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Description of the Riemannian geometry in the presence of conical defects
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A consistent approach to the description of integral coordinate-invariant functionals of the metric
on manifolds M with conical defects (or singularities) of the topology C x Z is developed. According
to the proposed prescription M are considered as limits of the converging sequences of smooth
spaces. This enables one to give a strict mathematical meaning to a number of invariant integral
quantities on M and make use of them in applications. In particular, an explicit representation
for the Euler numbers and Hirtzebruch signature in the presence of conical singularities is found.
Also, a higher dimensional Lovelock gravity on M is shown to be well defined and the gravitational
action in this theory is evaluated. Another series of applications is related to the computation of
black hole entropy in the higher derivative gravity and in quantum two-dimensional models. This is
based on its direct statistical-mechanical derivation in the Gibbons-Hawking approach, generalized
to the singular manifolds M, and gives the same results as in the other methods.

PACS number(s): 04.50.+h, 04.60.—m, 11.10.Gh, 97.60.Lf

I. INTRODUCTION

Thin cosmic strings are known to give rise to remark-
able gravitational efI'ects. They do not affect immediately
the local geometry of a space-time manifold but change
instead its global properties. Placing the origin of the
polar coordinate system on the string axis, one reveals
a deficit 2m(l —n) of the polar angle rp [1]. Thus, near
the string world sheet Z the space looks like the direct
product C x Z where C is the conical space with the
corresponding ranging of the angle Q ( y ( 2mo. .

This peculiarity results in the interesting quantum ef-
fects which have been studied for both simple cones [2]
and around cosmic strings [3]. Spaces with analogous
features appear also in the other important physical ap-
plications. The well-known example is the orbifolds oc-
curring in the string compactifications [4]. A similar set
of spaces, called conifolds, has been proposed to gener-
alize the histories included in Euclidean functional inte-
grals in quantum gravity [5]. Finally, much attention has
been paid recently to conical defects in connection with
thermodynamics in the presence of black hole [6, 7], and
cosmological [8] horizons, where the conical angle n is
associated with the inverse temperature of a system.

One should also point out a number of mathematical
results. For instance, the general theory of the Laplace
and heat kernel operators on such a kind of cones has
been developed in [9] and an explicit form of the DeWitt-
Schwinger coefEcients has been found in some cases [10].
In addition, many works were devoted to the functional
determinants and the ( function on the di8'erent types of
orbifolds [11].
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On the other hand, a consistent description of the geo-
metrical quantities and invariant functionals of the met-
ric on the conical defects seems to be absent. To eluci-
date this problem, let us recall that a cone is everywhere
liat space (like the plane) except the tip where its curva-
ture R is singular. Obviously, calculations by means of
the standard formulas of the Riemannian geometry can-
not reveal this b-like singularity, and other methods must
be used to get a correct result. One of these, based on
topological arguments, was suggested many years ago by
Sokolov and Starobinsky [12] for two-dimensional cones
and used recently in higher dimensions in [13]. However,
an approach like that does not seem to be quite satis-
factory. It only concerns the computation of the scalar
curvature, saying nothing about the components of the
Riemann tensor, and faces diFiculties under generaliza-
tion to arbitrary invariant functionals.

In this paper, we consider a more natural recipe how
to handle singularities with a particular topology C x Z
and use it in the relevant examples. The corresponding
manifolds will be denoted by M . This method is to
replace the singular space by a sequence of regular man-
ifolds. All the integral invariants are then well de6ned,
and final results are obtained when the regularization is
taken ofI'. Some aspects of such a regularization have al-
ready been discussed in the literature (see, for instance,
[5], [14], [15]) and we represent its further development.
Thus, we show that although arbitrary curvature poly-
nomials in such a procedure turn out to be divergent and
depend on regularization, some specific integral quanti-
ties can be Gnite and have the strict mathematical mean-
ing. We make use of this fact to derive a number of new
results of both mathematical and physical interest.

The paper is organized as follows. The regularization
method is described in Sec. II. Its features are discussed
in detail for two-dimensional cones where the regulariza-
tion ambiguity and the structure of the integral of B
and Polyakov-Liouville action are investigated. Then,
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the technique and results are extended for the higher di-
mensional cases. We evaluate the components of the Rie-
mann tensor on M and give examples of the functionals
being quadratic in the curvature.

A number of consequences and applications is pre-
sented in the second part of the paper, in Sec. III, which
starts with the discussion of the generalized variational
principle on a class of spaces including M . Then, we
analyze the higher order curvature polynomials that can
be defined on ~ . An important example is the Eu-
ler characteristics and Hirtzebruch signature of M for
which the explicit integral representation is found. . Also
the Lovelock gravity turns out to be strictly defined on
the manifolds with conical singularities and we give the
corresponding generalization of the Lovelock action and
equations. Finally, using our technique, we calculate the
black hole entropy in the higher derivative gravity and
in quantum two-dimensional models. This is based on a
direct statistical-mechanical derivation of the entropy in
the Gibbons-Hawking approach generalized to the singu-
lar manifolds and gives the same results as in the other
methods. Some technical moments are clarified in the
Appendix.

ds- = udp + p dP, u = n + (1 —n )(f')
where the function u has the asymptotics

2ulc=o = n

(2.4)

(2 5)

The simplest example of the regularization is that corre-
sponding to the change of C to a hyperbolic space:

1 —0!2 I( 2 + „2) . , ) 0 (2.6)

2 2 2

p + G
(2.7)

Instead of the singular manifold (2.1) one can use now

the regularized space ~ with topology of C . To pro-
ceed, it is convenient to represent the scalar curvature on
it in the form

parameter such that lim ~o f = p. So far as for C the
function z has a minimum at p = 0, this should also be
valid for f in the case of the regularized surface. Thus,
the only additional condition on f (p, a) is 0~ fl~ o ——0
and the line element on C can be written as

XI. THE METHOD
B= e B& —e 0&0, (2.8)

A. Two-dimensional cones

Integer al cureatuv e

The method is worth illustrating when M is a two-
dimensional space with topology of the cone C . Then
its metric reads

ds =e (dp +pdP):—e dsc, (2 1)

where ds& is the line element on C, P runs Rom 0 to
2vro. , and the conformal factor 0. is assumed to have the
following expansion in the vicinity of p = 0:

u = OqP +O2P +2 4 (2 2)

In general, oi and o2 can be functions of the angle P
and a possible constant term in (2.2) can be absorbed by
redefinition of p.

Because of asymptotics (2.2), the singularity comes
out only from the conical metric dsc. Hence, to un-
derstand how to introduce the regularization of M
consider an embedding of C in three-dimensional
(pseudo-)Euclidean space. It can be given by equations
x = npcos(4t/n), y = npsin(P/n), z = fall —n~lp, that
define the surface

ll —o.2z' — , l(~' + y') = 0, z ) 0 (2 3)

Obviously, if n g 1, there is a singularity at z = 0 where
one cannot introduce the tangent space and calculate the
curvature in the usual way.

It is easy to "roll off" the cone tip if going Rom C to a
surface C with the equation z = gl1 —nzl f (p, a) where
f(p, a) is a smooth function and a is a regularization

where R& and & are the curvature and Laplace operator
defined with respect to metric (2.4). Then, by taking into
account the form of the regularized volume element dp =
e ~updpdP and asymptotics (2.5), one can evaluate the
integral curvature on M

f
OO oo 2' cx

B= 2vro. dpu' u ~tcpdpdf Oco'
M 0 0 0

oo 27K'w

=4.(4-.) - f f i/updpdP co. . (2.9)

The conical metric results on the first term on the right
hand side (RHS) of in (2.9) which does not depend on
the regularization. The dependence on u appears only in
the second "volume" term in (2.9), but the latter turns
out to be finite in the limit when regularization is taken
off and it coincides with integral curvature computed in
the standard way on the smooth doinain M /Z of M
(I et us recall that Z denotes the singular set that is the
point p = 0 in the given case. ) Thus, in the limit a -+ 0
one has, from (2.9),

lim B = 47r(l —n) + A.
~M /Z

(2.10)

When in the region M /Z the curvature R equals to
zero, Eq. (2.10) reproduces the formula of Sokolov and
Starobinsky [12]. This result does not depend on the
concrete behavior of the regularization function u, which
can be shown to be a consequence of the Gauss-Bonnet
theorem relating the integral curvature in two dimensions
with the Euler characteristics. A more deep discussion
of this point will be given in Sec. III.

So far as only a singular point p = 0 can give rise to
the first term in (2.10), one can introduce a local repre-
sentation for the curvature on M
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~ lR= h(p) +R,
where h(p) is the h-function normalized as

(2.11)
of Eq. (2.4) but it is better to demonstrate for particular
regularization (2.7):

16m (1 —n')' (n' + 3n + 1)
15n~ (1+n)s

h(p)pdp = 1 .
p

g. Integral of R~

Without loss of generality, assume that metric (2.1)
does not depend on the angle variable P. In this case,
introducing a new radial coordinate x = ~, one can on

write the curvature at the singular point as a de-
composition:

/1 u'
R=(1 —ao»)~—(a2 xu2

I

+oi +O(a ) ~

rid 'll

(2.12)

where u' = ". Using this it can be shown that the
equality

R = R + 2R(0)Ii(n) + X(n, a), (2.13)
/Z

In applications one also needs to handle with the higher
order curvature polynomials or nonlocal functionals on
conical defects. However, as distinct &om the integral
curvature (2.10), they include in general nonintegrable
singularities such as h" (p). Let us consider the properties
of such functionals on the simplest examples.

8m (1 —n2) 2 (8a2 + Qn + 3)
15n4 (1+n)' (2.16)

The above consideration teaches that (2.13) and other
similar invariant functionals cannot have a strict mathe-
matical meaning in the presence of conical singularities.
Nevertheless, the structure of singular terms in these in-
tegrals can be described and, as will be shown, in some
important cases all of them cancel each other or do not
contribute to the considered quantities leaving there 6-
nite terms not depending on the regularization.

8. Polyakoe-Lioueille action

TVpg —— R (2.17)

where v/i is a solution of the equation

O@=R. (2.18)

Consider (2.17) on the regularized space M and make
use of (2.8). Then (2.18) is solved as follows:

This is an example of the nonlocal functional playing
an important role in two-dimensional quantum gravity
since it is result of integrating the conformal anomaly. It
looks like [16]

1 1
X(n, a) = ——R(0)I2(n) + —Is(n)

4 a2 (2.14)

holds at small values of the regularization parameter.
Here the relation —4oi ——R(p = 0) = R(0) has been
used and Ii, (n) denote the integrals:

Ii (n) = 2~n
(u' ) 47r (1 —n')

o

fu' )'
h(n) = 2~n

&u')
dx (u' l

Is(n) = 2am —
~

—
~

u
o x (u') (2.15)

The quantity Ii(n) that enters into the finite part of
the integral R does not depend on choice of the regu-
larization function u(p, a) and it is determined only by
asymptotics (2.5). However, I2(n) and Is(n) change un-
der variations of u(p), including coordinate transforma-
tions. Taking this into account there is no reason to con-
sider such terms in (2.13) separately and so they were
gathered in a combination X(a, a). It follows from the
form of (2.13), (2.14), and (2.15) that X(n, a) should be
an invariant function, singular in the limit a —+ 0. It is
also important that at small conical deficits X(n, a) van-
ishes as fast as (1 —n) and only finite terms in (2.13)
dominate. This can be proved in general with the help

1~u~
gc ———2lnp+C' dp+ E,

P
(2.19)

1

p P
(2.20)

and, moreover, the function @c coincides in the limit a ~
0 with the corresponding solution on the conical space
C:

1 —o.
@c -+ gc = 2 lnp+ E, (2.21)

where the possible singular term lna absorbed in re-
defiiution of constant E The function @. is important for
analysis of quantum effects on gravitational background
and enters into the formulas for the energy density of the
Hawking radiation and black hole entropy [7].

The nonlocal action (2.17) on regularized two-
dimensional manifold M can be written in a more suit-
able form:

where @c is a solution of Eq. (2.18) for the smoothed
cone C with the curvature Rc ——u~/(pu ), C and E are
constants. It should be noted that only for C = —can
this be written in everywhere regular form,
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Wpz[M ] = (RcvPc —2o Rc + o. co.) (2.22)

~R; -+ 4~(1 —n) ~(0),cc
(2.23)

where o(0) can be zero, if the asymptotics (2.2) is as-
sumed. In addition, the limit

Obviously, the second and third terms on the RHS of
(2.22) give a regular contribution when regularization is
taken off. Taking into account Eq. (2.11),one gets, when
C mC,

the same parametrization as in two dimensions but, as
distinct from this case, the singular set now is a (d —2)—
dimensional surface Z with coordinates (8') and metric
p;~(8). Near it M looks as a direct product C x Z.
One can also consider ~ having a number of singular
sets Z;, each with the corresponding conical angle o,;.
Hereafter the metric will be assumed not to depend on y
at least in the small region of Z.

The metric (2.27) can be regularized with a parameter
G as in two dimensions by changing the gpp component
in the conical part

ds' = e u(p, a) dp' + p'dP'
o. co m o co. = Wpr, [M /Z]

C C
(2.24)

can be identified with the contribution to the Polyakov-
Liouville action &om the regular points of M . The
remaining term in (2.22) for E = 0 has a nonlocal form

ao

Rcgo = 2am, @c(p) dp
C~ 'Q 2

oo p 1/2

p Q p lk

—:A(n, a) . (2.25)

As one can see, A(n, a) is regular in the limit a ~ 0
[for the regularization (2.6) dependerice on a is absent]
but depends on the form of the regularization function
u. From Eq. (2.4) other important property follows that
when n -+ 1 the function X (n, a) vanishes as (1 —n)2.

Finally, one obtains the action (2.17) on M in the
form

Wpr, [M ] = WpL[M /Z]+8vr(1 —n)vP(Z)+A(cr),

(2.26)

B. Higher-d. imensional case

where g = —o is a solution of Eq. (2.18) when n = 1,
Z is a singular point and A (n):—X (a, a = 0). Thus the
norilocal action Wpr, turns out to be finite (in the limit
a i 0) but regularization dependent. We will return to
Eq. (2.26) in Sec. III.

+ ) [p;, (8) + 6;~(8)p ]d8'd8' + . . . (2.28)

~-l R"".,= R""., + 2~(1 —~)

x [(n"n ) (n"np) —(n"np) (n"n )] bp,

~ lR"„=R"„+2'(1 —n)(n"n„)bg,

~-lR = R+ 4~(1 —n)b&, (2.29)

where bp is the b function: j~ fb~ = j& f; n" = n"dx"
are two orthonormal vectors orthogonal to Z, (n„n ) =

i n„"n„", and. the quantities R""
&, R"„, and R are

computed in the regular points M /Z by the standard
method.

A consequence of (2.29) is the following important for-
mula for the integral curvature of M

The curvature tensors for a manifold W with metric
(2.28) and evaluation of the geometrical quantities in the
limit a ~ 0 are similar to that we considered in two di-
mensions. Leaving the details for Appendix A, it should
be mentioned that only the two-dimensional conical part
of (2.28) gives rise to the singular contributions.

We begin with formulas for components of the Rie-
mann tensor that can be represented near E as

The technique can be extended now to higher dimen-
sions. Let us consider a two-dimensional cone C embed-
ded in the Riemann d-dimensional manifold M so that
near the singularity (p = 0) the metric is represented as

f ~ lR = 4m(l —n)Ag + R,
M M~ /Z

(2.30)

:—8 ds (2.27)

where the ellipsis means terms of higher power in p and
P runs from 0 to 2mn. For convenience we prefer to use

where Ap = J'& is the area of E. Equation (2.30) already
appeared in a number of recent publications for partic-
ular cases [6] and it was virtually implied in results of
[13]. If M has a number of singular surfaces Z, with
diferent conr'cal deficits 27r(1 —n;) then the first term in
(2.30) should be changed by the sum over all Z, .

As arbitrary functionals on M are concerned, we give,
as an example, the integrals of quadratic combinations in
R~ p~. The chosen regularization leads to the results (for
details see Appendix A)
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f ( 5d —8 3R = R +
~

2Ii — I2
~

(R —Rz) + 8~(1 —n) Rz+ I2~.yz E 8(d —1) ) z z 4(d -1) Qz + Y(n) Az, (2.31)

1 (d 3d —4
(R —Rz)+

~
Ii+ —I2

~~/z " d —1&2 16 ) z d —1 & 8 )
1

Qz + —Y(n)Az, (2.32)

1 ( d l 1 ( 1R2„., + „~2I, — I,
I
-(R —R, ) + -„~/z "" "—1 & 8 ) z "—1 E 4 ) Qz+ Y(n)Az, (2.33)

where Y(a) is a quantity divergent in the limit a m 0
and

1 —o. = 4~Gp (3.3)

Qz = Rpnvpri n~ ~ ~ Rgsvn' n, 'p v cx P p v

2

For d = 2 expression (2.31) coincides with that derived
in the previous section. As in two dimensions, inte-
grals (2.31)—(2.33) contain both divergent [Y(n)] and de-
pendent on the regularization [I2(a)] terms and can be
brought into the same form as (2.13) by gathering these
terms together. In this case the remaining part of (2.31)—
(2.33) will be a sum of the integrals over the smooth do-
main of M and regularization-independent additions in
the form of surface integrals depending on either .internal
or external geometry of Z. Obviously, one can proceed
in this way and obtain similar expressions for functionals
being higher order curvature polynomials on M . These
examples follow below.

III. APPLICATIONS

A. Generalized variational principle

As the first straightforward application of Eq. (2.30),
we consider the variational principle generalized. on a
class of manifolds admitting conical singularities. It can
be used, for instance, in the description of gravitational
eBects caused by cosmic strings. The gravitational ac-
tion including a cosmic string with the tension p and
two-dimensional world sheet Z reads

(3.1)

Without loss of generality we assume that manifolds on
which (3.1) is defined do not have the boundaries. Con-
sider this functional on the spaces ~ with conical sin-
gularities distributed. over Z and represent it, according
to (2.30), as

being the well-known relation between the string tension
p and the conical angle deficit [1]. Condition (3.3) is anal-
ogous to the "surface Einstein equations" in the presence
of matter shells [17] that can also be obtained from vari-
ations of the gravitational functional [14]. As is seen, in
the absence of strings (3.3) is satisfied only at the van-
ishing d.eficit angle, o. = 1. Therefore, even in the gexi-
eralized variational principle the extrema of the Einstein
action in vacuum are realized on the smooth manifolds.
The same conclusion was previously derived in [14] for a
minisuperspace model. Qn the other hand, spaces with
a number of diferent conical defects cannot be extrema
of the vacuum functional.

B. Topological characteristics of A4

I et us turn to definition of the Euler numbers y and
the Hirtzebruch signature ~ on manifolds with conical
singularities. We are interested in these quantities so far
as they are expressed through the integrals on powers of
the Riemann tensor to which the regularization technique
introduced above can be naturally applied. To be more
specific, consider such a characteristic, say y, on M as
a limit of this quantity taken on the converging sequence

y[M ]—: lim y[M ] = y .
—+M

By definition, the right-hand side of (3.4) is only deter-
mined by the topology of the smooth spaces and does
not d.epend on the regularization parameter. Therefore,
topological characteristics such as y of a singular mani-
fold M simply coincide with those of M and should be
well-defined integral invariants. Our aim now is to find
a concrete integral representation of y and w for M

f. EuLer number 8

W[M ] = Ws, [M /Z]+ (

— + p [
. (3.2)

( 1 —n
4~G )

The form of (3.2) can be used now to find its variations on
the given class of singular spaces, but without fixing the
actual value of the deficit angle at the conical singularity.
Thus, it is easy to see that, apart &om the standard
Einstein equations following &om the first regular term
on the RHS of (3.2), the independent change of the metric
on Z results in the ad.ditional condition

(R —4R„+R„„p) .
327k

(3.5)

Using (2.31)—(2.33) and going from ~ to M one ob-
tains from (3.5) a finite expression

To begin with, let us investigate the simplest example
when M is a closed four-dimensional space with one
singular surface Z. For its regularized analogue M the
Euler number reads
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~[~-] =
32 .1

(R —4R„„+R„p)+(1—n)y[Z],
/Z

(3.6)

where e;, . . .,, „ is the rank 2(p —1) Levi-Civita tensor
on Z. Because of the orthonormality of the vectors n,
the product of e tensors in (3.12) becomes the product of
their 2(p —1)-dimensional analogues:

y = cp J2p gd "~, (3 7)

where 8p is the quantity

v1 v2 ' v2p —1v2p RP1 P2 . . . RP'2p —1 P'2p
P Pl@2'''P2p —1P2p V1 V2 V2p 1 V2p

(3.8)

and the constant c„ is

where all the terms depending on the regularization are
mutually canceled. Formula (3.6) gives the desired repre-
sentation for y[M ] in which the first term on the RHS is
the contribution to the integral &om the regular points,
and y[Z] =

4 j& Rg is the Euler number of the surface
Z.

Equation (3.6) can be generalized to higher even di
mensions d = 2p. Without loss of generality, we con6ne
ourselves to the compact spaces without boundaries. In
this case, the Euler number of a 2p-dimensional smooth
manifold M is given by the integral [18]

~Ai4P~1" ~2p —2 Z1 '22p —2

In addition, so far as the extrinsic curvatures of the sur-
face Z vanish due to the isometry, the Gauss-Codacci
equations [19] enable one to identify R'"'" on Z. with

the components of the Riemann tensor of this surface.
Thus, in the limit a ~ 0 one obtains the integral

y[M ]=c„ 2„+8' pc„(1 —n) ~(p—» )

(3.13)

where the erst term on the RHS is evaluated in the regu-
lar points of M and l:&„ il takes the form (3.8) defined
with respect to the metric on Z. Finally, comparing this
with (3.7) and using identity c~„ il = 8pvrc„one gets the
desired formula for the Euler number (3.7). We will write
this for the general case when M has several singular
surfaces Z; with the conical deficits 2vr(l —n;):

1
cp 22(p+»~p~! (3.9)

X[~-]= " ~~+ ):(1—~')~[~*]
/E

(3.14)

Now let the manifold in (3.7) be a smooth approxima-
tion M of a 2p-dimensional space M with a singular
2(p —1)-dimensional surface K. Then the Riemann tensor
of M can be represented as the sum

= R" +R"~P (reg) cxP (con) aP (3.10)

of a term remaining regular w hen the regularization is
taken oK and a term R+(

) &
provided by the conical

singularity. The latter has only one nontrivial component
[see (A3)]

I
@p 1 'll

(3.11)

= 8" ~ + 4pe ... - ~~p~""~'p 'R~p
p p ~P~& "'~2p —2 (con) Pp

~'C1 '42 ~~2p —3 ~2p —2Xn . - ~ ~ . a.2122 22p —3)2p —2 (3.12)

where indices iA, and jA, run &om 1 to 2p —2. This
means that no singularities appear in (3.12) in the limit
a ~ 0 apart &om an integrable b function resulting
in a surface addition on Z. To evaluate it, choose the
normal vectors n" to Z so that n = (n&, 0, ..., 0) and

= (0, n~, 0, ..., 0). Then the e tensor reads

1 2
E'yPg1. ..~2 2

—A@7l 6q~. ..q ( ) )

where x = — and it is assumed that M in the vicin-

ity of Z is covered by coordinates (P, p, 8 ) with metric
(2.28). Inserting (3.10) into (3.8) one gets a polynomial
with respect to R(

"
) &. However, because of the an-

tisymmetry of the e tensor only the erst order of this
quantity survives and

As was expected the whole expression does not depend
on the regularization and reproduces (3.6) as a particu-
lar case. This formula is also valid for a two-dimensional
space when the Euler number is proportional to the in-
tegral curvature and the singular surfaces are the point
sets. In this case (3.14) is a consequence of (2.10) if one
takes into account that y = 1 for a point. It is worth
mentioning as well that (3.14) reminds one of a formula
for the Euler characteristic of polygons where each vertex
gives a contribution in y determined by the correspond-
ing angular defect [20].

The case is of special interest when ~ possesses a
continuous isometry rotation group in the polar coordi-
nate P [Eq. (2.27)] and all the singular surfaces in (3.14)
have equal angles o.; = o.. Then, if o. = 1, the space
is everywhere smooth. Otherwise, when n g 1,
can be obtained. by the following chain of continuous
topology preserving deformations: M —1 ~ M —1 —+

. Therefore, one can identify the Euler num-
bers y[M ] = y[M —i], which result, due to (3.14), in
the interesting formula reducing the number y of a man-
ifold M to that of the fixed points set of its Abelian
isometry:

(3.15)

where we made use of the fact that for the given case
the volume term in (3.14) equals ny[M i]. Equation
(3.15) can be illustrated for the deformed hyperspheres
S" [8] with the conical deficits of the polar angle. Thus,
the singular set of 8 consists of its "north" and "south"
poles. Each of these points has y = 1 and one gets,
&om (3.15), y[S ] = 1+ 1 = 2. On the other hand, the



DESCRIPTION OF THE RIEMANNIAN GEOMETRY IN THE. . . 2139

singular surface of S" (d ) 3) is S" and from (3.15) the
known identity y[S"] = y[S" 2] follows. Note that Eq.
(3.15) is valid only for spaces with continuous isometry
in P and it is violated for arbitrary kind orbifolds with
conical singularities.

2. His treble'ueh 8ignatut e

We confine the analysis to the four-dimensional case
that is of the most importance in applications. The
Hirtzebruch signature 7 on the smooth spaces without
boundaries is represented by the integral [18]

as that on the smooth manifolds; it is given by the inte-
gral over the regular region

r[M ]= R„pR"" e ~~ ~gd4x.
/Z

(3.i7)

C. Lovelock gravity

One can also obtain &[M ] in higher dimensions and
show that, similar to (3.17), it is represented by the in-
tegral over region M /Z without extra surface terms.

(3.i6)

Consider this integral on the regularized space JH and
use Eq. (3.10) to extract the term giving a singular con-
tribution to the curvature tensor when regularization is
removed. Because of the Levi-Civita tensor, the only ad-
ditional surface term that can appear in (3.16) is defined
by the quantity

pP ij pP&p~V&(...) p~&

where Bp@,z are regular components of the Riemann ten-
sor taken on the singular surface Z and ij indices are
referred to its coordinates. However, taking into account
the behavior (2.27) of the metric near Z one can show
that Bpy;~ ——0 and the surface terms are absent. There-
fore, the Hirtzebruch signature on M has the same form

I

Now a natural question arises: can one indicate higher
order curvature polynomials not reducible to topological
characteristics but still having strict meaning on the con-
ical singularities. The answer is positive. To begin with,
let us note that the integral of (R —4R„+R„&) is
the topological invariant only in four dimensions where it
is reduced to a total derivative. Nevertheless, as one can
show with the help of (2.31)—(2.33), this integral, having
extended to higher dimensions, will be strictly defined as
before and can be represented in the same form as its
topological analog (3.6).

The given integral combination is a particular exam-
ple of the so-called Lovelock gravity [21] and its property
holds also for the general Lovelock gravitational action.
This functional is introduced on a d-dimensional Rieman-
nian manifold as the polynomial

WL, =)
p=1

1
Q

L 1 2 ' ' 2P —1 2P] ~@1P'2 . . . QP2P 1 P2P
22Ppl t+1P2' P2p —1P2P] 1 2 2P —1~2P =) X„W„, (3.1S)

gI» "~~] g ( 1~I +1gvI, pl~2 ''»'' ~n]
l»"'& ] & ~ j & IP2 "Va".V ]

A;=1

(3.19)

where bt~"
]

is the totally antisymmetrized product of the
Kronecker symbols and kg is (d —2)/2 [or (d —1)/2] for
even (odd) dimension d. In the four-dimensional case
there is only one term Wi ——

2 f R in this functional and
it is reduced to the Einstein action. It was argued [22]
that the gravitational action similar to (3.18) arises in
the low-energy expansion of string models. Moreover, be-
cause of antisymmetrization, no derivatives higher than
second order appear in the equations in the Lovelock the-
ory [21] and it turns out to be free of ghosts when ex-
panding about fiat space [22].

The fact that the Lovelock action is a finite and well-
defined functional on manifolds with conical singularities
can be proved along the lines given for the Euler char-
acteristics. Indeed, each the integral TVp in TVL, can be
shown by using the properties of the Levi-Civita tensor
to be a dimensional extension of the corresponding Eu-
ler number y (3.7). Thus, the analysis showing that W„
is finite on M and independent of the regularization is
completely the same as that given for y. The important
things one should use for this are the antisymmetricity
property and a helpful relation

I

After a simple algebra the Lovelock action on JH can be
represented as the sum of the volume and surface parts

Wl, [M ]
= WL, [~ /Z]+2~(1 —o.) ) A„+iW„[Z],

(3.20)

where the first term is the action computed at the regular
points and the second one is a Lovelock's action given on
the singular surface. It should be stressed that integrals
Wz[Z] are defined completely in terms of the Riemann
tensor on Z:

W [Z] = 1
22ppt [&1 ''&2P] 2122 22P —122Ppo

(3.21)

and Wo = J'&.
Formula (3.20) can be used to investigate the equations

following from the extrema of Wl, (M ). The variations
of this functional at fixed o, result in the normal Lovelock
equations [21] and the surface ones:
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(kg —i
2vr(l —o.) ) A h' '"""" ""R""P+ &&1&2 ' ' '~2 p —1&2~ Jl 22

p=1

-"B2".' '". +A b' = b'i i) (3.22)

where p is the density of a matter distributed over Z. The
latter equation generalizes relation (3.3) between string
tension and polar angle deficit in the Einstein theory.
Remarkably, in the higher dimensional case, an essential
feature comes out: even if p = 0, (3.22) inay have non-
trivial solutions difI'erent from these with o. = 1. This
means that singular manifolds JM can be extrema in
the pure Lovelock gravity. However, further discussion
of this point is outside the aim of this paper.

R = n R+ 4z(1 —n)
Ck Z

(3.26)

Obviously, a straightforward application of (3.24) to
calculate the black hole entropy in such a theory faces a
difIiculty so far as the higher order terms are ill defined on
the conical singularities and first one should change ~
by its regular analog [7]. Then formulas (2.31)—(2.33)
give the following expressions valid for any dimension d:

D. Calculus of black hole entropy

Manifolds with conical singularities naturally appear
in the path integral approach to gravitational thermo-
dynamics in the presence of the Killing horizons [6—8,
23]. Let the space-time possess a globally defined time-
like Killing vector le and be static. Then the free energy
of a field system at temperature T = P can be shown
to coincide, up to multiplier P, with an effective action
functional W(P) given on an Euclidean section Mp of
the corresponding background manifold. The time co-
ordinate v of this Euclidean space has to be periodical
with the period P. In the case of the Killing horizon Z,
Mp acquires conical singularities on this surface and can
be described near it by the metric (2.27) with o. = ~.

t3a
Here P~ is the Hawking temperature at which conical
singularities vanish and at which the black hole thermo-
dynamics is considered. However, to get the entropy S
from the partition function Z(P) according to the stan-
dard definition

S =
i P, +1l»-~(P)l~=n.(

)
(3.23)

one should put P to be slightly different &om P~. In
terms of the effective action Eq. (3.23) can be rewritten
as

S=/n 8
(3.24)

(9&i

where for the background manifold the previous notation
has been introduced and a = PP~ . Several exam-

ples how this formula can be used in the framework of
the given regularization approach follow below.

(3.27)

R" R„„=n R""R„„+4vr(1 —o)v
~v

~~
~~

~

~~
~v

JH

x B„n",n,". + 0 1 —n (3.28)

R" "~R„„pp+ 8n.(l —n)B" pB„pp ——o.

x Bp,vApn' ng ng n 'p A v p

+O((1 —n) ), (3.29)

where n,"- are two orthonormal vectors orthogonal to the
horizon surface Z. To get (3.26)—(3.29) we made use
of the fact that M is static and of the Gauss-Codacci
identity on E:

in which the second fundamental forms are absent due
to the symmetry. The first integrals in (3.26)—(3.29) are
defined on the smooth space at o. = 1, they are propor-
tional to o; and do not afI'ect the entropy S. As for the
terms O((1 —n)2) in (3.27)—(3.29), they depend on the
regularization prescription and turn out to be singular in
the limit M ~ M, but they do not contribute to S
and the energy of the system at the Hawking tempera-
ture (n = 1). Indeed, from (3.24) and (3.26)—(3.29) one
obtains for S the following integral over the horizon Z

IIigher-des ivative gv'avity S= A —
~
8,R+4,R„„,";

4G

Consider the following gravitational action being
quadratic in the curvature tensor:

+8~a,R„.„n,". n,". n, ,'. ~

. (3.30)

gJ dc' Q + Q2 + Qp
16~G

+asR"""~R„„),p ~

. (3.25)

The first term in (3.25) is the standard Einstein action,
whereas the others are usually motivated by necessity to
get rid ofI' the one-loop ultraviolet divergences.

Remarkably, this expression differs from the Bekenstein-
Hawking entropy S = 4&Ag in the Einstein gravity by
the contributions depending both on internal and exter-
nal geometry of the horizon due to higher order curvature
terms in (3.25). It is easy to see that the effect of inter-
nal geometry of Z is reduced to the integral curvature
of this surface. In four dimensions (d = 4) this, being a
topological invariant, is an irrelevant addition to S.
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2. LovelocIc gt avity

Expression (3.30) can be generalized to the theory with
the gravitational action being an arbitrary polynomial in
the Riemann tensor. A relevant example is again the
Lovelock gravity, where the static black hole solutions
do exist [26] and their thermodynamics can be treated
along lines of thermodynamics in the Einstein gravity
[27]. The entropy of a hole in this case can be inferred
from the Lovelock action (3.20) associated with the free
energy

0S= /n Bn

kd —1

—1
~

Wl. (M )~ i ———2ir ) A„+i'(K)
p=p

(3.31)

and it turns out to depend only on the internal geometry
of Z. Formula (3.31) has been previously derived in the
Hamiltonian approach in [28], whereas arguments based
on the dimensional continuation of the Euler character-
istics have been used for its derivation in [13].

8. Tao-dimensiona/ quantum models

Two-dimensional models of quantum gravity represent
a remarkable example when the one-loop efFective action
W can be found explicitly. Thus, in the two-dimensional
(2d) dilaton gravity W is the combination

W = Wp — Wpz, (3.32)
96vr

of the classical dilaton action

Wp ——— d x gE@B+G4 V'C +V@

It is worth noting that exactly the same expression can
be derived by the Noether charge method suggested by
Wald [24]. A difference between the two approaches is
that Wald's method seems to be more general, but it is
defined on the equations of motion, whereas the above
derivation of (3.30) can be also applied off' shell. A gen-
eral proof of their equivalence when taken on shell has
been given in [25].
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APPENDIX

Here we present some technical details omitted in Sec.
II. Thus, to compute the curvature on the regularized
space M, one can take into account that the metric
(2.28) is of the form g„„=e g„„and then make use of
the formulas for the curvature tensors of two conformally
related manifolds:

R[g] = e
( R[g]+ —(d —l))r

R~ [g] = e
(
R~„[g]+ —[(d —2)cr" + b"„o ] )

1

R" g]g] = e (R" g]g] + g
) rr"g))

where

(Al)

The total entropy for the efFective action (3.32) reads

S = Sp + Si ——4vrIl (4h ) +
12

(3.36)

In the conformal gauge one puts @h = oh. Again this re-
sult coincides with that previously obtained by means of
the Wald method [31]. We see that the function @(x) is
not uniquely defined; one may add any solution of the ho-
mogeneous equation ip(x): ui = 0. The concrete choice
of iU(x) means the specification of the quantum state of
the system and it can be found from appropriate bound-
ary conditions [31]. Finally, it is worth noting that the
last term in (3.36) determines a correction which comes
from the conformal anomaly and for the dilaton holes it
leads to a logarithmic dependence of the entropy on the
mass of the hole [7, 32].

(3.33) 0 ~~ = —2V ~V )ga + )7~0 )7~0 ——
gp)g (V 0 )P (A2)

Sp ——4 I'(Cg), (3.34)

where 4h is the value of the dilaton field 4 at the horizon
which in two dimensions is a point xh. This expression
coincides with that previously obtained in [29, 30]. As
for the quantum correction to S, it can be derived using
formula (2.26) that deffnes Wpi, on conical singularities
and the fact that A (n) (1 —n)2. From (2.26) one
immediately finds

Si = —W(x~)12
(3.35)

and the Polyakov-Liouville functional (2.17) generated
by the quantum efFects, c is a constant associated with
the central charge.

The contribution of classical action Wp (3.33) to the
entropy can easily be found using Eq. (3.23):

For metric g„(2.28) we have, in the vicinity of p = 0

I

G 2xtL
/ g

1 u' Ii
R = — ——+O(a ),a' 2xu' u

1 D xu' )* +R, ——
~

4 — * ~+O(a'), (A3)
G xtt u ( u r

where h = p'~h, ~ and we introduced the variable x = ~;
Bg is the scalar curvature of Z. Other components of
the curvature tensors do not contain the terms divergent
in the limit a + 0. As for the tensor o~ (A2), near the
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point p = 0 its components read

IXQ, 20 = —80y+ 40' +O(a )

o.
~

——8—+O(a ),j. 2

(1 12u' ),* I
+ O(a') .

4
(A4) 2R

R„„+[
I—2 —2Ig

[

&4 ) z
( 1—(d —4)Iz —4d

[ Ig — I2—
i2

1+ I3A~,
2G

R„p + —I2
2

(A6)

It is easy to see that in the limit a ~ 0 only the two-
dimensional conical part of the metric g„gives singular
contributions to the curvature tensors whereas the terms
in (A3) result in regular additions. Finally, taking into
account the form of the volume element

dP, = a e " / u2 (1+ &a x h)~pxdxdgd 9,

one obtains Eqs. (2.29).
Consider now the integrals of quadratic curvature com-

binations on M . By using (A2) —(A4) in the limit a ~ 0
it can be shown that

(A7)

where Ag = J& ~pd" zg is the area of the singular sur-
face E. By means of identities (Al) the integrals f& h
and I& o'q can be written in a coordinate invariant form
in terms of the curvature tensors for the initial metric
g„(2.27):

(B + 87r(1 —n) Bg —
[

8Iy — Iz [—
z

h + (d 4)IQ 16(d —I)
~

Ii ——Iz(
4 )

8(d —1) o-, = R —R —dR„„n,". n,. n. n~

+2K„n,"n, ) .

o.
g + —I3Ag,

Q 2 (A5) Finally, when using (A8), expressions (A5)—(A7) take the
invariant form of Eqs. (2.31)—(2.33).
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