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It has been argued that any evolution law taking pure states to mixed states in quantum 6eld
theory necessarily gives rise to violations of either causality or energy-momentum conservation in
such a way as to have unacceptable consequences for ordinary laboratory physics. We show here
that this is not the case by giving a simple class of examples of Markovian evolution laws where
rapid evolution from pure states to mixed states occurs for a wide class of states with appropriate
properties at the "Planck scale, " suitable locality and causality properties hold for all states, and
the deviations from ordinary dynamics (and, in particular, violations of energy-momentum conser-
vation) are unobservably small for all states which one could expect to produce in a laboratory. In
addition, we argue (via consideration of other, non-Markovian models) that conservation of energy
and momentum for all states is not fundamentally incompatible with causality in dynamical models
in which pure states evolve to mixed states.

PACS number(s): 04.60.—m, 03.70.+k, 04.70.Dy

One of the Inost striking ramifications of the discovery
that black holes should radiate as blackbodies [I] is the
implication that a black hole should completely evaporate
within a Bnite time, and that, in this process, an initially
pure quantum state should evolve to a mixed state {see,
e.g. , [2] for a review of arguments leading to this conclu-
sion). This prediction of a "loss of quantum coherence"
is derived in the semiclassical approximation by apply-
ing the ordinary dynamical evolution laws locally to the
quantum Beld, so no violation of any of the principles of
local quantum Beld theory occurs in this context. Indeed,
in the semiclassical approximation, the loss of quantuIn
coherence is directly attributable to the failure of the final
time surface in the spacetime representing the evaporat-
ing black hole to be a Cauchy surface; exactly the same
sort of phenomenon occurs when one considers the evolu-
tion of a free, massless Beld in Minkowski spacetime with
the initial surface chosen as an ordinary hyperplane, but
the Bnal surface chosen as a hyperboloid.

Nevertheless, it seexns natural to expect that when one
goes beyond the semiclassical approximation, the possi-
bility of loss of quantum coherence in black hole forma-
tion and evaporation should give rise to a significant {in
principle) modification of the ordinary, local, dynami-
cal evolution laws: For almost any initial quantum state
one would expect there to be a nonvanishing amplitude
for black hole formation and evaporation to occur, at
at least at a highly microscopic (e.g. , Planckian) scale,
thereby giving rise to a nonvanishing probability for evo-
lution from pure states to mixed states [3,4]. One would
expect the deviations from the ordinary dynamical evo-
lution laws to be negligibly small for all states normally
accessible to laboratory experiments, but it would seem
reasonable to expect large deviations to occur when, for
example, the state of the quantum Beld is such that there

is a substantial probability to produce black holes at the
Planck scale.

It should be emphasized that any such modiBcation of
the ordinary dynamical laws which permits pure states
to evolve to mixed states should fundamentally involve
quantum gravity and, hence, e priori, there is no rea-
son to expect it to be possible to adequately describe
such efFects by some efFective theory" in which space-
time structure is treated classically. A good analogy to
bear in mind in this regard is the classical theory of elec-
tromagnetism with point particles. Here, when radiation
reaction efFects are included, the theory is found either
to violate causality or to have unacceptable consequences
for laboratory physics {namely, runaway solutions). In
this case, one does not normally view this nonexistence
of an acceptable efFective classical theory" as an indi-
cation that quantum electrodynamics must be plagued
by similar pathologies; rather, the usual interpretation
of this situation is simply that a purely classical treat-
ment of point particles is inadequate for describing radi-
ation reaction phenomena. Similarly, a purely classical
treatment of spacetime structure may be inadequate to
describe phenomena in which pure states evolve to mixed
states.

Indeed, it should be noted that black hole evaporation
is an unusual process, in that during the formation of the
black hole, the energy is transferred &om the matter to
the gravitational Beld of the black hole. The entropy of
the matter, however, remains with the matter and is lost
down the black hole, taking no energy with it. By con-
trast, for ordinary systems, the interactions with the en-
vironment which produce decoherence normally exchange
both energy and entropy. Thus, the loss of coherence of
a system normally is accompanied by energy nonconser-
vation. What is needed in order to properly model what
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is believed to occur in the black hole case is to have an
environment which can increase the entropy of a system,
while at the same time exchanging energy with the sys-
tern during only a limited interval of time, such that no
net exchange of energy occurs. Thus, it should not be
surprising that classical spacetime models which have not
been carefully designed to do this (see the Appendix) will
face difIiculties with energy conservation. However, this
does not imply that similar difFiculties with energy con-
servation need occur in processes involving black holes.

In any case, it is of interest to know if, in the context
of theories where spacetime structure is treated classi-
cally, there exists any difFiculty, in principle, in finding
mathematically well-defined "effective dynamical evolu-
tion laws" such that a suitable class of pure states can
rapidly evolve to mixed states, but no inconsistencies
with known laboratory physics occur. If a fundamen-
tal difFiculty is present, then, despite the comments in
the previous two paragraphs, this could conceivably in-
dicate the presence of a similar difFiculty in quantum
gravity. This issue was addressed by Banks, Susskind,
and Peskin [5], who, following an earlier analysis of El-
lis et al. [3], argued that a serious difIiculty of principle
does exist. They concluded that any dynamical evolu-
tion law which takes pure states to mixed states (with
appropriately large probability for suitable states) must
give rise to unacceptably large violations of causality or
energy-momentum conservation at the scales of labora-
tory physics (however see [6]). Although these authors
did not claim to provide a complete proof of this conclu-
sion, their arguments have gained widespread acceptance
and appear to underlie many efI'orts to modify the pic-
ture of black hole formation and evaporation provided by
the semiclassical approximation, so that an initially pure
quantum state will remain pure in that process.

In this paper, we shall reexamine the arguments of [5]
and draw the opposite conclusion: We will consider what
is, in essence, simply a subclass of the models considered
in [5] with good causal properties, and will show that
they can be adjusted to yield an arbitrarily rapid loss
of quantum coherence for states with suitable properties
at, say, the Planck scale, but produce a negligible devia-
tion from ordinary dynamical evolution for states which
can be produced in laboratories. Thus, although in these
models violations of energy and momentum conservation
presumably would occur (as argued in [5]) and Lorentz
invariance presumably also would fail [7], we shall show
that (contrary to the claims made in [5]) there is no
difIiculty confining such pathologies to the "Planckian
states, " which are not accessible to ordinary laboratory
physics.

Although we believe that the models considered in
the body of the paper below would predict violations of
energy-momentum conservation if one did scattering ex-
perirnents with particles of Planck scale energy, it should
be emphasized that these models (as well as the some-
what more general models considered in [5]) encompass
only "Markovian" models, where the equation of motion
governing the time evolution of states is local in time;
more precisely, the time evolution map has the structure
of a dynamical semigroup (see, e.g. , [8]). Since a black

hole should have a long time scale "memory" (stored in
its external gravitational field) of the amount of energy
that went into it, one would not expect an efr'ective evolu-
tion law modeling the process of black hole formation and
evaporation to be Markovian in nature. In the Appendix,
we shall consider some alternative, non-Markovian mod-
els. Although these models are not satisfactory as mod-
els of the black hole formation and evaporation process,
they serve the purpose of showing that causality and
energy-momentum conservation are not fundamentally
in confIict for evolution laws taking pure states to mixed
states; i.e., one can construct classical spacetime models
in which pure states evolve to mixed states and energy-
momentum conservation and causality hold on all scales,
not merely on the scales of laboratory physics.

To construct our Markovian models displaying rapid
loss of quantum coherence for "Planckian states, " but
negligible deviation from ordinary dynamics for "labora-
tory states, " we start with an ordinary, causal, unitary,
local quantum field theory in Minkowski spacetime, such
as a free Klein-Gordon field, with dynamics determined
by a Hamiltonian H. We then consider the following
class of modified dynamical laws:

p = —i[H, p] —) A;(Q;p+ pQ; —2Q;pQ;),

where each A; is positive and where each Q; is an orthog-
onal projection operator (i.e. , Q; = Q, and Q; = Q;).
This modified dynamical law is simply a specialization of
the general form of a Markovian evolution law given in
Eq. (4.3) of [8] to the case where the operators V~ ap-
pearing in that equation are projection operators; it also
corresponds to Eq. (9) of [5], specialized to the case where
their matrix h p is diagonal and their Q s are projection
operators. We do not impose any additional conditions
upon the different Q, 's at this stage, although we shall
impose an additional locality restriction below to assure
suitable causality properties of the theory; in particular,
note that the Q s are not assumed to commute.

Taking the trace of Eq. (1), we immediately obtain.
tr p = 0. Furthermore, the arguments of [5] show that
Eq. (1) preserves the positivity of p, and that it decreases
the purity of states in the sense that d/dt[tr( —pin p)] &
0. Thus, Eq. (1) evolves pure states into mixed states
in such a way as to conserve probability and keep all
probabilities positive.

Since Eq. (1) is linear in p, it defines a lin. ear time
evolution operator $(to, t) on density matrices, so that,
in index notation, we have

The Heisenberg representation version of this dynamics
(where the states are viewed as Axed in time) is obtained
by evolving each observable A by a suitable transpose of
8: namely,

A ~(t) = 8 Dgg (to, t)A c (to).

This corresponds to the following Heisenberg equation of
motion for A:
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A = +i[H, A) —Q A, (Q;A+ AQ; —2Q;AQ, )

= +i [H, A] + 5 A; [Q;, [A, Q, ]]. (4)

(5)

which corresponds to the Heisenberg dynamics

T = +i (H, T] + A[Q, [T, Q]]

for T. By inspection, the solution to the Heisenberg equa-
tion of motion for the unmodified theory solves Eq. (6)
until a light signal from 7 can reach R. This implies that
starting from any iintial (globally defined) state at t = 0,
an observer in the theory defined by Eq. (5) who makes
local measurements in the region. 7 will not be able to
detect any difference from ordinary dynamics until ef-
fects from region 'R can causally propagate to him. In

Equation (4) will be useful for our analysis below of the
locality properties of the model [9].

Some insight into the nature of the dynamics defined
by Eq. (1) can be gained by considering the special case
where H = 0 and only one of the Q s (denoted Q) is
present. In this case, we d.ecompose p into a 2 x 2 block
matrix with respect to the subspace defined by Q and
its orthogonal complement. It then is easily seen that
the evolution law Eq. (1) leaves the diagonal blocks of
p unchanged but causes the off-diagonal blocks to expo-
nentially decay away. Thus, in this case, Eq. (1) cor-
responds simply to a decoherence between the subspace
associated with Q and its orthogonal complement. Of
course, a much richer dynamics can occur when H g 0
and when many noncommmuting Q, 's are present.

We now shall further specialize Eq. (1) to give the
model suitable locality properties. This will allow us to
keep violations of causality under control (even for "ex-
otic" states where rapid evolution from pure to mixed
states occurs) and enable us to ensure that possible ex-
otic phenomena occurring in distant regions of the uni-
verse will not affect observations in our laboratories. Let
'R be any region of space and let B be any local Beld ob-
servable for this region. (A good example of such an R
of possible relevance to black hole formation issues would
be obtained by integrating the four-momentum density
of the field over 'R and then squaring it. ) I et Q be a pro-
jection operator onto a subspace spanned by eigenvectors
of B; for definiteness, we choose a real number, o., and
take Q to be the projection operator onto the subspace of
eigenvectors of B with eigenvalues greater than o.. Now,
let 7 be any spatial region disjoint from 'R, and let T
be any local field observable for 7 . Then T commutes
with A and, hence, T commutes with all of the projec-
tion operators occurring in the spectral resolution of B.
Hence, in particular, [Q, T] = 0. Since the unmodified,
unitary quantum field theory has causal propagation, the
Heisenberg representative of T in the unmodified theory
will commute with Q until such time as a light signal from
& can reach 'R. Now, consider the modified, nonunitary
Schrodinger dynamics de6ned by

other words, the dynamics defined by Eq. (5) is entirely
"ordinary" (and, in particular, local and causal) outside
of the region 'R. If we now choose R to be so small (e.g. ,
Planck dimensions) that it is inaccessible to laboratory
measurements, no departures whatsoever from causality
and locality will be detectable.

We now restrict our model so that each projection op-
erator, Q;, appearing in Eq. (1) is a projection opera-
tor for a local observable B; associated with an inac-
cessibly small region of space 'R;. (We also may allow
"large" regions, 'R, , provided that we then choose the
corresponding A, to be sufficiently small. ) If the difFerent
regions, 'R, , are allowed to overlap, observable violations
of causal'ity could still occur in the theory (due to "chain
reactions"). However, it is clear that even these potential
violations can be kept under good control by imposing
only mild restrictions on both the overlap of the regions
and the values of the A s. Thus, we claim that there is
no difBculty in adjusting the model so that the resulting
dynamics will be observably local and causal for essen-
tially all states, including those for which the rate of loss
of quantum coherence is large.

The restriction we have placed upon the Q, 's, corre-
sponds, in essence, to a discretized version of Eq. (20)
of [5], with the support of their spatial smearing func-
tion h(x —y) chosen to be small. This restriction on the
dynamics also was imposed in [5] to ensure good causal
propagation properties of the model. Hence, we have
not, thus far, diverged in any substantial way from the
analysis of [5]. The authors of [5] then argue further
that violations of energy-momentum conservation must
occur. We see no reason to question this conclusion for
the above model, although in the Appendix we will show
that other, non-Markovian models need not suffer from
this problem. The authors of [5] then claim that these
violations will be so large as to have a drastic effect upon
ordinary laboratory physics. No general arguments are
given in [5] to support this assertion, but an example
is worked out which illustrates this phenomenon. How-
ever, we now shall show that there is no difBculty in tai-
loring the dynamics defined by Eq. (1) (with our above
restriction on the Q, 's) so that all violations of energy-
momentum conservation (as well as any other deviations
from ordinary dynamics) would not be detectable in lab-
oratory experiments.

To do so, we identify a subspace 'RL, of the Hilbert
space of states corresponding to those states accessible
to laboratory physics, and we also choose a collection of
"inaccessibly small" regions of space X; along with cor-
responding observables, B;. The details of these choices
are not of great importance, provided only that (i) the
subspace 'RL, is mapped into itself by the ordinary, uni-
tary dynamics defined by H and (ii) the regions R; are
chosen sufficiently small that the states in 'Rl. restricted
to any X; do not differ grossly from some representative
state, say, the vacuum state ~0). A concrete example of
such choices in Klein-Gordon theory would be to take 'RI,
to be the subspace of states spanned by particles whose
mode functions contain no frequencies higher than uo
(where uo is chosen to be much higher than is achievable
in laboratories) and to take each 7Z; to have size much
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smaller than uo . We now choose (some of) the A, 's

to be as large as we like, thus ensuring that arbitrarily
rapid loss of quantum coherence occurs for some states.
Finally, we choose each Q; so that each e, —:A;~(Q;~0) ~~

is as small as we wish. This latter condition can easily be
achieved by choosing n; suKciently large (so that Q; is
a projection onto a subspace of extremely large eigenval-
ues of B;). It is worth noting that since for typical local
observables ~(Q;[0)~(2 will fall off very rapidly with n;—
for example, [~Q, ~O)[~2 will be essentially Gaussian in cx; if
R; is the field operator smeared over 'R,—it normally will
not be necessary to choose o,; to be significantly larger
than the scales associated with 'R; in order to obtain the
desired smallness of e;. Since the "laboratory states" do
not differ greatly froxn ~0) with respect to the observables
B;, this will ensure that A;tr(pQ;) is similarly small for
any density Inatrix p constructed &om the "laboratory
states. " It then follows immediately that the probability
that Eq. (1) will result in an observable difFerence from
the unmodified, unitary dynamics for "laboratory states"
will be negligible.

It is useful to compare the analysis of the above para-
graph to the illustrative model given in Sec. 5 of [5]. In
essence, the model of [5) differs from the above models
only in that our projection operator Q; is replaced by
the squared field operator at a point (made finite by the
ixnposition of a momentum cutofF at the Planck scale).
However, this squared field operator applied to the vac-
uum state yields a state with large norm, so one must
choose the parameter a of their model (corresponding
to our A;) to be exceedingly small in order to avoid af-
fecting ordinary laboratory dynamics. With a chosen to
be this small, nonunitary dynamics occurs only for states
with exotic properties at energy scales far in excess of the
Planck scale. However, this difficulty of the model could
be avoided by replacing the squared Geld operator by a
suitable function of the field operator, where the function
is chosen so that it is (significantly) nonzero only for val-
ues of the field which are sufficiently large that vacuum
Huctuations to that value of the Geld are highly improb-
able. A step function (yielding a projection operator) is
ideal for this purpose.

In summary, we have shown that even the simple class
of Markovian models considered here is sufficient to en-
compass dynamics which divers imperceptibly &om or-
dinary dynamics for all states that have properties sim-
ilar to the vacuum state at extremely small scales, but
is highly nonunitary for states that difFer greatly &om
the vacuum state on these scales. In essence, our analy-
sis difFers from [5] only in that we have developed their
basic model sufficiently that one can explicitly see how
to independently control the values of the quantities A;
(which determine the maximum rate of loss of quantum
coherence) and e; (which determine the probabilities for
observing a loss of quantum coherence for laboratory
states). We conclude that there appears to be no diffi-
culty of principle in constructing theories which capture
the essential features that might be expected if black hole
formation and evaporation at a highly microscopic scale
occurs in the manner suggested by the semiclassical pic-
ture.
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APPENDIX

The models considered above are Markovian in na-
ture. Such models arise naturally as an efFective dy-
namics of a system coupled to another large system (i.e. ,
"heat bath") in the limit where the relaxation time of
the heat bath goes to zero. The Markovian character of
an effective evolution law makes it difficult to lose co-
herence while conserving energy exactly. However, one
would not expect the effective dynamics corresponding
to the process of black hole formation and evaporation
to be Markovian, since the black hole should "remem-
ber" (via its external gravitational field) the amount of
energy which was dumped into it, and it should be able
to return this energy via particle creation at very late
times. Indeed, this is especially true if correlations are
restored during the late stages of black hole evaporation,
since this would require an exceedingly long "relaxation
time" of the black hole system. In this appendix, we
will analyze two simple non-Markovian models for the
loss of coherence, which provide good illustrations of our
claim that there need not be any conHict between loss
of coherence, causality, and energy-momentum conserva-
tion. The basic idea of both models is to have a "hidden
system" interacting with the given system. This hidden
system will have no energy of its own and therefore will
not be available as either a net source or a sink of energy.
However, the state of that hidden system will affect the
behavior of the system of interest, in such a way as to
produce a loss of quantum coherence in the system of
interest.

For the reasons indicated at the end of this appendix,
the models we treat here are not satisfactory as models of
the black hole evaporation process. However, it should be
noted that the loss of coherence without energy loss has
also been studied in realistic condensed matter systems
[10]. There the hidden sector which causes the decoher-
ence is taken to be the nuclear spins of the atoms mak-
ing up the system. Because of the weak interactions of
the nuclear spins with each other, they comprise a zero-
energy sink which can however correlate both with the
state and the history of the system of interest, leading
to loss of coherence without loss of energy. This phe-
nomenon plays a crucial role in the physics of such sys-
tems.

Our first model involves the interaction of a quantum
Geld with a simple harmonic oscillator, where the fre-
quency of the oscillator depends upon the state of a spin
system. (Both the oscillator and the spin system com-
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prise the "hidden system" in this model. ) The resonant
scattering of the Beld will thus depend on the state of
the spin system, leading to decoherence for that scatter-
ing process. By placing the harmonic oscillator at some
Gxed point in space, the interaction and loss of coherence
will clearly be local in space, but the complete system will
fail to be translation invariant. Consequently, this model
will be one in which the Geld loses coherence without any
violation of causality or energy conservation, but where
momentum conservation fails.

Our second model is simply ordinary AP field theory
except that we now treat A as a random variable (which
we may view as representing hidden degrees of freedom),
with probability distribution B(A) In .this case, loss of
quantum coherence will occur in scattering in such a way
as to be entirely causal and satisfy conservation of energy
and momentum.

For our first model we consider a scalar field in one

spatial dimension which interacts with a simple harmonic
oscillator located at the origin. Radiation can excite the
oscillator, which then subsequently decays, reemitting its
radiation. Such a model clearly conserves energy, since
all of the energy absorbed by the oscillator is reemitted.
However, in this bare form, there is no loss of coher-
ence, since the field eventually regains all of the coher-
ence which is lost in the intermediate states when one
traces over the oscillator, as has been analyzed by An-
glin, Lafiamme, Zurek, and Paz [11]. Indeed, this model
is a simplified form of a model in which a lump of matter
is heated by radiation, and then cools down again. To
create a genuine loss of coherence, we couple the oscilla-
tor to an internal system, which for simplicity, we take to
be a spin system with total spin s. The spin system is as-
sumed to have no &ee Hamiltonian, but gains an energy
only if the oscillator is excited. The total Hamiltonian is
taken to be

1H=—
2 1[ (t, ) —h( )q]'+ [& p(t, )]') d*+ —(p'+ q' —

—,')[1+ (S, + )]+E(S,), (A1)

where the function h(x) is sharply peaked around x = 0,
and will be treated as being proportional to a b func-
tion. 8 is the z component of the spin operator for the
spin s system. Note that H commutes with S, so we
may consider the spectrum of H separately in each sec-
tor of eigenstates of S, . We choose the operator F(S,)
so that the energies of the lowest-lying state in each of
these sectors are identical.

Now, suppose that the spin system is in an eigenstate
of the operator S with eigenvalue m. Then the energy
levels of the oscillator are of magnitude su[1+ (m+ s)n].
That oscillator will therefore absorb and reemit radiation
with frequencies around m[1+ (m+ s) n]. Thus, the scat-
tered radiation &om that oscillator will depend on the
state of the hidden spin. This implies that if this spin
system is not initially in an eigenstate of S„correlations
will develop between the spin system and the quantum

Beld. If we trace over the states of this spin, the Geld
will, in general evolve into a mixed state.

To see this explicitly, we note that the solution to the
equations of motion for the above model [taking h(x) =
h8(x)] is given by

1
P(t, x) = P;„(t,x) ——hq(t —~x~), (A2)

q(t) = hen[1+ n(m+ s)]
1—~(t—z')

0
x sin[A (t —t')]P;„(t', 0)dt', (A3)

where P;„ is a free field operator, p = (i)[1+n(m+s)]h /4,
and 0 = [u(l + n(m+ s))] —p . Thus we have

2
P(t, x) = P;„(t,x) — e ~&' '

& sin[A (t —t')]P;„(t' —~x~, 0)dt'.
m

(A4)

ai,oui = aa, ia+ ~l&l,~(ak, in+ a—),in)

or, reversing the flow,

(A5)

Examining the scattering states, we find that the out-
going annihilation operators of the Geld are related to the
ingoing annihilation operators by

Thus, the outgoing state ~g ) when the field initially is in
the state f P(k)a&,„~0), the harmonic oscillator initially
is in its ground state, and the spin system initially is in
the state ~m), is given by

) = j()"I~a ~+~~'a~, (~i, e+~—a, e)I~&lo).

(A8)

where

&ioii& + I&l~iii(»xiii& +

2pfk
f

'-~k~~ —2'tiki+ n& + ~&

(A6)

(A7)

Clearly, the complete model is causal (the field prop-
agates away from the oscillator at the speed of light),
energy conserving, and unitary. However, when we start
with the spin system in the state ~r) = g r ~m) the
reduced density matrix of the field at very late times will
be given by
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(A9)
m ml

(A1O)

To see at least an eÃect of the loss of coherence we can
look at

whose deviation &om unity gives a measure of the coher-
ence lost in the scattering process. We have

(0'-l0- )

x A.
" at„, ~+ g~k~ at, q + ~t, „, dy' 0

It)(t)II' ((t+ ~jt~~, + ~~Ital, + ~jr,
~~, ~~lt~l, )

+/A;/, m~fk/, m' (A11)

where we have assumed that p(k) is nonzero only for k & O. Thus we finally have

+2 ):l~
I

l~ 'I f It (+)I ~jt~~ ~~[t~[,
mm'

(A12)

Since (@ ~Q ) = 1, we also have that

(A13)

so that

(A14)

Thus, if the o.
~A.~, for various m do not overlap, this becomes

T (p') = t —2) (I"-I' —IK-I') f IP(t)I ~jt~ ~itl (A15)

If they do overlap, the sum will be increased &om this
expression. [If they are independent of m, Tr(p ) is just
unity, as would be expected. ] We can thus have a large
reduction in coherence if the various v. are sufBciently
small.

For our second model, we start with ordinary AP field
theory, and we let Ug(tp, t) denote the unitary time evo-
lution operator of this theory. We now define a new dy-
namical evolution law by choosing a time tp (which we
may take to be tp ———oo) and setting

&"~(') =$"~~ (to t)~ D(to)

where

$ ttc (tot) = f B(A)U (to, t)U,
t (to, t)dt (Alt)

p(t) = fR(t )lc(t;A))(t(t;A)'Id', (A18)

where ~4(t; A)) = Up(tp, E)
~

Illp). We have

Wp R A B A 4 t A 4' 'tj A dAdA A19

wit}i A being a random variable. [Note that the dynam-
ical evolution law for the quantum field obtained in the
above oscillator model also is of the general form (A17),
and the non-Markovian character of both models is man-
ifested by the fact that $(tp t) g $(ti C)$(tp ti).] It is
easily seen that this dynamical evolution law takes ini-
tial pure states to mixed states. Indeed, for a pure initial
state ~4p) at time tp, the state at time t is given by

and B(A) is an arbitrarily chosen probability distribution,
[so R(A) is non-negative and f Q(p)dp = 1].
new dynamical evolution law corresponds to %$4 theory

which is not equal to unity unless the states ~4(t; A)) are
independent of A.

Since AP theory is causal for each value of A, it is man-
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ifest that the new dynamics is causal, i.e., no observers
can use the P field to send signals faster than light. Fur-
thermore, since energy and momentum are conserved for
each A and these observables may be replaced by their
&ee field (A = 0) values after the interactions have oc-
curred, we see that energy and momentum (as well as an-
gular momentuin) are exactly conserved in all scattering
experiments. The model also is Lorentz covariant. Thus,
this model explicitly demonstrates that loss of quantum
coherence is not incompatible with all of the above prop-
erties.

It should be noted that this model (as well as the pre-
vious oscillator model) would have some unsatisfactory
features as a model of the black hole evaporation pro-
cess. Specifically, one would expect the results of an ex-

periment involving black hole formation and evaporation
to be uncorrelated with the results of similar experiments
performed at other times or places. However, since A is
constant over spacetime, such correlations will occur in
this model, and information loss will not be "repeatable"
[12]. However, as we have discussed above, the loss of
quantum coherence in processes involving a black hole
may have many features which cannot be modeled by
a simple system where spacetime is treated classically,
so that coherence must be lost by being transferred to
some internal environment rather than by falling into a
spacetime singularity. Our purpose in this appendix was
merely to demonstrate that it is not necessary to violate
causality or energy and momentum conservation in order
to have a loss of quantum coherence.
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