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This paper studies the quantization of the electromagnetic field on a Hat Euclidean background
with boundaries. One-loop scaling factors are evaluated for the one-boundary and two-boundary
backgrounds. The mode-by-mode analysis of I'addeev-Popov quantum amplitudes is performed by
using (-function regularization and is compared with the space-time covariant evaluation of the
same amplitudes. It is shown that a particular gauge condition exists for which the corresponding
operator matrix acting on gauge modes is in diagonal form from the beginning. Moreover, var-
ious relativistic gauge conditions are studied in detail, to investigate the gauge invariance of the
perturbative quantum theory.

PACS number(s): 03.70.+k, 04.60.Ds, 98.80.Hw

I. INTRODUCTION

In a quantum cosmological framework, the quantiza-
tion of the electromagnetic Geld on flat Euclidean back-
grounds with boundaries was first considered in a paper
by Louko [1]. The one-loop correction to the Hartle-
Hawking wave function of the Universe [2] was studied
and the value of g(0) describing the scaling properties
of the wave function was calculated by restricting the
path-integral measure to the physical degrees of freedom
(i.e. , the transverse part of the potential). Later, it was
found in Ref. [3] that the value of the scaling factor ob-
tained by a space-time covariant method on using the
formula for the A2 Schwinger-DeWitt coeKcient for ar-
bitrary fields on manifolds with boundaries [4] disagrees
with the result obtained in Ref. [1]. Analogous discrepan-
cies were found for other higher spin Gelds on manifolds
with boundaries [5—13], and for gravitons [14] and pho-
tons [15,16] on the Riemannian four-sphere representing
the Wick-rotated version of de Sitter space-time.

Some attempts to understand the reasons of the dis-
crepancies mentioned above were made in recent years.
The Grst of these ideas suggests that the reason for dis-
crepancies lies in the inappropriate implementation of a
3+1 split on the manifolds where this is ill definite [17].
The second idea is connected with the necessity to study
the contribution of gauge and ghost modes to the quan-
tum amplitudes [12,18]. The third approach stresses the
necessity to pay attention to a correct definition of the
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measure in the corresponding path integrals [15,16,19].
The fourth one consists in the check of the covariant for-
mulas for the A2 Schwinger-DeWitt coeKcient for arbi-
trary fields on manifolds with boundaries [20].

In our previous paper [21] we have investigated the
correspondence between covariant and noncovariant for-
malisms for the Maxwell Geld on flat Euclidean four-space
with boundaries by applying the Grst two approaches
mentioned above. We were able to disentangle the eigen-
value equations for normal and longitudinal components
of the electromagnetic potential A~ in two relativistic
gauges [18,21]:

C, —= ~')V~A„, C =—~')V&A„—A, T X,

where K is the extrinsic-curvature tensor of the bound-
ary. Their contribution to ((0) on the manifold repre-
senting the part of flat Euclidean four-space bounded by
two concentric three-spheres was then evaluated. It was
shown that by taking into account the contributions of
nonphysical modes and ghosts (which do not cancel each
other in contrast with the usual experience on the man-
ifolds without curvature or boundaries), one obtains re-
sults for the Faddeev-Popov amplitudes which agree with
the space-time covariant calculation of the same ampli-
tudes. An analogous result was obtained for gravitons in
the de Donder gauge [22] and for photons in the Coulomb
gauge [23]. Moreover, it was shown in Ref. [21] that, in
the Lorentz gauge, the value of g(0) on flat Euclidean
four-space bounded by only one three-sphere coincides
with the value of the A2 Schwinger-DeWitt coefticient
[24] obtained by using the corrected formula derived in
Ref. [20].

However, relativistic gauges diferent from the Lorentz
gauge yield a difFerent ((0) value when the boundary
three-geometry consists of only one three-sphere [21]. A
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possible explanation of these results can be that the ab-
sence of a well-defined 3+1 decomposition of the elec-
tromagnetic four-vector potential on the one-boundary
manifold makes the calculations in terms of physical de-
grees of freedom and normal and longitudinal compo-
nents inconsistent. In the particular case of the Lorentz
gauge, these calculations are still consistent because all
the operators are in relativistically covariant form.

In this paper we continue the analysis of the electro-
magnetic field on manifolds with boundaries, by studying
the problem of gauge invariance in Euclidean Maxwell
theory. For this purpose, we study families of relativistic
gauges for the manifolds with one and two boundaries.
In particular, the gauge is found where the eigenvalue
equations for normal and longitudinal components are
decoupled without having to diagonalize operator ma-
trices, and the calculations are especially simple. Since
we study a model relevant for the quantization of closed
cosmologies (although in the limiting case of a flat back-
ground [5]), the normal and tangential components of
the electromagnetic potential are expanded on a family
of three-spheres as [1,12,18,21]

A. (x, ~) = ) R„(~)q~"l(x),
n=i

A, (x, ~) = ) f„(~)S„'"l(x)+ g„(~)y„l"l(x)
n=2

for all k = 1, 2, 3, (1.2)

where Q( l (x), S& (x), P&~
l (x) are scalar, transverse,

and longitudinal vector harmonics on S, respectively
[25].

Section II shows that a gauge condition exists such that
gauge modes for a spin-1 field can be decoupled without
having to use the diagonalization method described in
our previous paper [21]. The resulting ((0) value is ob-
tained. Section III applies the same gauge condition of
Sec. II to Qat Euclidean four-space bounded by only one
three-sphere. Section IV studies the most general family
of relativistic gauge-averaging functionals depending lin-
early on gauge modes and their first derivatives. Results
and open problems are presented in Sec. V.

where A„ is the four-vector potential, F~„=—t9~A„—8 A~
denotes the electromagnetic-field tensor, g is the back-
ground four-metric, 4 is an arbitrary gauge-averaging
functional defined on a space of connection one-forms,
and o. is a positive dimensionless parameter. Igh is the
corresponding ghost-field action.

A relevant class of choices for e'(A) can be
parametrized by a real number, say 6, and it can be cast
in the form [12,18]

O('l(A) =—l'le~ A„—bA. T Z, (2.2)

where K is the extrinsic-curvature tensor of the bound-
ary. The two gauges studied in Ref. [21] are a particular
case of (2.2), since b = 0 leads to the Lorentz gauge, and
b = 1 yields the Esposito gauge [12,18,21]. If (2.2) is cho-
sen as the gauge-averaging functional, the part I2(g, R)
of the Euclidean action quadratic in gauge modes is (cf.
Refs. [12,18])

1 "3 3 2

jg(g, R) = T (Rl + —(1 —b)R1) dT
20! 7

OO

+), [g„—(n' —1)R„]
n=2 T—

2
~R„+3(l —b)R„——" d7. . (2.3)

20! '1

Of course, we need boundary conditions on the bound-
ary surfaces. They can be magnetic, which implies set-
ting to zero on the boundaries the magnetic field, the
gauge-averaging functional and hence the Faddeev-Popov
ghost field. They can also be electric, hence setting to
zero on the boundaries the electric field, and leading to
Neumann conditions on the ghost [12,18,21]. The former
imply, in the gauge (2.2), Dirichlet boundary conditions
for g and ghost modes, and Robin boundary conditions
for R„modes. The latter imply Neumann boundary con-
ditions for g and ghost modes, and Dirichlet boundary
conditions for B modes.

Integrating by parts in (2.3) and using the magnetic or
electric boundary conditions described above one finds,
for alln) 2,

II. DECOUPLING OF GAUGE MODES:
TWO-BOUNDARY CASE,

MAGNETIC AND ELECTRIC BOUNDARY
CONDITIONS

Following Refs. [12,18,21], we study quantum ampli-
tudes for Euclidean Maxwell theory within the framework
of Faddeev-Popov formalism. Thus, the total Euclidean
action is given by [12,18]

1 +
7. R„(B R„) d7.

2

+
+

I
1 ——

I g- —(~R-.) «n)

3( 2b +
g„R„d~,3i (2 4)

I@ ——Igh+ —F„„F"+
C (A)

20!
gdet g d4x,

where the second-order elliptic diR'erential operators A
and B are

(2.1)

d2 1 d (n2 —1)A„(~) = — ———+
d7 7 d7 A'T

(2.5)
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1 fd 3di
~-(~) —= ——I, + ——

n (dw vdw)
1 2 3 4

n —1+ —1+36 6 ——
7-2 CI 3

(2.6)

Thus, if we choose the gauge-averaging functional as [cf.

(2 2)l

e (W) =—~'lV""„——~, T K,2
P, 3 0 (2.7)

the action quadratic in the gauge modes becomes, for all
n&2,

(n' —1)
gn d7

O.7

1 + 1gn d 1
I2 g, B

2 (n' —1) d~' ~ d~
+

1 +
3 lf d 3 d' 2 1 1 + d

~ R„—
~

+ ——
~

—n —1 ———R„d~ ~1 —-— g„(~R—„)d~.
2

" a (d~2 ader) n d7
(2.8)

d gn 1 dgn"+-
d'T 7 d7

(n' —1)
7-2 gn+ Angn = 0 ) (2 9)

Remarkably, by setting to 1 the parameter o. we get the
decoupled eigenvalue equations for normal and longitu-
dinal components of the electromagnetic potential (I. K„- )—

det (2.14)

the system (2.13a)—(2.13d) is the vanishing of the deter-
minants

d2B„3 dR„+-
d7 'T d'T

(n' —2) B„+A„B„=0.72 (2.10)

The regular solutions of Eqs. (2.9) and (2.10) are Bessel
functions of noninteger order. However, to use the
complex-contour technique of Refs. [8—11] it is convenient
to set A = —M and then work with the corresponding
modified Bessel functions. After making this change of
variable, and defining v—:gn2 —1, we get the regular
solutions for g and R„:

((I„,+I„+,) —(K„,+K„+,) l
det =0. (2.15)

((I„+,+I„+„) -(K„+,+K„++,) )
Thus, we have found the condition on eigenvalues for nor-
mal and longitudinal components of the electromagnetic
field and can evaluate their contribution to ((0) by using
the algorithm of Refs. [8—11].

For this purpose, let us recall that ((0) can be ex-
pressed as

g„(~) = C, I„(M~)+C, K„(M~), (2.11) ((0) = Iios+ Ipoi (~) —Ip i, (0) . (2.16)

".(.) = —(c.1.(M.)+c.sc.(~.)),1
(2.12)

where C; with i = 1, . . . , 4 are constants. As in Ref.
[21], both I and K functions contribute to regular gauge
modes, since the singularity at the origin of flat Euclidean
four-space is avoided in our elliptic boundary-value prob-
lem with two three-sphere boundaries.

Now, defining I„=I„(M~ ), I„+ = I„(Mr+), K„
K„(M7. ), K+ = K„(Mr+), and imposing magnetic
boundary conditions described above, one has the equa-
tions

I(M, s) —= ) d(n) lnf„(M ).
n=no

(2.17a)

Such a function has a unique analytic continuation to the
whole complex-8 plane as a meromorphic function: i.e.,

With our notation [8—11],one writes f (M2) for the func-
tion occurring in the equation obeyed by the eigenvalues
by virtue of boundary conditions, and d(n) for the degen-
eracy of the eigenvalues. One then defines the function
[8-11]

C, I—.+C, K.—=0,

C, I+ + C, K+ = 0,

(2.13a)

(2.13b)

C3 (I i+I+i) —C4 (K„ i+K„+i) =0, (2.13c)

C3 (I„+-,+ I„++i) —C4 (K+ i+ K„++i) = 0. (2.13d)

The condition for the existence of nontrivial solutions for

"I(M, s)" = " '+ I (M )+O(s) . (2.17b)

Thus, Ii s = Ii"- is the coefBcient of ln M from I(M2, s)
as M ~ oo, and I~ i,(M ) is the residue at s = 0.
Remarkably, Ii s and I~ i, (oo) are obtained from uni-
form asymptotic expansions of modifies Bessel functions
as their order tends to oo and M -+ oo, whereas I~ i, (0) is
obtained &om the limiting behavior of such Bessel func-
tions as M ~ 0 [8—11]. The condition det X = 0 [see
(2.14)—(2.15)] should be studied after eliminating fake
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roots M = 0. To obtain that, it is enough to divide
det X by the minimal power of M occurring in the deter-
minant. It is easy to see by using the series expansion
for modified Bessel functions that such a power is 0 for
(2.14) and —2 for (2.15).

We begin with the calculation of I~ g for g and B
modes. Using uniform asymptotic expansions of modi-
fied Bessel functions, one can see, &om (2.14), that the
coefBcient of ln M is —1, while (2.15), divided by M
gives +ln M. Hence

(2.18)

n2 —1+ . -( )&'"'(*) (2 25)

e (r) = r~ s l(BgI„(Mr) + B2K (Mr)), (2.26)

Hence the eigenfunctions of the ghost operator are related
to [12,18]

In a similar way one Gnds
contributions to Ip ~, (oo)
rately.

The next problem is the
to ((0) of the Bq mode.
equation for it is

that Ip ~, (0) = 0, whereas the
from g and B vanish sepa-

calculation of the contribution
In our gauge the eigenvalue

(2.19)

whose solution is

d'B~ 3 dB~ A~+ —
d

+ 2
— y=0)

2 ——(4 —3b) .
36

(2.27)

In the case 6 = 3, the order of the modified Bessel func-

tions in (2.26) is +gn2 —1 as in (2.11) and (2.12). The
contribution to ((0) of the ghost, in both cases (mag-
netic and electric) is zero. Bearing in mind that, Rom
Ref. [21], the contribution to ((0) of transverse modes is
—

2 with magnetic boundary conditions, and 2 when the
boundary conditions are electric, one gets

1 1
((0) = (transversal photons(0) + CRr (0) = +

1 1B](r) = c]—IQ(Mr) + C2 —Ko(Mr)
7 7

(2.20)

Imposing Robin (i.e. , magnetic) conditions on Bq,

=0, (2.21)

CgI~ —C2K~ = 0, (2.22a)

at the three-sphere boundaries, one gets the system of
equations

(2.28)

The calculation of g(0) in the electric case is immedi-
ate. In this case g„= 0 and B = 0 at the three-sphere
boundaries, and only the decoupled mode contributes to
the ((0) value and it yields (~, (0) = —2. Thus, also in
this case, one obtains ((0) = 0.

Our results coincide with those obtained by a space-
time covariant Schwinger-DeWitt method, where the
vanishing of the A2 coeKcient results from the mutual
cancellation of the contributions &om the two bound-
aries, in the case of Bat Euclidean four-space [24].

CgI~+ —C2K~+ = 0 . (2.22b)
III. DECOUPLING OF GAUGE MODES
IN THE ONE-BOUNDARY PROBLEM

The determinant of the system (2.22a) and (2.22b)
should vanish and this gives the eigenvalue condition.
Such a determinant has no fake roots. Thus, by using the
uniform asymptotic expansions of Bessel functions one
Ands that the contribution owed to I~ g is —2. As noted
in Ref. [21], we have to add the number N~ = 1 of such
decoupled modes to the full t,'(0) value. In fact, they are
nontrivial since they involve zero-eigenvalues correspond-
ing to nonvanishing eigenfunctions [21,26—28]. Hence one
obtains

Since the gauge condition studied in the previous sec-
tion leads more easily to the decoupling of g and B
modes, and it agrees with the results found in Ref. [21] in
the two-boundary case, it appears necessary to study its
properties in the one-boundary problem as well. More-
over, this analysis enables one to further check the gauge
dependence of the one-loop quantum amplitudes [21].
Following the results of Sec. II, we can write the reg-
ular solution for g, B and e as

1 1
g~, (0) = I) s + ND = ——+ 1 = —. (2.23) g„(r) = A I„(Mr), (3 1)

Now we deal with the ghost operator. By studying the
gauge transformation [12,18]

B„(r)= B I„(Mr), —1
(3.2)

(2.24) e„(r) = C I„(Mr), (3.3)

one gets, by virtue of (2.2), where A, R, C are constants. Imposing magnetic bound-
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for g and e, and

I„(Ma) = 0 (3 4)

I„'(Ma) = 0 (3.5)

ary conditions at the three-sphere boundary of radius a,
we get

tions from ghost and gauge modes in the particular gauge
(2.7) deserves further thinking.

If we choose electric boundary conditions at the three-
sphere boundary, the roles of g and B are interchanged
and ghost modes obey Neumann boundary conditions.
Hence, a similar analysis leads to the full ((0) value
[12,1S]

for R . Remarkably, the only possible form of the de-
coupled mode for normal photons is R» = 0, since R»
would be proportional to Io(Mr)/r in our gauge, and
hence cannot be regular at the origin (see also the end of
Sec. IV).

First, we evaluate I~ g for g and e . Using, as usual,
the uniform asymptotic expansion of modi6ed Bessel
functions, eliminating fake roots M = 0 and taking into
account that the degeneracy of ghost modes is —2 times
the degeneracy of g, we see that the coefficient of lnM
is v+ 2, where M" is the power of fake roots. For B,
after dividing by M", we And that the coefficient of
lnM is —(v —2i). Hence we obtain

(3.6)

13 1 3 553
180 2 2 180

(3.10)

The results (3.9) and (3.10) show that, on choosing the
gauge condition (2.7) in the one-boundary problein, the
full t,'(0) value is difFerent on imposing magnetic or elec-
tric boundary conditions. However, an analysis along
the lines of Ref. [21] and of this section shows that,
on imposing electric boundary conditions in the Lorentz
gauge, one finds again I,'(0) = —

so as in Ref. [21], where
magnetic boundary conditions were studied in the one-
boundary problem. The dependence of the ((0) value
on the boundary conditions and on the gauge conditions
seems to result &om the ill-de6nite nature of the 3+1
split of our background with only one boundary (see Sec.
V).

For ei, which is proportional to Io(Mr), we get, by a
simple calculation,

1
Incog 61 2

(3.7)

It is easy to see that the contribution to I~ i, (oo) is equal
to zero for g„, R„, and e„separately. Last, we have to
evaluate I~ i, (0). The contribution of g to I~ i, (0) is
obtained by taking the coefficient of —in the asymptotic
expansion as n —+ oo of

2 I'(v+1) '

Both terms contribute —
zzz to I& i, (0), and bearing in

mind the different degeneracy between ghost and gauge
modes one Ands

while the structure of the term deriving &om B which
contributes to Ip i.(0) is

IV. THE MOST GENERAL GAUGE-AVERAGING
FUNCTIONAL

ln Refs. [12,18,21] and in Sec. II of this paper, gauge in-
variance of the Faddeev-Popov formalism in the presence
of boundaries has been assumed to obtain a convenient
set of eigenvalue equations leading to the full ((0) value
for one-loop quantum amplitudes. To complete our anal-
ysis it is therefore necessary to study the most general
gauge-averaging functional C(A). Of course, the family
(2.2) of gauge functionals is only a particular case. Our
4(A) should obey the following conditions.

(i) 4(A) is linear in the gauge modes and their first
derivatives, to ensure that the total Euclidean action is
quadratic in the gauge modes and only involves second-
order elliptic operators.

(ii) 4(A) does not contain first derivatives of g modes.
In fact, such derivatives only occur in the components
of the electric 6eld, but not in the Lorentz functional,
or in the Coulomb functional, or in the Ao Tr K term.
Moreover, the variation of the total Euclidean action does
not vanish if the contribution of g„ is added to O(A).

Ip i, (0) = 0. (3.s)
One is thus led to write 4(A) in the form

Finally, taking into account the contribution to ((0) of
the transverse part of the potential [1] we get the full

g(0) as

( Bi)
C(A) =

l
»~i+» la' '(*)

C(0) =-„, (3.9)
o+ —~2 Ao Tr K —~3 V'

3
Remarkably, this ((0) value agrees with the one obtained
in Ref. [].], where ghost and gauge modes were not taken
into account. The striking cancellation of ((0) contribu-

(4.1)

where p», p2, ps are arbitrary dimensionless parameters
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independent of 7. Note that, if pq does not vanish, it can
2

be absorbed into the de6nition of o, by setting ~
whereas ~—:pq, ~ = ps. This implies that, if pi P 0,fl Y1

one can always consider an equivalent quantum theory
where pq ——1, while p2 and p3 remain arbitrary. An
equivalent classi6cation is obtained by focusing on 72 or
'Y3 ~ With this understanding, the following (sub)families
of nonvanishing gauge functionals may occur: (1) pi ——1,
pq g 0, 7s P 0; (2) pi ——1, pz = 0, ps g 0; (3) pi = 1,
Pg g 0, Ys = 0; (4) Pi ——1, P~ = Ps = 0; (5) Pi = 0,
Yg Q 0, Ys $ 0; (6) Yi ——Yq

——0, Ys Q 0; (7) Yi ——0,
'Yg g 0, Ys = 0.

The cases (5)—(7) correspond to degenerate gauge func-
tionals, in that they do not lead to second-order elliptic
operators on B modes. They are not studied in this
paper (cf. Ref. [23]). Hence we here focus on the cases
(1)—(4), i.e., whenever pi does not vaiiish (see above).
The 6rst problem we face is the attempt to decouple g
and R„modes by means of the operator matrix first ap-
plied in Ref. [21]. In our case, by virtue of (2.1) and (4.1),
the coupled eigenvalue equations take the form (cf. Ref.

lA~
) (4.11)

(4.12)

and setting to zero the off-diagonal matrix element

O,'",~ = ~„„+a„+V„C„„+V„D„,

one finds the system of equations (cf. Ref. [21])

V +o. =0, (4.13)

/ pV„1) da„p~ (n' —1)
«2 ( r2 r) d~ n 7.~

do.„1dV ~~+ 3 ~
2 +21 —— + —p(n' —1) = 0,

d7 617 7
(4.14)

A„g„(~)+ B„R„(7-)= 0,

C g (~) + D„R„(~)= 0,

(4.2)

(4.3)
=0.

p y3 1
(n —1)--+ —l-q, V„~„—

7 0! " "73

+ —(2 —q, ) —(n —1)y2 V„

[. 7 (4.15)

where, on de6ning

'Y3p= 1+—
0!

(4.4)

Equations (4.13) and (4.14) are solved by V„= —n„, and

(4.16)

one has

=1@=1+
0.'

d~ 1 d ps~ (n —1)
A = + ———— +A„,

d7 7 d7 6 7

(4.5}

(4.6)

where no „ is a constant. Since the insertion of (4.16)
into (4.15) leads to an involved condition unless a = 1, it
is very interesting to study Grst the limiting case o. ~ oo.
This does not affect the arbitrariness in the choice of the
parameters pi, pq, ps appearing in (4.1). One then finds
the condition

B„—:—p(n —1)——
d7

p, (n' —1) (4.7)

(4.8)

2

+ (n —1)—+ —(2 - ~, ) —ny3 2 y2
(n —1)

(n —1)

X 1+—= —A —1 1+ (4.17)
1 d 3 1

D
0! d,7 0!7

+ —(2 —~, ) —(n —1) —+ A„.y2 2 1
72 (4.9)

which is identically satis6ed for all n & 2, as o. —+ oo.
This shows that the limiting form of n (w) as a. ~ oo,
i.e.,

As we did in Ref. [21], we now look for a diagonalized
matrix in the form

n„(~) —(n —1)~, (4.18)

is indeed also a solution of Eq. (4.15).
One now has to set to zero the ofF-diagonal matrix

element

Thus, on using the operator identities [21]

(4.10) 0~i = W„A„+W„B„P„+C„+D„P„,
in (4.10). By virtue of (4.6)—(4.9), and (4.11) and (4.12)
applied to P (w), one thus finds the system of equations
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W„+P„=0, (4.19)

(w„+ -'p„)
2 + + —=0

d7. 7 7-2 (4.20)

1 d2p„(3 1 2 l dp„"+
i

———p(n —1)W„
i

" —p, (n —1)W„P„—
n d72 (n~ ) d~

+
~

—(2 —») —(~ —1) I&- ——(~ —1)W- —+ —(1 —») —= o. (4.»)
0! 7 O! 7-3

Equation (4.19) implies W„= —P„. Hence (4.20) is
solved by

V. RESULTS AND OPEN PROBLEMS

P (~) + P ~-2'(x ——')
(n —1) 3~

(4.22)

where Po is a constant. However, a direct calculation
shows that the limiting form of P (w) as n ~ oo, i.e. ,

1P(~)-~ +Ho, v&
37-

(4.23)

is not a solution of (4.21) as n ~ oo. Moreover, if one
studies finite values of n, the exact formulas (4.16) and
(4.22), on insertion into (4.15) and (4.21) respectively,
lead to equations which are not satisfied unless the pa-
rameters p2, p3 and o; take very special values. For exam-
ple, if » ——1,» —— n= ——1, n„= P„= V = W„= 0,
the decoupling functional (2.7) is recovered.

Thus, our analysis shows that gauge modes cannot be
decoupled for arbitrary gauge-averaging functionals, and
one now faces the problem of evaluating their contribu-
tion to the full ((0) even though g„and R„are not ex-
pressed in terms of Bessel functions [12,18,21,29]. How-
ever, for the class of gauge conditions (2.2) involvixxg the
arbitrary dimensionless parameter b, the basis functions
can be found by using the technique described in Ref.
[21]. The resulting ((0) value in the two-boundary prob-
lem is again equal to zero for magnetic or electric bound-
ary conditions, while in the one-boundary problem the
((0) value depends on b. In the case of magnetic bound-
ary conditions one finds

br (bj = ————36 —2) (27b —366 —12b —6)45 96

1 —Ob —1
3b 2

x
i

1 —6(-' —b) (4.24)

Note that Eq. (4.24) reflects the absence of a regular de-
coupled mode Rx for b c]s, 1[, in agreement with what
we found in the particular case of Sec. III. One can eas-
ily check that Eq. (4.24) agrees with the g(0) values
obtained in Ref. [21] and in our Sec. III.

In this paper we have obtained the following results.
First, we have studied the class of gauge functionals for
which the disentanglement of the eigenvalue equations
for normal and longitudinal modes can be achieved, and
we have pointed out one particular choice when such
equations are decoupled &om the beginning. Second,
on using this particular gauge functional, the calcula-
tion of the full ((0) value, in the two-boundary problem,
agrees with the evaluation performed in Ref. [21], where
we have imposed other gauge conditions. Third, in the
one-boundary problem, we have found that the one-loop
quantum amplitudes are gauge-dependent and the com-
putation of the full ((0) value is different on imposing
magnetic or electric boundary conditions. These unde-
sirable properties, as already noted in Refs. [17,21], seem
to add evidence in favor of the 3+1 decomposition of
the four-vector potential being ill defined on the man-
ifolds bounded by only one three-surface. Fourth, we
have studied the most general class of relativistic gauges
and the corresponding eigenvalue equations have been
obtained for the first time.

Interestingly, the recent work in the literature shows
that the semiclassical amplitudes respect the properties
of the underlying classical theory. For example, for a
massless spin-2 field obeying the Weyl equation and sub-
ject to spectral or locally supersymmetric boundary con-
ditions on a three-sphere, the regular modes turn out to
obey the same boundary conditions [12,30]. In the oxxe-

loop quantum theory, the eigenvalue conditions are difer-
ent, but the ((0) values turn out to coincide [6,7,9—12].
Moreover, Euclidean Maxwell theory in vacuum is in-
variant under duality transformations. Correspondingly,
we have found that the one-loop amplitudes are inde-
pendent of the choice of electric or magnetic boundary
conditions, providing the Lorentz gauge is chosen in the
one-boundary problem.

The main open problem in Euclidean Maxwell the-
ory in the presence of boundaries seems to be the ex-
plicit proof of gauge invariance of one-loop amplitudes
for relativistic gauges, in the case of Bat Euclidean space
bounded by two concentric three-spheres. For this pur-
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pose, one may have to show that, for coupled gauge
modes, Ii s and the difference I~ i, (oo) —I& i, (0) are not
afFected by a change in the gauge parameters p] Q2 p3 0,
of Sec. IV. Although this is what happens in the partic-
ular cases studied so far, at least three technical achieve-
ments are necessary to obtain a rigorous proof; i.e. ,
(i) to relate the regularization at large x used in Refs.
[12,18] to the regularization based on the Barvinsky-
Kamenshchik-Karmazin-Mishakov (BKKM) function de-
fined in (2.17a), (ii) to evaluate Ii z from an asymptotic
analysis of coupled eigenvalue equations, and (iii) to eval-
uate Ip i, (oo) —I& i, (0) by relating the analytic contin-
uation to the whole complex-8 plane of the difFerence
I(oo, s) —I(0, s) [see (2.17a)] to the analytic continua-
tion of the ( function.

If this last step can be performed, it may involve an
integral transform relating the BKKM function (2.17a)
to the ( function, and a non-trivial application of
the Atiyah-Patodi-Singer theory of Riemannian four-
manifolds with boundary [26,31]. In other words, one
might have to prove that, in the two-boundary problem
only, I~ i, (oo) —Ip i, (0) resulting from coupled gauge
modes is the residue of a meromorphic function, invari-
ant under a smooth variation in pq, p2, p3, 0; of the matrix
of elliptic self-adjoint operators appearing in (4.6)—(4.9).
Work is now in progress on this problem, and we hope to
be able to solve it in a future publication.

There is also the problem of physical interpretation of
the results obtained so far [18,21]. In the two-boundary
case, where one has a well-defined 3+1 split of the elec-
tromagnetic potential, the contributions to g(0) which,
jointly with transverse modes, enable one to obtain agree-

ment with the space-time covariant calculation, result
only &om the decoupled gauge modes. Note that such de-
coupled modes should be treated separately, since they do
not correspond to any Dirac constraint of the theory [19].
However, in the case of flat Euclidean space bounded
by only one three-sphere, even on studying the I.orentz
gauge which leads to agreement between mode-by-mode
and space-time covariant calculations of Faddeev-Popov
amplitudes, the nonvanishing contributions to ((0) are
not due just to transverse modes and decoupled modes.
By contrast, longitudinal, normal, and ghost modes play
a role as well in obtaining the full ((0) value. Perhaps,
the redefinition of the very notion of physical degrees of
&eedom is necessary in this case, and the problem de-
serves further consideration.
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