solution with negative x is given in Appendix A. It
should be noted that the matter-gravity coupling in (26)
is not conformally invariant. Such a type of a coupling
is also considered by Ambjgrn and Ghoroku [19]. The
variation of (26) with respect to Q and g„„gives Eqs. (9)
and (10) of Sec. II, which can also be written in the form

2 = e ~(4'~2' (22) The trace is therefore

where e" is the two-dimensional Levi-Civita symbol with
eoi = 1. For (19), the soliton number is

.p 1K= dxj = — ding'=+1.
2K

(23)

Therefore, the solution with the plus sign is called soliton
and the one with the minus sign antisoliton. In curved
space-time, the soliton mass is not well defined, because
of the usual problems in defining locally conserved energy
in general relativity, whereas the notion of soliton num-
ber, being a topological property of the solution, is the
same in curved as well as in Bat spacetime. The reason
for this is that the current (22) continues to be locally
conserved:

T = —2U(P) . (29)

The scalar-field potential is the source for the metric.
One needs, of course, also an equation for the scalar-field
itself. Variation of the action with respect to P yields

&'";~ = U'(&) (30)

where the prime denotes derivation with respect to P.
With the help of this equation it is easy to show that the
energy momentum is covariantly conserved:

&";-= (&'"&' );- —'~""[(4' &;-);--+ 2U'(&)&;-]
PiP» P Pi&P + PiPPi~ PiPU~($)

=0.
'P P~j~ — e" P „—0

2~

(v' —»") ~—g
(24)

Two-dimensional gravity has only one degree of &eedom,
which means that the metric is completely characterized
by just one function. For the present purpose it proves
to be best to consider a metric of the form

K = dx —gj (25)

Consequently, one can define the soliton number in
curved space as

d8' ——e'&dt' + dx' (32)

Each two-dimensional metric can be brought to that form
by a suitable coordinate transformation. I am interested
in static solutions, which means P = P(x) and &p = p(x).
In that case the scalar curvature for the metric (32) be-
comes

IV. GRAVITATIONAL SINE-GORDON MODEL
2( II + l2) (33)

For the reasons discussed in Sec. II consider now the
following action describing a gravitational sine-Gordon
model:

where the prime denotes derivation with respect to x.
Ihu. thermore, the second covariant derivative of a scalar
field is

(26) 4'";p = 0"+ v'0' . (34)
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0" + g4' = U'(4) (35)

Accordingly, one has to consider the static equations

and

F (~)
dF(&)

~ ( )
d&(~)

dP dx

g'+ g = —-v.U(P) + -A, (36)

with the function g = &p'. For given potential U(/t/) these
are coupled and nonlinear, but ordinary diBerential equa-
tions which may, in principle, be solved for given bound-
ary conditions. A general analytic solution is possible in
the easiest case of a massless scalar field U(P) = 0. It is
especially interesting that there exists a soliton solution
in that case, which can be interpreted as a gravitation-
ally bound kink. This special solution is discussed in
Appendix B. Consider now nonlinear potentials such as
the sine-Gordon potential. What are suitable boundary
conditions for a soliton solution? As can be seen &om
the example of the Hat-space sine-Gordon model a soli-
ton connects two minima of the potential U(P) and is
monotonically rising (19):

[F(&)]' —=
d

= F'(&)&'(*) = &" . (44)

Equation (42) can then be written as

E"—2U+A = + E (45)

or, after one integration,

QF/2 —2U+A=+ F .
2

(46)

The integration constant may be set to zero, because E
is de6ned only up to a constant. Squaring the whole
equation then yield. s a first order differential equation for
the function F(P):

4- &4 &4+ 4'&0 E' —4]cE = 2U —A . (47)

P'(Q~) = 0, U(Q~) = U~,
(37)

It is now possible to translate (37) into conditions for F:

where P~ = /t/(x -+ +oo) and U'(/t/~) = 0.
To analyze possible solutions of Eqs. (35) and (36),

with the boundary conditions (37), it is best to decou-
ple the equations. This is achieved in the following way.
Derivation of (36) with respect to x and insertion of (35)
yields

F'(&) &0, F'(4+) =0

From (47) one further may infer

F (/t/~) = ——(2U~ —A) .

(48)

(49)

g// + 2gg/ i U/(y)y/ i (y// + gy/)y/

= —4K[(p' )'+ 2gp' ] .

This means that solutions for positive K, are possible if
2U~ —A ( 0. F(/t/) is a monotonically rising function as
well as P(x); thus, for the sine-Gordon model (U~ = 0),

A special solution of this equation obviously is (5o)

g' = —-'Kg'

If one reinserts this relation into (36) one obtains the
function g in dependence of the function P:

g = 4iK[p" —2U(p)]+ 2A . (4o)

Equation (35), multiplied with P', then becomes an equa-
tion for P alone:

2(&")'+
2

&" 4"' —2U(4)+ „=IU(&)1' (41)

where all primes now denote derivation with respect to
x. This can also be written as

A soliton solution of Eq. (42) is therefore possible for a
positive cosmological constant. What can be said about
the metric function g? g is determined by Eq. (40) and
the boundary conditions of 0 compatible with that equa-
tion are

g2(x -+ +oo) = —4i/;[2U~ —A] = 4v.A,

where the last equality holds for the sine-Gordon model.
Solutions with vanishing cosmological constant are possi-
ble if at least one of the two constants U~ is negative. An
example is the following slightly modified sine-Gordon
potential:

—2U +A (42)
U(P) = 2m sin — 1 —n sin

2 2
(52)

with the rescaled cosmological constant A. This seems
to be rather complicated, but may be simplified in the
following way. Assume, there is a solution P = P(x) and
gV = qV(z). One may now invert the equation for P and
insert it in the one for P' to get P' as a function of P.
Call this function F'(P). Thus,

Successive minima of this potential are

U = 0, U+ ——2m (1 —c/),

and solutions are possible for o, & 1. In the previous dis-
cussion I used the condition gV = 0, which is true only
if P(x) is defined on the whole real line 'R. Nevertheless,
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there may also be soliton solutions having a compact do-
main I = [x,x+]. This is possible if there are coordinate
singularities at x~. In such a case (49) is replaced by

0 & A &4m2.

The scalar field is now determined by (43):

P (P~) = ——(2U~ —A — ~P~),
K 4 ) (54) P'(x) = +/4m~ —Asin —,

2
' (62)

where P+ ——P'(P~), and nothing can be said about the
cosmological constant anymore. On the other hand, (40)
shows that P+ has to become infinite, to ensure the coor-
dinate singularities. For that reason there are no soliton
solutions with compact domain.

which may be integrated at once to give

P(x) = 4 arctan e™~0],

with the soliton mass parameter

M = —,'/4m& —X.

(63)

(64)

V. ANALYTIC SOLUTIONS

E ——KE = 4' sin&2 1 2 2 ~ 2
4 (55)

The simplest possible ansatz subject to the conditions
(46) is

I"'(P) = Asin —,
2

'

Although Eq. (47) looks rather simple, there is no stan-
dard procedure for solving it, and I was not able to de-
termine a general solution. The only possibility to 6nd
at least some special solutions which may be interpreted
as solitons is by trial and error. Consider first the pure
sine-Gordon model

KM2

cosh (Mx)

and by integration

4 cosh (Mz)
(65)

This has the same form as the fat space kink and antikink
solution, but with a different mass parameter. One gets
the original mass back for vanishing cosmological con-
stant. As in flat space, x0 may be interpreted as the
center of the soliton and is set to zero in the rest of the
paper. Also, I concentrate on the kink solution. The
discussion for the antikink is of course completely analo-
gous.

Consider now the metric generated by the soliton. The
metric function is given by (39):

= —~M sin1 I2 2 ~ 2
4

I" (P) = Ie —2Acos —.
2

y' = 8 = — tanh(Mx) + 0O .
4M (66)

Insertion in (55) yields

tc(I" + 4A )—+ rcAFq cos —+ A (1 + r) sin2 2 . g4
4 0 2 2

= —A+ 4m sin (57)
2

'

This equation determines the constants

The integration constant 00 is determined by insertion in
the original equations (35) and (36), requiring ge ——0.
One further integration then yields

p(x) = — lncosh(Mx) = —Klncosh(Mx) . (67)4M2

Therefore, the soliton induced metric becomes

+0 =0, ds = —cosh "(Mx)dt + dx (66)

(1+~)A' = 4m' .
(56)

For given sine-Gordon parameter m and cosmological
constant A, one Gnds a solution

P(P) = +2+4m~ —Acos —,
2 ' (59)

but which is a solution only for the special value of the
coupling constant

(60)

This is consistent with the requirement discussed in the
previous chapter that a positive A is needed to get a so-
lution for positive K. In this special case here one finds
an even stronger requirement: namely,

This metric is similar to the different metrics analyzed
by Lemos and Sa [11]for general two-dimensional dilaton
gravity. It is different, because it does not describe black
holes, but the global structure of the space-time, however,
is unexpectedly interesting and will be discussed below.

There is one point left to complete the examination of
the equations of motion, namely to check if the consis-
tency equation (10) for the auxiliary field @ has a solu-
tion. It is straightforward to show that this is actually
the case with @ = 2y.

Before analyzing the above solution, consider first the
modified sine-Gordon potential (52) with a vanishing cos-
mological constant. The same procedure as in the former
case of the pure sine-Gordon model gives now a kink so-
lution of the form

P(x) = 2arctane

and the relation between the model parameter n and the
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coupling constant K is simply

~ = 4(n —1), (70)
Mr

(1 + e ~~) "/2dt2+. dx2 (71)

I turn now to a detailed discussion of the metric, starting
with (68). The metric is obviously symmetric around the
center of the kink and has coordinate singularities for
x ~ +oo. From (33) one finds the scalar curvature

2Km

cosh (Mx)
(72)

Therefore, the curvature is everywhere Gnite and. no phys-
ical singularity arises. Nevertheless, the space-time cov-
ered by the coordinates t and x is not geodesically com-
plete as may be seen &om the geodesic equation

which again is in accordance with the fact mentioned in
Sec. IV that a has to be greater than 1 to make solutions
for positive e possible. The metric for the kink (69) is
now

Mr

FIG. 1. One patch of the Penrose diagram for the
sine-Gordon soliton with e = 1.

R., one obtains a geodesically complete manifold. The
coordinate-singularities are now located at the points
Mr = km for k = 0, +1, . . . . It is not possible to find
a global coordinate system which is singularity-free (see
Appendix C). The complete manifold can be pictured as
a "patchwork" of Penrose diagrams of the form shown in
Fig. 1.

In each of these space-time patches exists a soliton or
antisoliton which, in the Schwarzschild coordinate, has
the form

pnpp p +p (73) Q(r) = 2Mr . (79)

which for the metric (68) reduces to (pe —— E)—
2

= E cosh "(Mx) —p,
(dx) 2

(dA)
E2(1 +Ma)2~ (74)

The asymptotic behavior is

A- e+"~, x ~ +~. (75)

This means that the proper time lapse for a test particle
to travel from some point xo to x ~ +oo is 6nite. To
find an analytic extension of the solution (68) consider a
Schwarzschild-like coordinate

Note that Mr is restricted for each soliton to one of the
intervals I& = [kyar, (k + 1)m]. By examining the geodesic
equation analogous to (74),

= E —y, sin (Mr), (80)
(dr)'
qdA)

one 6nds two types of geodesics. For E ) p the test
particle will travel &orn r = —oo to r = oo through
in6nitely many of the diferent patches, whereas for E (
p it will oscillate between two neighboring patches and,
hence, between neighboring solitons.

Next consider the case v = 2. The Schwarzschild co-
ordinate is given by

r = dxcosh " Mx (76)

1r = —tanh(Mx) . (81)

The function r(x) maps the domain R of x onto a com-
pact interval I whose boundary depends on x. This pro-
vides the possibility to extend the metric analytically. To
get an idea of the structure of the complete space-time
examine two special choices of the coupling constant v,
namely e = 1 and r = 2. These values are the sim-
plest ones, because the function r(x) becomes explicitly
invertible. For e = 1 one obtains

2r = —arctane
M (77)

ds = —sin (Mr)dt +
Slii (Mr)

(78)

By extending the domain of r &om the interval I to

The image of this map is the interval I = [O, vr/M] and
the metric has a Schwarzschild form in the coordinates r
and C:

ds = —(1 —Mr) dt
(1 —M2r2)2 (82)

The coordinate singularities are located at Mr = +1.
Other singularities arise at r ~ +oo, and these are now
physical singularities as can be seen &om the curvature
scalar

R = 2r.m (1 —M r ) —A . (s3)

Again it is not possible to 6nd a globally singularity-
&ee coordinate system. The Penrose diagram for the
extended space-time has the structure shown in Fig. 2.
The soliton in this case has the form

1+Mr
P(r) = 4 arctan

1 —Mr (s4)

and is de6ned only in the regions corresponding to —1 &
Mr & 1. Possible geodesics are oscillations around

The image of the map is now I = [
—1/M, 1/M] and the

metric has the form
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FIG. 3. Penrose diagram for the modified sine-Gordon soli-
ton with r = 2 (Go denotes lines with mr = 0).

FIG. 2. Penrose diagram for the sine-Gordon soliton with
r = 1 (Gy denote lines with Mr = +1; bold lines represent
physical singularities).

For r = 2 the coordinate transformation (87) is explic-
itly

Mr =Ofor 8) p, andaroundMr = +1forE & p.
The physical singularities at r —+ +oo are unreachable
for massive particles. Nevertheless, they are observ-
able, because null geodesics may reach &om r = —oo to
r = oo. In this sense the singularities in this space-time
are naked. There is no horizon hiding them.

In the remaining part of this section I will discuss the
metric (71), induced by the soliton (69) of the modified
sine-Gordon potential (52) with a vanishing cosmological
constant.

Calculating the kink number (25) yields in this case

1 I 1 1K = — ding' = —[P(oo) —P(—oo)] = —, (85)
2K — 2K 2'

and one might expect an extension of the space-time
which also completes the kink. The same conclusion may
be drawn &om the fact that the space-time covered by
t and x is geodesically incomplete for x ~ oo, because
the proper time lapse for test particles approaching this
limit is finite for the same reason as in the previous case.
Also, in this limit the metric (71) is singular, but the
space-time is not. The scalar curvature is 6nite at this
end of the real line:

KfA K K fAB=
~ 1 ——e =—,x —+oo.

2 cosh (Mx) 4

+ e2TAR 1ra = ln
2m +1 ~ e2~* + 1

' (88)

which yields the metric

ds = —tanh (mr) dt + coth (mr) dr (89)

P(r) = 2arctansinh (mr), (90)

and the kink number is K = 1 as expected. Geodesics
range &om r = —oo to r = +oo for E ) p and oscillate
around r = 0 for E & p. For v = 4 one obtains

r(x) = — ln(1+ e 2™),
2m

and the metric in this case is

(91)

ds2 = —(1 —e2~")2dt2+
(1 e2~r)2 (92)

Apart from r = 0(x —+ oo) another singularity arises at
r m oo which, after calculating the curvature,

Now the space-time is asymptotically flat at both sides of
the real line, and the structure of the space-time is anal-
ogous to an extreme Kerr-geometry given by the Penrose
diagram of Fig. 3 [20]. The soliton in these coordinates
has the form

(86) g = 8m2e2~" (1 —2e2~") (93)

On the other side of the real line, x ~ —oo, the curvature
vanishes, B = 0, and the space-time is asymptotically
Hat.

To find an analytic extension switch again to a
Schwarzschild coordinate defined by

~»+ "- --~4

The image of the function r(x) is now the half-open m-
terval I = (—oo, 0] and an extension into the region r & 0
is possible. Again the specific structure of the complete
space-time depends on the value of ~, and as examples I
consider in the following the cases K = 2 and e = 4.

appears to be a true physical singularity. The space-
time is now analogous to an extreme Reissner-Nordstrom
geometry [21]. The Penrose diagram is shown in Fig. 4.
The soliton is given by

P(r) = 2arccotge 2~" —1 (94)

which is not defined in the region r ) 0. Therefore the
soliton is not completed in this case. The missing half
of it is cut ofF by the space-time singularity at r ~ oo.
Geodesics range from r = —oo to r „=1/2mln(1 +
E/p) for E & p and oscillate around r = 0 for E ( p.
The space-time singularity is unreachable for massive test
particles, but observable by light rays.
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model. In this appendix I give an example of such a
soliton solution for the pure sine-Gordon potential with
a vanishing cosmological constant. The same methods
used in Sec. VI reveal the following solution for K = —4:

P(x) = 2 arctan e (Al)

FIG. 4. Penrose diagram for the modified sine-Gordon soli-
ton with r = 4 (Go denotes lines with mr = 0; bold line
represents the physical singularity).

Actually, this is just one half of the kink, because it does
not connect two successive minima (vacua) of the po-
tential, but a minimum and an extremum. As in the last
example of Sec. V one might again expect an extension of
space-time to complete the kink or a physical singularity
to cut off the second half of the soliton.

The induced metric is

(1 + e2~~)2dt2 + d~2 (A2)

VI. CONCLUSION

The purpose of this work was to examine some aspects
of two-dimensional gravity coupled to matter fields with
a special emphasize on the sine-Gordon model. There
is no unique model for two-dimensional gravity and I
used the one proposed by Mann et al. , because it seems
to be the most natural analogue to general relativity in
four dimensions. General properties of solitonic solutions
in this model were discussed, and different analytic so-
lutions were found. The examination of the appropri-
ate geometries showed very interesting and unexpected
space-time structures for these solutions.

Although I was not able to find other analytic solu-
tions than the ones discussed in the above sections, this,
of course, does not mean that there are no other solu-
tions. It would be especially interesting to find soliton
solutions with a black hole metric, because a great part
of the work done in two-dimensional gravity is connected
with questions of black hole physics, such as, for example,
Hawking radiation.

The sine-Gordon model was the subject of many inves-
tigations concerning quantum field theory in Hat space-
time, and I hope that the solutions discussed in the
present work may be useful starting points for similar
investigations in quantum gravity.

Note added. After finishing my work I became aware
of a recent paper by Shin and Soh [22] dealing also with
sine-Gordon solitons in two-dimensional gravity. They
took the gravity model of Callan et al. , and were able
to discover a soliton solution with a black hole metric,
because the matter-gravity coupling they used is slightly
different &om the one I used in my work.

Note that this is in accordance with the metric solution
(71) for the modified sine-Gordon potential for n = 0, as
it has to be. Introduce now a null coordinate

1x' = — ln(l+ e *),
2m

(A3)

which gives the conformally Bat metric

ds2 = —(1 —e' *
) 2(dt' —de*') . (A4)

B= —8m e (A5)

thus revealing a physical singularity at x* ~ oo and a
coordinate singularity at x' = 0 (resp. x ~ oo). The
Penrose diagram for this case is shown in Fig. 5.

The soliton in the new coordinate is

P(x') = 2arccot ge 2~ —1, (A6)

which is not defined in the region x' ) 0. Again the
missing half of the kink is cut off by the singularity. The
geodesic equation is

Massive test particles stay always in one of the two halves
of space-time depending on their initial conditions. Es-
pecially the point x' = 0 (which may be interpreted as

The original domain of x is mapped on the half-line

(—oo, 0] and the space-time may be extended into the
region x* ) 0. The curvature is
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APPENDIX A: ANTIGRAVITATIONAL SOLITON

It was mentioned in Sec. IV that the action (26) with
negative values of v gives rise to an antigravitational

FIG. 5. Penrose diagram for antigravitational soliton in the
sine-Gordon model with vanishing cosmological constant (Go
denotes line with x = 0; bold lines represent the physical
singularity. )
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the center of the soliton) can never be reached for p g 0.
This shows the antigravitational character of the solu-
tion. The soliton repels every massive object.

H=G', H' = G, (c5)

The condition that the metric stays conformally Bat
yields conditions for the functions H and G:

APPENDIX. B: GRAV'ITATIONALLY BOUND
SOLITON

In this appendix I discuss a solution of Eqs. (35) and
(36) which can be interpreted as a gravitationally bound
soliton. For a massless scalar field the potential vanishes
and Eq. (36) is easily solved by

with the general solutions

t (t, r*) = g(r* + t) + h(r' —t),

H(t, r*) = g(r*+ t) —h(r' —t),
and the new metric is

(c6)

0(x) = A tanh(Ax), d = dU' —dV
4g'(r* + t)h'(r* —t)

(C7)

with the parameter A = gA/2. This is a real solution
for positive cosmological constant. Equation (35) yields

P(x) = Pe arctan e" (B2)

with an arbitrary constant Pe. The appropriate metric
is given by

ds = —cosh (Ax)dt + dx (B3)

APPENDIX C: TREATMENT OF COORDINATE
SINGULARITIES

This is the anti —de Sitter geometry [23]. The space-time
consists of infinitely many patches all filled by one soliton
of the form (B2) and completely separated for massive
objects, which oscillate around one kink. Nevertheless,
the diBerent patches are observable with light rays, be-
cause null geodesics may reach from one to another part
of the space-time.

Therefore, the function O(r', t) = g'(r*+t)h'(r* —t) has
to cancel the singularity in E'(r'), which means

O(r*, t) .- .E"(ro), t = const .
+7 p

(C8)

For finite r& this is only possible if 0 = 0 which is equiv-
alent to A(r*) e~" . An example for this is the anti-
gravitational solution of Appendix A, where ro ——0 (r*
is called 2:* in that section), but near that value the con-
formal factor is

Therefore, this singularity cannot be removed by any co-
ordinate transformation of the required type.

In all other examples of this paper ro is infinite. In
that case, one does not have to impose the additional
condition 0 = 0 and there is some more ft. eedom than in
the previous case. Nevertheless, the behavior of all these
metrics near the singularity is of the form

The usual treatment of coordinate singularities is pat-
terned after the method of Kruskal introduced in dealing
with the Schwarzschild metric in four dimensions [24].
In two dimensions the recipe is the following: starting
with the Schwarzschild-type metric, such as, for example,
(78), transform to a conformally flat coordinate system
in such a way that the singularities disappear. A generic
Schwarzschild-type metric is

—dt2 + dr*
4m2r*2

Thus, one needs functions g and h. such that

g'(r*+ t)h'(r* - t)-
for r' —+ oo and t =const or, in the same limit,

(c10)

(c11)

ds = —E (r)dt2+ (C1) g (r + t)-
(C12)

A transformation to a conformally Hat system is obvi-
ously achieved by

hf 1
( —)-(„. ,), .

E(r) (C2) which means, for the functions themselves (n g 1),

The resulting metric is

ds2 = —E* (r*)(dt —dr*2) .

The singularity is at some point r* = ro. Find now a
transformation to get rid of it:

1gf' +t (r*+t)~—' '

(C13)

U = G(t, r*), V = H(t, r ) . (c4) In terms of the new coordinates
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U (r*)' + (r*)
(C14)

t. The last possibility left is the choice n = 1 in (C12).
In that case, one obtains

U ln(r ), V ln(r ), (C15)

If r* approaches the singularity both, U and V, diverge;
hence, the new coordinate system does not cover the
whole space-time described by the coordinates r* and

and again U and V diverge at the singularity. In other
words, it is not possible to Bnd a globally singularity-&ee
system, if the singularity is of the form (C10).
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