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The effect of the recently calculated second post-Newtonian correction on the accuracy of the
estimation of the parameters of the gravitational-wave signal from a coalescing binary is investi-
gated. It is shown that the addition of this correction degrades considerably the accuracy of the
determination of the individual masses of the members of the binary. However the chirp mass and
the time parameter in the signal are still determined to a very good accuracy. The possibility of
estimating the effects of other theories of gravity is investigated. The performance of the Newtonian
filter is investigated and it is compared with the performance of post-Newtonian search templates
introduced recently. It is shown that both search templates can extract accurately useful information
about the binary.
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I. INTRODUCTION

It is currently believed that the gravitational waves
that come &om the final stages of the evolution of com-
pact binaries just before their coalescence are very likely
signals to be detected by long-arm laser interferometers
[1]. The reason is that in the case of binary systems
we can predict the gravitational waveform very well; and
the amplitudes are reasonably high for sources at dis-
tances out to 200 Mpc. An estimate based on the num-
ber of compact binaries known in our galaxy and ex-
trapolated to the rest of the Universe shows that there
should be one neutron star compact binary coalescence
per year out to the distance of 200 Mpc [2,3]. This es-
timate is a safe lower bound on the rate of binary coa-
lescence. Arguments based on progenitor evolution sce-
narios suggest that there should be 100 of two-neutron-
star coalescences, 5 neutron-star —black-hole coalescences,
and 0.5 two-black-hole coalescences out to 200 Mpc [4].
The waveform derived using the quadrupole formula has
been known for quite some time [5]. A standard optimal
method to detect the signal from a coalescing binary in
a noisy data set and to estimate its parameters is to cor-
relate the data with the filter matched to the signal and
vary the parameters of the filter until the correlation is
maximal. The parameters of the filter that maximize the
correlation are estimators for the parameters of the sig-
nal. The detailed algorithms and the performance of the
matched-filtering method in application to a coalescing
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binary gravitational-wave signal has been investigated by
several authors, e.g. , [6—10]. It has recently been realized
[ll] that the correlation is very sensitive even to very
small variations of the phase of the filter because of the
large number of cycles in the signal. Consequently the ad-
dition of small corrections to the phase of the signal due
to the post-Newtonian effects decreases the correlation
considerably. Thus the post-Newtonian effects in the co-
alescing binary waveform can be detected and estimated
to a much higher accuracy than it was thought before
[12]. This opens up new prospects but also consider-
able data analysis challenges for the Laser Interferomet-
ric Gravitational Wave Observatory (LIGO), VIRGO,
and GEO600 projects which are rapidly progressing. It
was also found [ll] that the post-Newtonian series is not
converging rapidly for a binary near coalescence. Hence
higher post-Newtonian corrections will affect the correla-
tion. Currently three post-Newtonian corrections to the
quadrupole formula are already known [13] and the cal-
culation of further ones is in progress. In this work we
analyze the estimation of parameters of the second post-
Newtonian signal. This part of the work complements a
recent detailed analysis of the 3/2 post-Newtonian signal
performed in Ref. [10]. We also examine the detectability
of the post-Newtonian signal and estimation of its pa-
rameters using the Newtonian waveform as a filter. This
filter can be used as the simplest search template. We
compare the Newtonian search templates with the post-
Newtonian search templates recently investigated in Ref.
[14].

The paper is organized as follows. In the first part of
Sec. II we present the gravitational-wave signal from
a binary system to the currently known second post-
Newtonian order. In this work we analyze the signal
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in the "restricted" post-Newtonian approximation (i.e. ,
only the phase of the signal is given to the second post-
Newtonian accuracy whereas the amplitude of the signal
is calculated from the quadrupole formula), we assume
circularized orbits, and we assume the spin p'arameters
to be constant. In the second part we briefIy describe
the optimal method of detection of such a signal in noise
and the maximum likelihood (ML) method to estimate
the parameters of the signal. We derive a number of
properties of the ML estimators of the parameters of our
signal and we examine the bounds on their variances.
Our analysis is based on the Cramer-Rao bound. In
the third part we give the approximate rms errors of
the estimators for the signal at various post-Newtonian
orders. In the fourth part of Sec. II we consider the
effects of other theories of gravity and their detectabil-
ity from gravitational-wave measurements. We consider
Jordan-Fierz-Brans-Dicke theory and Damour-Esposito-
Farese biscalar tensor theory. In Sec. III we consider the
so-called "search templates" introduced in [11]. These
are simple filters containing as few parameters as possi-
ble to effectively detect the multiparameter signals. In
the first part of Sec. III we analyze the simplest search
template —the Newtonian filter which is the waveform of
the gravitational signal from a binary in the quadrupole
approximation. We examine the Newtonian filter as a
tool both to detect the signal and also to determine its
nature. In the second part of Sec. III we compare the
Newtonian filter with the other search template analyzed
recently [14] based on the full post-Newtonian signal. In
Sec. IV we summarize conclusions from our results. A
number of results is left to appendices. In Appendix A we
examine the first-order effects on the phase of the signal
due to eccentricity. In Appendix B we give numerical val-
ues of the covariance matrices at various post-Newtonian
orders. In Appendix C we give certain detailed formu-
las for the Damour-Esposito-Farese theory. In Appendix
D we briefIy review the theory of optimal detection of
known signal in noise and we generalize it to nonopti-
mal detection. In Appendix E we give a useful analytic
approximation to the correlation integral of the optimal
filter with the signal from a binary. The units are chosen
such that G = c = 1.

II. POST-NEWTONIAN EFFECTS

A. Gravitational wave signal from a coalescing
binary

Let us first give the formula for the gravitational wave-
form of a binary with the three currently known post-

h(t) = A f(t) i cos
~

2~

where

8 2(3 pm 2/3

B (2)

and where P is an arbitrary phase; p and m are the re-
duced and the total mass of the binary, respectively; t
is a time parameter; and B is the distance to the source.
A is the rms average amplitude over all Euler angles de-
termining the position of the binary in the sky and the
inclination angle between the plane of the orbit of the
binary and the line of sight. The rms amplitude A is
2j5 of the maximum possible amplitude. The character-
istic time for the evolution of the binary to the currently
known second post-Newtonian order is given by

Newtonian corrections. We make the following approxi-
mations. We work within the so-called "restricted" post-
Newtonian approximation; i.e., we only include the post-
Newtonian corrections to the phase of the signal keep-
ing the amplitude in its Newtonian form; this is because
the effect of the phase on the correlation is dominant.
The inclusion of post-Newtonian effects in amplitudes
will not qualitatively change our results. Because of the
effect of rapid circularization of the orbit by radiation
reaction one can assume that the orbit is quasicircular.
For example in the case of the gravitational-wave signal
from the Hulse- Taylor binary pulsar PSR1913+16at the
characteristic frequency of the detector for such a sig-
nal of around 47 Hz the eccentricity e would be 10
Moreover the first-order contribution to the phase of the
signal due to eccentricity goes like e . Nevertheless for
completeness we include the first-order correction to the
signal due to eccentricity in our formulas. We give a de-
tailed derivation of this correction in Appendix A. We
neglect the tidal effects. All tidal contributions to the
gravitational wave signal from a coalescing binary were
estimated to be small [12,15]. There is also a small ad-
ditional contribution to the phase due to tail effects de-
tectability of which has been considered in detail [16]
and was found to be small. This correction is formally
of the fourth post-Newtonian order and consequently we
neglect it in the present analysis.

With these approximations the waveform, as a function
of time, is given by the expression

f 5 1 1 157 I, (743 11 p)
df/dt 96 pm (vr f) 24 f (336 4 m

3058673 5429 p 617 p 2 m

1 016 064 1008 m 144 m (3)
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where I is the asymptotic eccentricity invariant,

2 19/9Ie: ep fp (4)

and eo is the eccentricity of the binary at gravitational
frequency fp (see Appendix A for derivation and expla-
nations). The quantities s and 3, are spin-orbit and
spin-spin parameters, respectively. They are given by
the formulas

113 25 / m2 mph'(si+ 32) + —
~
» + 32

12 4 ( mg m2)
'

247 721
88 = 81 ' 82 — 8182)

48 48
S1 S2
m2 m2) su= )

81 ~ '81) 82 ~ 82)

8o =

Sy (7)

(8)

where L is the total orbital angular momentum and S1,
S2 are the spin angular momenta of the two bodies. The
terms in curly brackets in Eq. (3) are, respectively,
at lowest order, the Newtonian (quadrupole); at order
f ~P/P, the lowest order contribution due to eccentricity
(see Appendix A); at order f2/3, the 1PN [17]; at order
f, the nonlinear effect of "tails" of the wave (4m term)
18—21] and spin-orbit effects [22]; and at order f /, 2PN

[13] and spin-spin effects [22].

In general the spin parameters vary with time. It was
shown [10] that s is nearly conserved, it never deviates
from its average value by more than 0.25. Moreover the
time-dependent part of the spin parameter is oscillatory
which reduces considerably its influence on the phase of
the signal [10]. In this work we shall assume that both
spin-orbit and spin-spin parameters are constant. We
also neglect the effect of the precession of the orbital
plane due to spin on the waveform. The effects of the
spin on the waveform of the signal from an inspiralling
binary have been investigated in detail in [23]. If we take
the available estimate of the moment of inertia for the
pulsar in the Hulse-Taylor binary and assume masses of
the neutron stars in the binary of 1.4 solar masses then
8 4.8 x 10 2 and 8, 2.4 x 10 . If such values
are typical then spin efFects will make negligible contri-
butions to the phase of the signal. However this may not
be the case for binaries containing black holes. Moreover
if cosmic censorship is violated and black holes rotate at
a higher rate than allowed by maximally rotating Kerr
black holes the spin efFects will significantly afFect the
gravitational waveform.

In the analysis of the detection of the above signal and
estimation of its parameters it is convenient to work in
the Fourier domain. The expression for the Fourier trans-
form of our signal in the stationary phase approximation
is given by (cf. [1,24,6,10])

h = Af / exp (i(2'ft —P —~/4
+«[a(f;f )k+ a.(f; f )k. + a&(f; f~)k& + a3/2(f; f~)k3/2+ a2(f; f~)k2])) (9)

(for f ) 0 and by the complex conjugate of the above
expression for f ( 0), where
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hold and where v = f and f = f(t ).
The stationary phase approximation, Eq. (10), is an

excellent approximation of the Fourier transform of the
signal for frequencies which are not infiuenced by the
f1nite time window of the measurement. In the above ex-
pressions for the gravitational-wave signal from a binary
we can make an arbitrary choice of the time parameter
and the phase of the signal.

We also point out that going from the time to the fre-
quency domain we have made yet another approximation.
Namely we have taken the modulus

~

h
~

of the Fourier
transform to be the Newtonian one, i.e. , ~

h
~ f / . In
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the stationary phase approximation
]

h
]

goes like 1/
and consequently by Eq. (4) there would be other pow-
ers of frequency due to the post-Newtonian efFects. We
neglect those additional terms since the post-Newtonian
corrections to the phase have the dominant efFect. The
inclusion of the post-Newtonian amplitudes to the signal
will not qualitatively change the results of this work.

A convenient parameter is the chirp mass defined as
k / . In the quadrupole approximation the

gravitational-wave signal &om a binary is entirely deter-
mined by the chirp mass.

We shall consider three models of binaries: neutron-
star —neutron-star (NS-NS), neutron-star —black-hole (NS-
BH), and black-hole —black-hole (BH-BH) binaries with
parameters summarized in Table I where Mo means solar
mass.

For neutron stars we calculated the spin using the
available estimate of the moment of inertia for the neu-
tron star in the Hulse-Taylor binary pulsar. We have
taken black holes to be spinning at half the maximum
rate (i.e. , s; = 0.5m; /m ). The orbital inomenta vectors
were assumed to be parallel to the spin vectors.

To have an idea of the size of the post-Newtonian cor-
rections in the gravitational-wave signal from a binary
when it enters the observation window of the laser inter-
ferometer we have evaluated the characteristic time v2pN
for the above three models at the frequency fo ——47
Hz which is the characteristic &equency of the detector
for this signal (see below). We have made explicit the
contributions to the characteristic time from the three
post-Newtonian corrections:

'r2pN: 44(l + 0.046[from 1PN] —0.025[from 3/2PN]
+0.0012[from 2PN]) sec, (»)

r2pN = 9 ~ 9(1 + 0.10[from 1PN] —0 071[fro.m 3/2PN]
+0.0060[from 2PN]) sec, (22)

r2pN: 1.7(1 + 0 17[from 1P. N] —0 12 [from 3/. 2PN]
+0.018[from 2PN]) sec. (23)

One concludes &om the above numbers that for the

B. Detection of the signal and estimation of its
parameters

For the purpose of this investigation we shall use a fit
to the total spectral density S~(f) of the noise in the
advanced LIGO detectors, devised in [10]. This fit com-
prises thermal, shot, and quantum noises in the detector:

Sh. (f) = So((fo/f)'+ 2[1+ (f/fo)'])/5 (24)

where fo ——70 Hz and So ——3 x 10 Hz . It is an
excellent approximation to the detailed formulas for var-
ious noises given in [6] over the range of &equencies from
10 to 1000 Hz. For frequencies below 10 Hz the seismic
noise dominates. The sensitivity function sen( f) of the
detector is defined as 1/Sg(f). The sensitivity function

earth-based laser interferometers post-Newtonian correc-
tions are significant. Moreover several things are ap-
parent. The quadrupole term is dominant for all the
three models. This indicates a very good accuracy of
the quadrupole formula even in the regime of strongly
gravitating bodies. This has been noticed in other stud-
ies, for example, in the numerical investigation of the
gravitational-wave emission &om the two black hole col-
lisions [25]. The difference in size between the first post-
Newtonian correction and the 3/2 post-Newtonian cor-
rection (tail term) is rather small. They differ by a fac-
tor of 2 for NS-NS binary and only by a factor of around
1.5 for binaries with a black hole. The second post-
Newtonian correction is noticably smaller then the 3/2
post-Newtonian correction. The difFerence varies form a
factor of 20 for a NS-NS binary to a factor of 7 for a BH-
BH binary. The convergence of the post-Newtonian series
appears to be worse for BH-BH binaries and in this case
it would be desirable to have accurate numerical wave-
forms and not only the ones based on the post-Newtonian
approximation. Such waveforms should be available as a
result of the numerical projects such as the Grand Chal-
lenge project currently under way in the United States.

TABLE I. Numerical values of the parameters of the three fiducial binary systems. Black holes
are of 10 solar masses and neutron stars are of 1.4 solar masses. Spin parameters are assumed to be
constant. Spin for neutron stars was calculated from the typical estimate of the moment of inertia
I for a neutron star of I = 10 kg m .

Binary
1. NS-NS
2. NS-BH
3. BH-BH

m, [Mo]
1.4
1.4
10

m. [Mo]
1.4
10
10

M [Mo]
1.2
3.0
8.7

Sy

1.5 x 10
3.0 x 10

0.13

Sg

1.5 x 10
0.38
0.13

So
4.8 x 10

4.0
3.9

2.4x 10
3.5 x10

0.15

Binary
1. NS-NS
2. NS-BH
3. BH-BH

I [M"].
0.72
0.16

2.7x 10

ki [Mo ']
4.1
2.0

0.58

kggg[MO ~
]

25
16
4.7

I.[M '"]-.
13
15
7.7
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has the maximum at frequency fo given above and its
half width half magnitude (HWHM) oe is around 48 Hz.

To determine whether or not there is a signal in a
noisy data set we use the Neyman-Pearson test (see Ap-
pendix D). When the noise in the detector is Gaussian
the Neyman-Pearson test is the correlotor test. It consists
of linear filtering the data with the filter which Fourier
transform is the Fourier transform of the signal divided
by the spectral density of the noise [26]. The signal-to-
noise ratio d that can be achieved by optimal filtering
with the filter bandwith form frequency f; to f„ is given
by d = (h~h) ~ where, following [10], the scalar product
(&i~62) is defined by

(hi~h2) = 4Re df
f, h

(25)

Thus we have

d =4A
~ (f)f'~' (26)

By introducing a lower limit of integration we take into
account the seismic noise. We shall call the integrand of
the above signal-to-noise integral signal sensitivity func-
tion and we denote it by ind(f). This function has the
maximum at the frequency fo where fo ——47 Hz and its
HWHM 00 is —26 Hz around half of that of the scIl
sitivity function. This is the signal-to-noise ratio after
filtering of the data. We see that linear filtering intro-
duces an effective narrowing of the detector bandwidth
[27].

In the case of our chirp signal the linear filtering
increases the signal-to-noise ratio by an amount given
roughly by the square root of the number n(f) of cycles
spent near the frequency fo where n(f) is defined by [1]

We assume that the noise n in the detector is additive,
i.e., x = h+n. The maximum likelihood (ML) estimators
of the parameters of the signal are given by the following
set of difFerential equations providing that one can differ-
entiate under the integration sign of the scalar product
defined above:

(x —h~~h~;) = 0, (29)

Var[81] & (I' ');,n'n', (30)

where h~; is the derivative of h~ with respect to the ith
parameter. Rarely these equations can be solved ana-
lytically. It was shown [7] that in the case of the signal
&om a binary within the stationary phase approximation
analytic expressions can be obtained for the maximum
likelihood estimators of the amplitude and the phase.

The ML estimators are random variables since they
depend on the noise. It is important to know the statis-
tical properties of these estimators and their probability
distributions so that we can determine how well they esti-
mate the true values of the parameters. The most impor-
tant quantities are the expectation value of the estimator
and its valance. We would like to have the expectation
value of the estimator to be as close as possible to the
true value of the parameter and we would like the vari-
ance of the estimator to be as small as possible. The
difference between the expectation value of an estimator
of a parameter and the true value of the parameter is
called the bias of the estimator. The ML estimator is not
guaranteed to be either unbiased or minimum variance.

We have the following useful general inequality called
the Cramer-Rao (CR) inequality [29] that gives the lower
bound of the variance of estimators. Let (8,.) be a set of
n parameters and let 81 be one of the parameters then
the variance of its estimator 01 satisfies the inequality

5 1
96 M~ ( f)& (27) where o.' and I"~ are given by

BE[81]
Be, '

BlnA BlnA
Be. Be,

ln A = (x~n~) ——,'(hF ~h, F), (28)

where h~ which we call the filter has the form of the sig-
nal but with arbitrary parameters and x are the data.

Consequently the efFectiveness of matched filtering falls
with the chirp mass. On the other hand the amplitude A
of the signal increases with the chirp mass such as M ~

and the overall factor in the signal-to-noise ratio increases
as ~ ~ . This is born out by the amplitude A of the
Fourier transform. Thus the probability of detection of
binaries with the same rate of occurrence increases with
the chirp mass.

To estimate the parameters of the signal it is proposed
to use the maximum lijcelihood (ML) estimation [28]. It
is by no means guaranteed that this is the best or the
ultimate method. It may sometimes fail to give an es-
timate and other methods may lead to more accurate
estimates. The ML method consists of maximizing the
likelihood function with respect to the parameters of the
filter. In the case of the Gaussian noise the logarithm of
the likelihood function A is given by [28]

(32)

where E is the expectation value. The matrix F is called
the Fisher information matrix and its inverse is called
the covariance matrix. One easily sees &om the above
inequality that when an estimator 81 is unbiased then
the lower bound on its variance is given by the (II) com-
ponent of the covariance matrix. For this inequality to
hold certain mathematical assumptions must be satisfied
[29]: (1) The likelihood function must be a difFerentiable
function with respect to all the parameters 0;; (2) the
order of differentiation with respect to parameters and
the integration in the expectation value integral must be
interchangeable; (3) the variances of the estimators must
be bounded; (4) the Fisher information matrix must be
positive definite.

The Cramer-Rao inequality is very general. It holds
no matter what the probability distribution of the data
is and it applies to any estimator providing the regularity
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conditions mentioned above are satisfied. The above in-
equality guarantees only that the variance of an estimator
is greater then a certain amount. It is important for us
to know how well the right-hand side of the Cramer-Rao
inequality approximates the actual variance of an esti-
mator. It was shown [26,6] that in the case of Gaussian
noise and in the limit of high signal-to-noise ratio d to the
first order the maximum likelihood estimators are Gaus-
sian random variables and moreover they are unbiased
and their covariances are given by the covariance matrix
defined above. In statistical literature there also exists a
series of refined Cramer-Rao bounds called Battacharyya
bounds [29]. However in our case a useful approach to
have an idea of the accuracy of the Cramer-Rao lower
bound is given in [10] where the maximum likelihood
equations were solved iteratively and a formula for the
covariance matrix of the ML estimators was derived to
one higher order then given by the inverse of the Fisher
information matrix. This formula can be treated as an
approximation to the variances of the ML estimators by
a series in 1/d where d is the signal-to-noise ratio. The
first-order terms given by the inverse of Fisher matrix

go as 1/d and the correction terms go like 1/d . Con-
sequently one can expect that for signal-to-noise ratios
of 10 or so the diagonal elements of the inverse of the
Fisher matrix give variances of the ML estimators to an
accuracy of a few percent.

We shall show that the set of parameters that we have
chosen for our chirp signal has particularly useful prop-
erties. Note that the phase of the Fourier transform is
linear in the phase, the time parameter, and the mass
parameters k;. We shall call these parameters phase pa-
rameters. Moreover the Fourier transform is linear in the
amplitude parameter A. The maximum likelihood esti-
mators are those values of the parameters that maximize
the likelihood function. The expectation value of the log
likelihood is given by

E[lnA] = (h[hp) —2(hp[hp),

where (h[hp) is called the correlation function and is de-
noted by H. Using the stationary phase approximation
to the Fourier transform of the signal H is given by the
integral

H(At, Ap, Ak, Ak„Akg, Aks(2, Ak2) = 4AAp

(34)

cos(2~fAt —AP+ —[a(f; f )0 k+ a, (f; f )Ak,

xaq(f; f )Akq + asr2(f; f )Aks)2 + a2(f; f )Ak2]),

~i '. = E[(~r —~r)'] = 0 for I odd (35)

where At means the difference in time parameters of
the signal and the filter. The expectation of the log
likelihood function depends on the phase parameters
only through the correlation integral since (hp[hp)
H(0, 0, 0, 0, 0, 0, 0) = d where d is the signal-to-noise ra-
tio. We see that the correlation function depends only on
the differences between the values of the phase parame-
ters in the signal and the filter and it has the maximum
when the di8'erences are zero. Moreover the value of the
correlation is the same if we move by the same amount
from the maximum in any direction for a given parame-
ter, i.e. , H ( At, 0, 0, 0, 0, 0,—0) = H (At, 0, 0, 0, 0, 0, 0) and
so on for all phase parameters. This property means
that the probability distribution of any estimator of the
phase parameter will be an even function of the difFer-
ence between the estimator and its true value. In other
words the probability distributions of the estimators of
the phase parameters are symmetric about their true val-
ues. Consequently we have BH

00;gBO~ p-
~g

(36)

estimators of the phase parameters are unbiased [this is
immediate from Eq. (35) for I = 1] and the covariance
matrix of the estimators of the phase parameters is inde-
pendent of their values. The probability distributions of
the phase parameters will depend on the signal-to-noise
ratio. We know that for large signal-to-noise ratio they
will tend to Gaussian probability distributions. The esti-
mator of the amplitude parameter is biased nevertheless
by the symmetry property of the probability distribu-
tions of the phase parameters its bias is independent of
the values of the phase parameters. These properties of
the parameters can be also seen explicitly from the first
two terms of the series solution of the MI equations [Eq.
(29)] given in [10]. The properties of our chosen set of pa-
rameters greatly simplify calculation of the Cramer-Rao
bounds. In our case the Fisher information matrix I' is
given by

and moreover for l even the moments m~ are independent
of the true values of the phase parameters. Thus the ML

We are indebted to 3.A. Lobo for this observation, see also
[26], p. 276.

where S refers to the parameters of the signal and E to
the parameters of the filter. The inverse of the I" matrix
is called the covariance matrix and is denoted by C. It
is easily seen that I' ' components are all equal to zero
when i g A. Thus the amplitude parameter decouples
from the phase parameters. Because the phase parame-
ters are unbiased the lower bounds of their variances are
given just by the appropriate diagonal elements of the co-
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where

6k + 8 k + 8] ki + 63/2k3/2 + 82 k2

4' + ~k + '4k + ~lkl + '4/2k3/2 + ~2k2

(37)
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(40)

(41)
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(43)

(44)

(45)

(46)

(47)

(48)

The mass parameter frequency functions a;(f; f ) (i

0, 1, 3/2, 2) in Eq. (10) are then transformed to a, (f; f').
The mass parameters remain invariant under the above
transformations. By linear filtering with the template
parametrized by the new time parameter and the new
phase given by the above transformation we estimate the
new time parameter t' and the new phase P' but the
same mass parameters k, .

variance matrix C. In the case of the amplitude parame-
ter the Cramer-Rao bound is given by VarA ) b'(A)/I'++
where 6 (A) is the derivative of the bias of amplitude pa-
rameter with respect to amplitude and I' + = d2/A2.
Note that I' is independent of A. This is a conse-
quence of the linearity of the signal in the amplitude.

It is clear from the linearity of the function H in the
difFerences 40 that the F matrix is independent of the
values of the phase parameters. Thus the Cramer-Rao
bound on these parameters is also independent of the
values of the parameters. From the argument above we
know that this holds not only for the bounds on the vari-
ances but also for the variances themselves.

To obtain the maximum of the correlation each phase
parameter of the filter has to match a corresponding pa-
rameter in the signal [see Eq. (34)]. Thus by linear fil-
tering we shall get estimates of the time parameter t,
phase, and the mass parameters k, . In the filter one can
always make an arbitrary choice of the time parameter

For example, instead of choosing t as the time at
which frequency is f one can choose time t' as the time
at which the frequency is equal to f . This new choice is
equivalent to the transformation

There is also a particularly simple parametrization of
the signal. Let us rewrite the Fourier transform of the
gravitational-wave signal from a binary in the form

h=Af / exp i 2vrft, —P, —m/4

3 A:

128 (~f)'/'
5 I, 3

96 7rf 32

4239 k

11696 (~f)34/s

(srf) /3 64 (7rf)'/') (49)

I

256 (vrf )s

I,
192 (7rf )2

785 k

110008 (7rf)
5

32 (7rf ) / 128 (7rf ) /
+ 50

1 k 785 k,
16 (7rf ) /3 4352 (7rf)3 /

A:i 5 kg(2 5 k2

48 srf 32 (7rf ) / 16 (7rf )'/3 (51)

Coalescence time amd coalescence phase are obtained
when the time parameter t' is such that the correspond-
ing frequency f is infinite which occurs when the two
point masses coalesce. We can estimate the coalescence
time and the coalescence phase of the template if we fil-
ter for combinations of the time and phase parameters
with the mass parameter given precisely by the right-
hand sides of Eqs. (50) and (51). There is also a trans-
formation of the phase that we shall find useful (see the
following section):

P" = P —2~f„t., (52)

where f„ is some arbitrary constant frequency. Using
the new phase parameter in the filter given by the above
transformation we shall estimate a new value of the phase
shifted by the amount 2mf„t It is not .diKcult to show
that all the above transformations do not change the CR
bound on the mass parameters however the transforma-
tion, Eq. (48), changes the bound for time and phase pa-
rameters whereas the transformation, Eq. (52), changes
the bound on the phase. We can use the freedom of these
transformations in the filter to obtain better accuracies
of estimation of the time parameter and the phase.

C. Numerical analysis of the rms errors of the
estimators

First of all we investigate the inBuence of the increas-
ing number of post-Newtonian parameters on the accu-
racy of their estimation. To this end we have calcu-
lated the covariance matrices for the signal containing
only the quadrupole term, then covariance matrices for
first post-Newtonian, 3/2 post-Newtonian, and second

(for f ) 0 and by the complex conjugate of the above
expression for f ( 0), where t, and P are coalescence
time and phase, respectively, and they are given by
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post-Newtonian signal, and finally for the second post-
Newtonian signal with erst-order contribution due to ec-
centricity. The results are summarized in Table II where
we have given the square roots of the diagonal elements
of the inverse of the Fisher matrix as the rms errors of
the phase parameters. We have given the rms errors for
the time and phase of coalescence t, and P, respectively
We have also determined the frequency f for which the
error in the time parameter is minimum and. we have
given the minimum error At in the time parameter
and the corresponding error AP in phase. As we have
explained in the previous subsection the rms errors of
the phase parameters are independent of their numerical
values. They depend only inversely proportionally on the
amplitude parameter A in &ont of the Fourier transform
of the signal. Thus the rms errors scale with the chirp
mass precisely as M / . To get the numerical values
of Table II we have adopted the chirp mass M = 1Mo
and the distance of 100 Mpc. We have taken the range of
integration in the Fisher matrix integrals &om 10 Hz to
infinity. The signal-to-noise ratio in such a case is around
25.

Prom Table II we see that increasing the number of
post-Newtonian corrections and parameters we filter for
decreases the accuracy of estimation of t¹parameters
independently of the size of the post-Newtonian correc-
tion. Thus searching for a negligible correction due to
eccentricity increases the rms error in other parameters
by over 100%.

For completeness in Appendix 8 we give the numerical
values of covariance matrices for the phase parameters
at various post-Newtonian orders and the corresponding
values of the frequency f

As we have indicated above the estimator of the am-
plitude parameter is biased however if one takes the ex-
pansion of the variance of the estimator in the inverse
powers of the signal-to-noise ratio (see [10] for a general
formula) then the leading term for the variance of the
amplitude is just 1/I'+ where I'+ is independent of A.
The higher order corrections to the CR bounds of the
amplitude go like 1/d and they do depend on the value
of the amplitude. As an amplitude parameter we find
convenient to choose A@ given by

~5/6
Qs

&100Mpc

where Mo is the chirp mass in the units of solar masses

and f'goo M& is the distance in units of 100 Mpc. For
our reference binary the amplitude A@ ——1 and thus the
approximate rms error in its ML estimator is A@/d

~5/B
1/25 = 0.04 zooMo and as explained above this last

number is independent of the true value of the amplitude.
It is important to assess the accuracy of the estima-

tion of the physical parameters of the binary, i.e., the
two masses of its members and the spin parameters 8
and s, . This means that we have to make a transforma-
tion to a difFerent parameter set. An important property
of the MI estimators is the following. I et 0, be the max-
imum likelihood. estimators of the set of parameters 0;.
Let f (8;) be a function of the parameters then f (0,) is
the maximum likelihood estimator of the function f (see
[28]). However it is not true in general that if estima-
tors of the parameters 0; are unbiased then the estimator
f (0;) is an unbiased estimator of f (0;). Consequently by
just transforming the I' matrix to new variables one will
not get the Cramer-Rao bound on the new set of param-
eters. However we know that Cramer-Rao bound. s are
approximately equal to the true variances in the limit of
high signal-to-noise ratio d, correction terms being of the
order of 1/d . Hence by transforming the CR bounds
one gets the rms errors of the estimators accurate to the
order 1/d. Another important point is that the transfor-
mation to the new parameter set may be singular. Then
the determinant of the I" matrix for the new set of pa-
rameters is zero and thus I" is not positive definite, con-
sequently the Cramer-Rao inequality does not hold. A
way to get errors of estimators of the new parameters
in such a case could be to attempt to calculate the bias
and the variance directly &om some approximate prob-
ability distributions for the estimators (see [10] for such
treatment to determine the accuracy of the distance to
the binary). It may happen however that the probability
density function is such that the expectation value and
the variance do not exist (an example is Cauchy proba-
bility distribution) and then one may have to use another
measure of bias and error, e.g. , median and interquartile
distance. The other method proposed in [10] is to use
confidence intervals. We shall return to this problem in
the future work [30,31].

The transformation Rom the four mass parameters kl
to new parameters, total mass (m), reduced mass (p,),
and the spin parameters 8 and 8„ is regular. Thus we
can obtain approximate values of the errors of the esti-

TABLE II. The rms errors for the phase parameters at various post-Newtonian orders for the reference binary of chirp mass
of 1 solar mass at the distance of 100 Mpc. Expected advanced LIGO noise spectral density is assumed and the integration
range from 10 Hz to infinity is taken giving signal-to-noise ratio of around 25. The rms errors scale with the chirp mass as~—5/6

At (msec)
0.14
0.15
0.18
0.24
0.25

0.073
0.087
0.14
0.14
0.17

At, (msec)
0.17
0.27
0.54
1.6
2.3

0.10
0.33
1.9
24
45

Ak[MD ~
]

8.3 x10
4.0 x10
1.7 x10 4

6.6 x10
2.3 x 10

Akg [Mo ']

5.8 x10
0.70 x10

0.50
1.3

0.52
7.2
17

28
59

AA: [Mo 100Hz' ~
]

1.2 x10
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PN order
1PN

3/2PN
2PN

EM/M
0.0054%
0.023%
0.080%

&pip
0.57%
6.5%
42%

~m/m
0.86%
9.8%
64%

mators of the reduced mass, the total mass, and the spin
parameters. However the transformation from m and p
to individual masses mi and m2 is singular (determinant
of the Jacobian of the transformation is zero when masses
are equal, see [10]). Consequently the errors in the de-
termination of the masses cannot be obtained from the
CR bounds calculated above.

In Table III we show the degradation of the accuracy
of estimation of the chirp mass, the reduced mass, and
the total mass with the increasing number of parameters
in the signal for the NS-NS binary at a distance of 200
Mpc.

For the calculation of the numbers in the table above
and all other tables in the remaining part of this sec-
tion we have taken the range of integration in the Fisher
matrix integrals to be from 10 Hz to frequency f
(6s/ arm) corresponding to the last stable orbit of the
test particle in Schwarzschild space-time. This may very
roughly correspond to the last stable orbit in a binary
[32,33].

In Table IV we give the signal-to-noise ratios and the
Cramer-Rao bounds for the mass and the spin parame-
ters in percents of their true values for the second post-
Newtonian signal for our three representative binary sys-
tems at the distance of 200 Mpc. We have also given the
improvement factors ~n in the S/N due to filtering.

We see that only the rms error in the chirp mass is
small and also the accuracy of the determination of the
spin-orbit parameter for NS-BH binary is satisfactory.
The errors in reduced and total masses are large.

One can derive simple general formulas for the accu-
racy of determination of the chirp mass, the reduced
mass, and the total mass in terms of rms errors of the
Inass parameters k. Prom the definition of the chirp mass
one immediately obtains the following formula for the
relative rms error in terms of the rms error in the mass
parameter k:

TABLE III. Degradation of the accuracy of estimation of
the chirp mass, the reduced mass, and the total mass for
the Bducial neutron-star —neutron-star binary with increasing
number of parameters in the signal. 2PN means that the
phase of signal is taken to second post-Newtonian order with
spin parameters included and we maximize the correlation of
the signal with a template matched to the signal for all the
phase parameters.

AM/M = —riPP M&cAkMO
5/3

5
(54)

For the errors in the reduced and the total mass we obtain
the following general formulas using the standard law of
propagation of errors:

(Bkl )2(QP)2 2 Bk Bkl Q + (
Bk )2(~g )2

det
(55)

(Bk~ )2(~k)2 2 Bk Bkq ~ + ( Bk) 2(~k )2

det
(56)

where

Bk Bki Bk Bki
det =

BpBm Bm Bp' (57)

Lk, Lki are rms error in mass parameters k and ki,
respectively, and Ckk, is the correlation coefBcient be-
tween the k and ki mass parameters. The formula above
is the same when the first post-Newtonian, the 3/2 post-
Newtonian, and the second post-Newtonian corrections
are included. Thus we see that independently of the post-
Newtonian order the errors in p and m depend only on
the masses and the rms errors in the parameters k and
ki. The other mass parameters inHuence the errors in p
and m only through their correlations with the mass pa-
rameters k and ki and only through the functional form
of the corrections as the rms error in the mass param-
eters are independent of their values. The errors in p
and m are independent of the numerical values of the
parameters k3y2 and k2. Since in general the rms error
Ak is considerably smaller than Aki and also the corre-
lation coefficient t kk, is much smaller then (Aki) (see
Appendix B) we get the following simplified expressions
for the relative errors in the reduced and the total mass:

1
+P /P — &100MPcPQ +kl 1a (58)

3
/m riPP MpcP'02a

(59)

where a = 743/336 —33/8p, /m. We see that the error in
the determination of the reduced mass and the total mass
is determined by error in the first post-Newtonian mass
parameter ki. Since the ratio p/m is ( 1/4 to a fairly
good approximation we can take the value of a roughly
equal to 1.

If the spin eKects did not exist we would only have
two parameters less to estimate with the reduced mass

TABLE IV. Accuracy of estimation of the parameters of the second post-Newtonian signal for
the three fiducial binaries.

Binary
NS-NS
NS-BH
BH-BH

S/N ~n
15 32
32 15
77 6

AM/M
0.080%
0.26%
0.92%

&p/p
42%
40%

160%%uo

/m
64%
60%

240%

As /s
62 x 102%

15%
250%

+sa/ss
12 x 10'%
19 x 10 %

860%
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and the total mass as unknown in the mass parameters k,
then we could achieve the accuracies in the parameters of
the signal summarized in Table V. We considered three
fiducial binary systems and second post-Newtonian signal
but with spin-orbit and spin-spin parameters removed.
We see that if spin parameters could be neglected we
would have an excellent accuracy of estimation of the
reduced and the total mass of the binary.

D. The efFects of other theories of gravity

We shall consider two alternative theories. One is the
Jordan-Fierz-Brans-Dicke (JFBD) theory (see [35] for a
detailed discussion) and the other is a multi-scalar field
theory recently proposed in [37].

In the JFBD theory in addition to the tensor gravita-
tional field there is also a scalar field. The theory can be
characterized by a coupling constant that we denote by
u. General relativity is obtained when u goes to infinity.
The JFBD theory has two effects on gravitational-wave
emission. It admits dipole gravitational radiation and
secondly there is a modification of the quadrupole emis-
sion due to the interaction of the scalar field with gravi-
tating bodies. In the case of a binary system the effects
of the JFBD theory has been studied in great detail [34]
and a general formula for the change of orbital period
was derived [[35], Eq. (14.22)]. From that formula we
get the following expression for the characteristic time w

of the evolution of the binary due to radiation reaction
in the case of circularized orbits and assuming that the
contribution due to the dipole term is small:

Ci and C2 are "sensitivities" of the two bodies to changes
of the scalar field. For a black hole the sensitivity C is
always equal to 1. For a neutron star C depends on the
equation of state. For neutron stars the sensitivity has
been studied in [37] for a number of equations of state
and it was found for a wide range of such equations that
it is proportional to the mass of the neutron star with
proportionality constant varying from 0.17 to 0.31. Here
we shall assume that C; = 0.21m,.o for a neutron star
of m, o solar mases. From the above formulas one sees
that the dipole radiation will vanish if the binary system
consists of two black holes or the neutron stars in the
binary are the same.

The Fourier transform of the signal in the station-
ary phase approximation including contributions due to
JFBD theory is given by (we neglect any contributions
due to eccentricity)

Ii = A f / exp (i(2~ft —P —7r/4

+4', [a(f; f )k'+ ai(f; f~)ki + as/2(f; f~)ks/2
+az(f; f~)k2 + ag(f; f~)kg])) (66)

(for f ) 0 and by the complex conjugate of the above
expression for f ( 0), where the function. ad( f; f ) due
to dipole radiation has the form

5 (9 1 3
192 70 (7r f)~/s 10 (7rJ )io/s

7 (7rf )~/s) '

where

g'/'
96 pm'/' r. (7rf)s/'

x]1— ka
192

4/s p2

(7rmf) /s) '

1

2+&
kg)

g = 1 — (Ci + Cz —CiC2),
2

k~, )
K = 1 — +

2 12
mgC2 + m2Cg7=1-

m1+ m2
Z = Cg —C2.

(61)

(62)

(63)

(64)

where

g4/s
k' =

pm2~3 K
(68)

1„,(1-dk, ),pm 2/'3

1 2

p,m
k~2,

(70)

gs/3
kg —— kg) Z (69)

pm K

and where the functions a are given by formulas (16),
(18), (19), and (20). Current observational tests con-
strain u to be greater than 600 and from the timing of
binary pulsar a lower limit on u of 200 can be set. Thus
it is sufficient to keep only the terms of first order in 1/u.
Then the two parameters above are approximately given
by

TABLE V. Accuracy of estimation of the parameters for
three fiducial binary systems and the second post-Newtonian
signal but with spin parameters removed. Thus the number of
parameters estimated is 2 less than for the signal considered
in Table IV.

where

1 1dkd = k~ —(Ci + C2 —CiC2) + ———
3 12

(72)

Binary
NS-NS
NS-BH
BH-BH

S/N
15

77

At, (msec)
0.47
0.32
0.18

0.82
0.47
0.24

&v/u
0.29%
0.19%
0.27%

Am/
0.43%
0.28%
0.37%

We thus see the 3FBD theory introduces a new parameter
kg due to the dipole radiation and modifies the standard
chirp mass parameter k by fraction dkp.

We have investigated the potential accuracy of estima-
tion of the parameter kg assuming that the spin effects
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are negligible. We have taken neutron-star —black-hole bi-
nary with parameters given in Table I at the distance of
200 Mpc. The result is summarized in Table VI.

The potential accuracy of determination of the dipole
radiation parameter kg is high. Current observational
constraints indicate however that this parameter is small.
We have the numerical values

TABLE VI. The rms error for signal parameters in 3FBD
theory assuming spins are negligible for the binary of 1.4 solar
mass neutron star and 10 solar mass black hole.

S/N At, (msec) AP I AP/y, Avn/m Akd[MO ]
32 0.47 0.97 0.57 jp 0.73'Pp 2.3 x 10

kd = 3.»& 10 , /500)
(~)

/Z'~ & 32
/&05) (p m )

E~')
5

32 )

(73)

(74)

pie model where sensitivities are proportional to masses
of neutron stars and the proportionality constant is the
same the correction dDF does not depend on the param-
eter P". For a system of tvro identical neutron stars the
correction dDF takes a simple form

We conclude that the gravitational-wave measurement by
planned long-arm laser interferometers have the potential
of testing the JFBD theory to the accuracy comparable
to tests in the solar system and measurements from the
binary pulsars [36].

From the general class of tensor-multiscalar theories
studied recently [37] vre shall consider a two-parameter
subclass of tensor-biscalar theories denoted by T(P',P").
Theories in this subclass have two scalar fields and they
tend smoothly to general theory of relativity when both
parameters P' and P" tend to zero. The subclass is de-
fined in such a way that the dipole radiation vanishes.
From the general formulas [37] one can calculate the char-
acteristic time w. For circularized orbits the only modifi-
cation is an effective change of the chirp mass parameter
k given by the formula

k"=k —d
5 1

144 ' ' ' 6
ro(mq, Cq, m2, C2) + —[v~(mq, Cq, m2, C2)

5
+Kdl(ml Cl m2 C2)] + &d2(ml Cl m2 C2)48

(76)

dDF =

where coefIicients vo, ~q, K&&, +&2 are due to contributions
from quadrupole helicity zero, corrections to quadrupole
helicity two, and dipole radiation respectively. They
are complicated functions of the masses and sensitivi-
ties. We give the detailed formulas in Appendix C. In
all the tensor-multiscalar field theories whenever one of
the components is a black hole corrections to the radia-
tion reaction vanish. We have also found that for a sim-

dDF = 0.21pC

where C is the sensitivity of the neutron star to changes
of the scalar field introduced above. Current observa-
tions constrain parameter P to be less than 1. For cir-
cularized orbits (the case considered above) the biscalar
theory does not introduce a new mass parameter in the
phase of the signal but only a shift in the "Newtonian"
mass parameter k. We shall consider the possibility of
estimating this shift in the next section.

III. SEARCH TEMPLATES

A. The Newtonian Alter

We have seen in the previous section that the accuracy
of estimation of the parameters is significantly degraded
with increasing number of corrections even though a cor-
rection may be small. If we include the second post-
Newtonian correction and filter for all unknown parame-
ters then the accuracy of determination of the masses
of the binary becomes undesirably low. Moreover we
cannot entirely exclude unpredicted small effects in the
gravitational-wave emission (e.g. , corrections to general
theory of gravity) that vre at present cannot model. Thus
there is a need for simple filters or search templates that
will enable us to scan the data effectively and isolate
stretches of data where the signal is most likely to be [11].
The simplest such filter is just a Newtonian waveform h,~
which Fourier transform in stationary phase approxima-
tion is given by

i/2 i//S

h~ =
/ f / exp(i[2vrft, —@, —7r/4+ A:

s (7rf) s/ ]).

We shall call the ¹wtoni an filter the filter vrhich Fourier
transform is given by the above formula and we shall
denote it by NF. This filter has been investigated by the
present authors [9,39,40] and also by other researchers
[41—44, 14]. A different search template based on the post-
Newtonian signal has recently been introduced in [14].
We discuss this alternative search template in the next
subsection.

In this subsection we examine the performance of the

Newtonian filter. We demonstrate that such a template
will perform well in detecting the signal from a binary
and it also gives a reasonable idea of the nature of the
binary. We shall investigate the performance of the New-
tonian filter both analytically and numerically.

Let us consider the correlation of the post-Newtonian
signal with the Newtonian filter. Such an integral has
the same form as the correlation integral given by Eq.
(34) in Section II A except that all post-Newtonian mass
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parameters will be unmatched by the parameters of the
filter. The correlation will be high if we can reduce the
oscillations due to the cosine function as much as pos-
sible. Since the integrand of the correlation integral is
fairly sharply peaked (HWHM 26 Hz) around its max-
imum at the &equency fo 47 Hz we can achieve this by
making the phase as small as possible around the peak
frequency fo. The argument 4 of the cosine in the in-
tegrand of the correlation of the post-Newtonian signal
with the Newtonian filter including the effects due to ec-
centricity and dipole radiation takes the form

4(f) =2~fDt+AP

+ [o(f—; f )Ak+ a, (f; f )k, + ai(f; f~)ki
5

+as/z (f; f )ks/z + o2 (f; f~)kz + oz (f; f~) kz]

(79)

First we note that for all the mass parameter frequency
functions a;(f; f ) the functions and their first deriva-
tives vanish at the &equency f .We shall therefore
choose f = fo. Let us also transform the phase param-
eter according to transformation given by Eq. (52) with
fz ——fo. In the new parametrization the phase C takes
the form

4(f) = 2z.(f —fo)At'+ AP"

+—[a(f; fo)Ak + a, (f; fo)k, + ai(f; fo)ki

+o'3/2 (f i fo) ks/2 + a2 (f i fo) k2 + ad (f i fo)4]
(80)

Let us examine the functional behavior of 4(f) around
the frequency fo We fi. nd

I (f) = 27r(f —fo) At' + EP"
5

(f/fo )
( f

+ &[(f/fo —1)'l.

&57' k. k,
24 (vr f')'s/' vr f'+ k3)2 k2

(~f')2/ (vr f') /s+ 5

192 (7rf,')'/'

We see that in the above approximation we can make
the phase O vanish to the order (f/fo —1) when the
following conditions hold:

(82)
(83)AgV' = p'F' „—p" = 0,

+kmax = kI max
157 k,

( 1)i9/9 + ki(~f0) ks/2(~f0)2/3 I

192 (~f,')z/" (84)

where the subscript F „means the value of the param-
eter of the Newtonian filter that maximizes the corre-
lation. Hence we can expect to match the Newtonian
template to the post-Newtonian signal with the Newto-
nian mass parameter k shifted &om the true value by
a certain well-defined amount. The shift depends both
on the parameters of the two-body system and the noise
in the detector through the frequency fo. However the
value of the shift in the k parameter is independent of
the choice of the time parameter and the phase in the
Newtonian filter.

In Table VII we have given the numerical values of
the shift in the parameter k calculated from Eq. (85)
for the three binary systems considered in the previous
section. We have given three values of the shifts includ-
ing one (Ski), two (hk3/2), and finally three (hk2) post-
Newtonian corrections.

VJe have also investigated the problem numerically and
we have found the maxima to be located at the values of
the shifts in the phase, the time, and the mass parameter

k given in Table VIII, top (first post-Newtonian shift),
middle (3/2 post-Newtonian shift), bottom (second post-
Newtonian shift) below. We have also given the factor l
which is defined as

(hih~)
(hih)

(85)

In a previous work by these authors ([39,40]) we have
claimed the factor l to be the drop in the signal-to-noise
ratio as a result of using nonoptimal (Newtonian) filter.
However the signal-to-noise ratio falls as square of the
factor l (see Appendix D). We also give the range of
integration over which we calculated the correlation. We
have found that we gain very little by extending the in-
tegration beyond that range. For the case of a neutron
star binary increasing the range of integration up to 800
Hz increases the factor / by less than 1%. The reason for
this is the effective narrowing of the band of the detector
by the chirp signal discussed in the previous section.

We see that the agreement between the predicted val-
ues of the shifts in the parameters and the numerical
values given above is very good. In particular the diÃer-
ence between the predicted values and the values of the
shifts for the k parameter obtained numerically differ by
less then 5%.

The results of the detailed analysis carried out in [14)
show that when the amplitude and phase modulations

We are grateful to T. A. Apostolatos for pointing this to
us.
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TABLE VII. Numerical values of the shifts in the mass
parameter of the Newtonian filter calculated from the analytic
formula [Eq. (85)].

Binary
NS-NS
NS-BH
BH-BH

bkg

0.033 28
0.01641
0.004 660

bk3/2
0.015 12

0.005 052
0.001 276

bkg
0.015 97
0.006 023
0.001 775

TABLE VIII. Numerical values of the factor l and shifts
in the parameters of the Newtonian filter with respect to the
true values for various post-Newtonian orders calculated nu-
merically by maximizing the correlation function.

due to the time dependence of the spin parameters are
taken into account then in the worst case I = 0.63 for
the correlation of the Newtonian filter with the 3/2PN
signal.

We have also performed the correlation using the sig-
nal in the time domain and evaluating the correlation
using the fast Fourier transform. We kept the amplitude
Newtonian. As we have remarked earlier the restricted
post-Newtonian approximations are not equivalent in the
&equency and the time domain. So the results are not
the same. (See Table IX.) We therefore conclude that the
Newtonian filter will perform reasonably well in detecting
the post-Newtonian signal.

Using the Newtonian filter we would not like to lose
any signals. We can achieve this by suitably lowering the
detection threshold when filtering the data with the New-
tonian filter. By this procedure we would isolate stretches
of data where correlation has crossed the lowered thresh-
old. The reduced data would contain all the signals that
would be detected with the optimal filter but would also
contain false alarms the number of which would be in-
creased comparing to the number of false alarms with the
optimal filter. This is the effect of lowering the threshold.
Some numerical examples are given in Appendix D. The
next step would be to analyze the reduced set of data
with more accurate templates and the initial threshold
to make the final detection. The theory of filtering with

—ksgz(vr fp) + kz(z. fo) ~
192 vr,' '~' (86)

and the numerical investigation above shows that the
Newtonian filter will determine the effective mass param-
eter the value of which is accurately given by the above
analytic formula (cf. Tables VII and VIII). The k~ pa-
rameter can be used to give an estimate of the chirp mass
of the binary system. We define generalized chirp mass
Mg as

Mg ——1/k~~ . (87)

a suboptimal filter is outlined in Appendix D.
We have also calculated the covariance matrix for the

parameters estimated with the Newtonian filter. Calcu-
lating the second derivatives of the correlation function
at the maximum given by the numerical values of the
parameters in Table VIII one gets the I' matrix. The in-
verse gives the covariance matrix. The square roots of a
diagonal components of the covariance matrix give lower
bounds on the accuracy of determination of parameters
with the Newtonian filter and they are approximate rms
error for high signal-to-noise ratio as explained in Sec.
II. The results are summarized in Table X for our three
binary systems located at a distance of 200 Mpc. The
numbers are given for signals with the currently known
post-Newtonian corrections but without the eccentricity
and the dipole terms.

One can easily calculate from Table II that the ac-
curacy of determination of the mass parameter k with
the Newtonian filter lies between the accuracy of deter-
mination of k for 1 and 3/2 post-Newtonian signal. In
Appendix E we have derived a useful formula for the
correlation function based on the approximation to the
phase 4 considered above.

We shall next show that the Newtonian filter can also
give a useful estimator characterizing the binary system.
From the analytic investigation of the Newtonian filter
given above it is clear that we can obtain an estimator
of an effective mass parameter k~ of the binary system
given approximately by [cf. Eq. (85)]

157 2/3k@ = k—,( +ki(mfp)

Binary
NS-NS
NS-BH
BH-BH

Binary
NS-NS
NS-BH
BH-BH

Binary
NS-NS
NS-BH
BH-BH

lg

0.68
0.76
0.85

l3/'2

0.90
0.87
0.87

l2

0.85
0.87
0.87

bkg

0.037 21
0.018 67
0.004 931

bk3/~
0.015 64
0.004 905
-0.001 219

bk2
0.016 58
0.006 014
0.001 789

bt'
3.0 x 10
1.7 x 10

—41x10

bt'
—3.5 x 10
0.61 x 10
0.39 x 10

bt'
—5.5 x 10
-1.1 x 10
-051 x 10

g pl l
0.61
-0.53
-0.20

g4
l l

-0.40
0.068
0.030

gyll

-0.44
-0.024
-0.018

Range
(Hz)

30—200
30—100
30—100
Range

(Hz)
30—200
30-100
30—100

Range
(Hz)

30—200
30—100
30—100

We have calculated numerically the generalized chirp
mass using the analytic formula (86) and we have found
that it deviates from the true value by less than 4% for
the range of masses &om 1.4 to 10 solar mass. For the
range of masses from 1.01 to 1.64 which is the expected
range of neutron star masses given present observations
of binary pulsars [45] the generalized chirp mass is al-
ways less than the true one by around 4%%up but with a
very small range of 0.5% around the average value.

Because of the inequality m & 2 / M and the closeness
of the generalized chirp mass to the true chirp mass from
the generalized chirp mass JHg we get a lower bound on
the total mass of the system. Thus Rom its estimate
we can determine what binary system we observe. Also
the right-hand side (RHS) of the above inequality gives a
poor man's estimate of the total mass. For the range of
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TABLE IX. Numerical values of the l factor and the shifts obtained from the correlation of the
Newtonian template with the signal in the time domain at various post-Newtonian orders.

Binary
NS-NS
NS-BH
BH-BH

0.67
0.87
0.97

bkg

0.040 97
0.019 16
0.005 130

&3/~

0.97
1.00
1.00

bk3/2
0.015 76
0.004 889
0.001 896

l2

0.88
0.93
0.94

bk2
0.018 99
0.01097
0.005 874

Range
(Hz)

30—200
30—100
30-100

TABLE X. Accuracy of determination of parameters of the
Newtonian filter for the three fiducial binaries located at the
distance of 200 Mpc.

Binary
NS-NS
NS-BH
BH-BH

At [mivsec]

2.9
0.53
0.22

Akiv[Mo ~]
0.37 x 10
0.051 x 10
0.021 x 10

masses of (1M~, lOM~) it deviates by 50% from the true
value of the total mass but for the range of (1.01MO,
1.64M~) acceptable for neutron star binaries it is only
5% smaller than the true mass.

Another application of this estimate is that it can be
used as an additional check on whether we are observing
the real signal. If our estimate would fall out consider-
ably from the expected range of Mg we could veto the
detection.

An interesting application of the Newtonian Alter
would be to determine unexpected effects in the binary
interaction that we would not be able to model and intro-
duce into multiparameter numerical templates because
we do not know their form. The idea is to use the esti-
mates of the effective mass parameter k~. Particularly
useful would be estimates of k~ in the case of neutron star
binaries. Since the range of the neutron star masses in a
binary system is rather narrow the range of the allowable
values for the generalized chirp mass is also narrow. From
the analysis in [45] the range from the least lower bound
and to the greatest upper bound is (1.01MO, 1.64M&)
and the range from greatest lower bound to least upper
bound is as narrow as (1.34M~, 1.43M~). This implies
the respective ranges in k~ to be (0.57, 1.26) and (0.71,
0.79). From the population of estimates of the parameter
k~ we can determine its probability distribution and also
the mean, the variance or the range of the observed values
of k~. One can then compare the observed distribution
of k~ and its characteristics with the ones obtained from
observations of the neutron star binaries in our Galaxy or
from the theoretical analysis and search for differences.
As an example we consider Damour-Esposito-Farese bi-
scalar tensor theory described at the end of Sec. II D. The
shift in the Newtonian mass parameter k due to effects
of this theory is given by formula (77). We have calcu-
lated this shift numerically and we have found that for
the range of neutron star masses (1.01Mci, 1.64MO) and
the parameter P = 1 (current observational bound) the
shift is in the range of (0.018, 0.022). This shift is much
larger than rms error in estimation of k~ of 0.00037 (see
Table X). Consequently the effects of the biscalar theory

could be determined to an accuracy depending on how
well we would know the probability distribution of the
neutron star masses and the number of available detec-
tions of gravitational waves from binaries.

B. Pest-Newtonian search templates

In a recent work [14] different search templates than
the Newtonian Alter were recommended and exten-
sively analyzed. The proposed templates are the post-
Newtonian waveforms with all the spin effects and pa-
rameters removed. They have four phase parameters:
time parameter, phase, reduced mass, total mass. We
shall denote such search templates by 1PNF, 3/2PNF,
2PNF where the number in front refers to the order of
post-Newtonian effects included. In [14] the fitting factor
(FF) (FF = /2 see Appendix D) of the 3/2PNF search
template was calculated and it was concluded that this
template family works quite well even for signals with
both spin-modulational and the nonmodulated 3/2 post-
Newtonian effects combined. In this subsection we in-
vestigate the performance of the 2PNF search template
for the case of the second post-Newtonian signal in the
approximation considered in Sec. II. This means that
we ignore all post-Newtonian effects in the amplitudes of
both the signal and the template and we assume that the
spin-orbit and the spin-spin parameters s and s, in the
signal are constant. In Table XI we give the factor l and
the shift in the time parameter, phase, reduced mass, and
total mass for the three representative binary systems de-
scribed in Sec. II. We have also given the shifts in the
reduced and the total mass parameters in percentages of
their true values.

We see that the 2PNF search template fits the signal
better than the Newtonian search template NF investi-
gated in Sec. IIIA. There are two reasons for this. The
2PNF template has one more parameter than the NF
template and the phase of the 2PNF template has all
post-Newtonian frequency evolution terms whereas the
phase of the NF template has only Newtonian &equency
evolution f s~s Also, in the .case of the NS-NS binary
which has small spin parameters, the expectation values
of the estimates of the reduced and the total masses are
close to their true values.

The advantage of the Newtonian search template
might be its simple analytic form: It has the least pos-
sible number of parameters and hence the least compu-
tational tixne is needed to implement such a template in
data analysis algorithms. Before the detailed data analy-
sis schemes are developed for the real detectors it is use-
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TABLE XI. Performance of the second post-Newtonian search template for the three fiducial
binaries located at the distance of 200 Mpc.

Binary
NS-NS
NS-BH
BH-BH

l

0.98
0.95
0.98

bp,

0.002 8
0.52
1.9

~h

0.5%
42%
38%

-0.017
-4.8
-7.8

0.61'
42%
39%

bt (msec)
-9.5 x 10

-3.0
2.3 x 10

6p
0.000 27

-0.28
-0.000 53

ful to investigate theoretically a wide range of possible
search templates.

We have also calculated the covariance matrix for the
2PNF template. The results are summarized in Table XII
where we have given the rms errors in the time, reduced
mass, and the total mass parameters of this search tem-
plate for the three binary systems. We have also given
the errors in the reduced and the total mass in percentage
of their true values. We see that the rms errors of the
parameters of the post-Newtonian search template are
comparable to rms errors obtained with optimal filtering
of the signal with spin parameters removed.

IV. CONCLUSIONS

The analysis of the accuracy of estimation of parame-
ters of the second post-Newtonian signal (Sec. IIC) has
shown that main characteristics of this signal: chirp mass
and the time parameter can be estimated to a very good
accuracy: chirp mass to 0.1—1.0% and time parameter
to a quarter of a millisecond for typical binaries. A typ-
ical binary consists of compact objects of 1.4 to 10 so-
lar masses and is located at the distance of 200 Mpc
from Earth and the amplitude of its gravitational wave
signal is averaged over all directions and orientations.
The signal-to-noise ratio of typical binaries varies from
15 to 77 for the planned advanced LIGO interferome-
ters. However the accuracy of determination of post-
Newtonian efFects is considerably degraded due to large
number parameters: six parameters in the phase of the
second post-Newtonian signal (Table II). Consequently
the errors in determination of the reduced mass and the
total mass are large and range from 50 to 200 Fo for typi-
cal systems (Table IV). If spin effects could be neglected
thereby reducing the number of parameters by 2 the rms
errors of estimation of reduced and total masses would
have a very impressive value of a fraction of a percent
(Table V). Analysis of the accuracy of estimation of the
effects of the dipole radiation in the Jordan-Fierz-Brans-
Dicke theory of gravity has shown that the planned laser
interferometric gravitational wave detectors should have

ability of testing alternative theories of gravity compa-
rable to that of current observations in the solar system
and our Galaxy.

The numerical analysis of Sec. II supports the need for
the search templates emphasized in [11]. The results of
Sec. III show that the Newtonian filter (a search template
with only one mass parameter) will perform reasonably
well at least for the case of of constant spin parameters.
Such a filter can be used to perform an on-line scan of
the data to search for the candidates for real signals. The
measurement of the mass parameter of the Newtonian
signal provides an accurate estimate of an efFective mass
parameter k~ of the binary [see Eq. (86)]. The value
of this parameter gives the information about the binary
analogous to the chirp mass in the analysis of the signal in
the quadrapole approximation. Moreover this parameter
contains information about the post-Newtonian effects
and it can contain information about the effects that we
cannot at present model for example about the effects
due to unknown corrections to general relativity in the
strong field regime. Such information can be extracted if
we built a probability distribution of k~ from its estima-
tors by the Newtonian filter. The post-Newtonian search
templates analyzed in [14] perform better than Newto-
nian Alters and considering increasing computational ca-
pability they can also be used in the on line analysis of
the data. In the case of large spin parameters it would
be useful to obtain relations of the two mass parameters
in such templates to the true masses and spins similar
to relation of the efFective mass parameter of the New-
tonian filter to the other parameters of the binary [Eq.
(86)]. For the case of the observed binary systems, bi-
naries consisting of two neutron stars with small spin
parameters the Newtonian Alter will provide an accurate
estimate of the chirp mass whereas the post-Newtonian
search templates will provide accurate estimates of the
reduced and the total masses.

After this work was completed we learned about a par-
allel analysis of parameter estimation using second post-
Newtonian waveforms by Poisson and Will [48]. The
main difference with the results presented here is that
Poisson and Will take into account a priori information

TABLE XII. The rms errors in the estimators of the parameters of the second post-Newtonian
search template for the three fiducial binary systems located at the distance of 200 Mpc.

Binary
NS-NS
NS-BH
BH-BH

At (msec)
0.80
0.40
0.16

Gyp~ [Mo]
0.0078
0.012
0.0090

+PPN

1.1%
1.0%
0.2'Pp

Emp~ [Mo]
0.011
0.0068
0.0050

DmPN

0.39%
0.06%
0.03%
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about the size of the spin parameters. This allows to
reduce the rms error in the estimation of the mass pa-
rameters of the binary.

where e0 is an arbitrary initial eccentricity and a0
u(eo). From Kepler's third law 7rf = mi/2a3/2, where
f is the gravitational wave frequency, we get an analytic
expression for f as a function of e:
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1305/2299
18/19 i 304 j

( f ) —19/18
e=e0

(fo)
1+ O(eo)

where fo ——f (eo). For small eccentricities we find

(A4)

APPENDIX A: THE EFFECTS OF
ECCENTRICITY

In this appendix we derive the erst-order correction
due to eccentricity in the phase of the gravitational-wave
signal from a binary system. The derivation is due to
Wex [38].

Let a and e be, respectively, the semimajor axis and the
eccentricity of the Keplerian orbit of a binary. Prom the
quadrupole formula one obtains the following expressions
for the secular changes of a and e averaged over an orbit
[46]:

f /'df da&

df/dt ada dt) (A5)

From Kepler's third law we And

5 1 1 (1 —e2) 2/2

96 pm, 2/3 (7rf)8/ 1+ —e + —e24 96
(A6)

For small eccentricities e we get

Thus to first order in e the quantity I, = e02fo is a con-
stant. We call I the asymptotic eccentricity invariant.
The characteristic time for the evolution of the binary
system is given by

5 1 1

96 pm / (~f) /

157
24

e +O(e ) . (A7)

(
so4 & e(1+ 304'e')

dt 15 a4 (1 —e2) 3/2

where P =
3 m p. From these equations we get da/de

which can be integrated with respect to e. The result is

Therefore, using Eq. (A4) we can express the character-
istic time with first-order correction due to eccentricity
as

(A2)

5 1 1
96 pm2/3 (7r f)8/3

i —19/9

eo
I

—
I (A8)

24 ( fo)

2 i 870/2299
12/19 L 304 j

1 —e
The phase of the Fourier transform of the signal in the
stationary phase approximation is given by

p[f] = 27r ft; —(p; —vr/4 —27r .(f')(1 —flf') df

5~f
128+rii2/3 I

( f) / 63( f )8/3

785 2 19/9 / 9 347r

1462 ( (7r f)34/9 (vr f )43/9
43

(~f )34/9 )I
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TABLE XIII. The rms errors of the parameters of the signal with a erst-order contribution due
to eccentricity for a binary of two neutron stars of 1.4 solar mass each at the distance of 200 Mpc.

S/N
15

At, (msec)
0.56 1.2

&v/u
0.50%%u(&

I

Am/m
0.7470

Ak, [Mo (100 Hz) ]
3.6 x 10

and consequently the Fourier transform of our signal in
the stationary phase approximation has the form

h(f) = Af / exp(z(2vrft —(p —vr/4

+4s[o(f—; f )k+ a, (f; f )k, )]f) for f ) 0 (A10)

a.(f; f-) =—157& 81 1 9 ~f
24 (1462 (7rf)s / 43 (7rf )4 /9

9
34 (7rf )34/9 )

(A14)

1/2 1/3

301/~ ~2/3
1

k, =
pm2/3

1 2 19/9
/

ep(7rfp)
pm

9 1 3 7rf 3 1

40 (z.f)s/s 8 (srf ) /s 5 (7rf ) /

(A11)

(A12)

(and by the complex conjugate of the above expression
for f ( 0), where

We have investigated the accuracy of measurements
of parameters of the above signal with first-order eccen-
tricity contribution. We have considered neutron-star—
neutron-star binary. The results are summarized. in Table
XIII.

The potential accuracy of estimation of the eccen-
tricity parameter k, is very good however for the cur-
rently observed binaries the eccentricity invariant I is
extremely small. For the Hulse- Taylor pulsar I
1.8 x 10 [Mo 100 Hz / ]. We have the numerical
values

[M& 100 Hz / ],
( 1.2

1.8x 10—', )I I(~ )
( I. l /)t4o. 1"= 2.8 x 10 7 200 Mpc 1 8 x 10 ~, )l I

(A16)

where r200Mp is the distance in 200 Mpc. Thus for eccen-
tricity efFects to be measured one would. need extremely
short period binaries of high eccentricity. Such binaries
could perhaps occur in the center of a galaxy or be cre-
ated as a result of some supernova explosions.

APPENDIX 8: COVARIANCE MATRICES AT
VARIOUS POST-NEWTONIAN ORDERS

In this appendix we give the numerical values of the
covariance matrices at various post-Newtonian orders for
the reference binary. The reference binary has the chirp
mass ~ of 1 solar mass and is located at the distance
of 100 Mpc. We only give reduced covariance matrices,

I

i.e. , covariance matrices for the phase parameters. As
indicated in Sec. II the estimator of the amplitude pa-
rameter is uncorrelated. with phase parameters. The in-
tegration range in the Fisher matrix integrals was taken
to be from 10 Hz to infinity and the spectral density of
advanced LIGO detectors was assumed [Eq. (24)]. The
frequency f was chosen such that the rms error in the
time parameter is minimum. The minimum frequency is
denoted by f and its numerical value is given for each
covariance matrix. The subscripts N, 1PN, 3/2PN, 2PN,
2PNe refer to signal including quadrupole radiation, first
post-Newtonian correction, 3/2 post-Newtonian correc-
tion, second post-Newtonian correction, and first-order
efFect due to eccentricity, respectively. The orde~ of pa-
rameters in the matrices is t, P, k, kq, ks/2, kz, k, :

f" =70Hz,

( 1 96 x 10 s 8 2 x 10
8.2 x 10-' 0 00537

( 1 21 x 10 2 08 x 10

1.21 x 10
2.08 x 10
6.65 x 10

(B1)

f =100Hz,

+1PN =
( 2.24 x 10

9.93 x 10
8.87 x 10

( —6.61 x 10

9.93 x 10
0.007 54

—628 x10
0.000 147

—6.28 x 10
1.4 x 10

—1.97 x 10

—661 x 10
0.000 147

-1.97 x 10
0.000 028 9

(B2)
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gs/2PN 160

3.41 x 10~

~0.000 02

C3/2p~ —— —9.65 x 10

l
3.36 x 10
0.000 021 2

0.000 02
0.0191

—9.34 x 10
—0.000 403

—0.007

—9.65 x 10
—9.34 x 10
2 23 x 10

—8.71 x 10
—0.000 062 2

3.36 x 10
—0.000 403

—871 x10
0.003 49
0.0253

0.000 021 2
—0.007

—0.0000622
0.0253
0.185 )

(B3)

f'PN = 100 Hz,

+2PN—

f2PNe

5.62 x 10
0.000 028 6
2.39 x 10

—9.48 x 10
—0.000 199
—0.001 02

0.000 028 6
0.0189

0.000 016
—0.0162
—0.26
—1.11

2.39 x 10
0.000 016

2.3 x 10
—0.000 162
—0.002 19
—0.007 96

—948 x 10
—0.0162

—0.000 162
0.116
1.59
5.86

—0.000 199
—0.26

—0.002 19
1.59
22 ~

81.5

—0.00102 )—1.11
—0.007 96

5.86
81.5
305

+2PNe—

6.36 x 10
0.000 036 9

—3.56 x 10
4.9 x 10
—0.000 135
—0.000 977

( —4.86 x 10-"

0.000 036 9
0.0279

0.000 035
—0.0315
—0.474
—1.89

—5.21 x 10

—3.56 x 10
0.000 035

2 36 x 10
—0.001 21
—0.0143
—0.0464

1.33 x 10 9

4.9 x 10
—0.0315

—0.001 21
0.63
7.57
24.7

—6.52 x 10

—0.000 135
—0.474
—0.0143

7.57
91.5
301

—7.59 x 10

—0.000 977
—1.89

—0.0464
24.7
301
999

—0.000 024

—4.86 x 10
—5.21 x 10
1.33 x 10 9

—652 x10
—7.59 x 10
—0.000 024

8.28 x 10 13 )
(B5)

APPENDIX. C: COEFFICIENTS IN THE
DAMOUR-ESP QSITO-FARESE BISCAI AR

T(p', p") THEORY

The coeIII»cients Ko) Kq) Kg») vg2 in the shift of the New-
tonian mass parameter k dne to the biscalar T(p', p")
theory [Eq. (77) in Sec. III D] are given by

where

m»
Z» — )m

m2
X2 )m

and the constants A and B have the values

(c5)

{c6)

eo = 2P B(C1 + C2)

Kq ——P B(C1x2 + C2xl),
+dl 2P B(C1+1 C2&2)(&1 &2))

Kd2 (&5121 +5221)+1 + (+6212 n~ll2)+2

(Cl)
(C2)

(C3)
(C4)

A = 2.156 9176, B = 1.026 152 9. (c7)

C» and C2 are sensitivities of the two bodies to changes
of the scalar Geld. The functions ab are given by

ab»2»

ab2»g

P'[—C2 —BC1 + (A —3B)C2 —(A —B)2C2C1 + (2A —7AB + 5B )C2C1]

P'[—C, —BC,'+ (A —3B)C,' —(A —B)2C,C,'+ (2A' —7AB+ 5B')C,'C,']
+p B2( 3C3 + 2C2C2 + C4 + 1C C4 + AC2C4) + 1p BC2

P'[—C, —', B(C,'+ C,') + -(A —3B)C,' —(A —B)C,(C,'+ C,')
+-,'(2A' —7AB+ 5B')C,'(C,'+ C,')] + P' B'[—3C,'+ C,'(C,'+ C,')
+C4 + 1C3C2 + AC2C4] + 1 plfBC2

P'[—C2 —-'B(C + C ) + (A —3B)C, —(A —B)C1(C, + C )

+2{2A —7AB+ 5B )Cl{C1+C2)]+ P' B [ 3C1 + C, (C1+ C2)—
+C'+ -'C'C'+ AC'C4] + -'P"BC'

(C8)

(c9)

(C10)

(c»)
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For a detailed exposition of the theory the reader should
consult [37].

APPENDIX D: DETECTION OF THE KNOWN
SIGNAL WITH A NONOPTIMAL FILTER

Suppose that we would like to know whether or not in
a given data set x there is present a signal h. We assume
that the noise n in the data is additive. There are two
alternatives:

no signal: x = n,
signal: x = h, + n.

lnA = (xlh) —-', (hlh). (D2)

Thus in this case the optimal test consists of correlat-
ing the data with the expected signal and it is equivalent
to comparing the correlation G:= (zlh) with a thresh-
old. The probability distributions po and pi of G when,
respectively, the signal is absent and present are given by

po(G d) =

pi(G d) =

G2

&2vrd'

(G —d')'
exp

i/2~d2

(D3)

(D4)

A standard method to determine which of the two al-
ternatives holds is to perform the Neyman-Pearson test
[28]. This test consists of comparing the likelihood ratio
A, the ratio of probability density distributions of the
data x when the signal is present and when the signal
is absent, with a threshold. The threshold is determined
by the false alarm probability that we can tolerate (the
false alarm probability is the probability of saying that
the signal is present when there is no signal). The test
is optimal in the sense that it maximizes the probability
of detection of the signal. In the case of Gaussian noise
and deterministic signal 6 the logarithm of A is given by

where erf and erfc are the error and the complementary
error functions, respectively [47], and we have introduced
for convenience the quantity d2 .——~T that we call the
threshold signal-to-noise ratio. In practice we adopt a
certain value of the false alarm probability that we can
accept and from formula (D7) we calculate the detection
threshold T.

Let E be a linear filter and let n be the additive noise
in data x; then

(&I+) = (hl+) + (~l+).

The signal-to-noise (S/N) ratio is defined by

@i[(hlF)'] (hl+)'
[(nIF)2] (+I&) ' (DiO)

1
pavo(Giv' , d) = exp

27I d

G2N
d2 (Dll)

where Ei means expectation value when the signal is
present. By the Schwarz inequality we immediately see
that (S/%) is maximal and equal to d when the linear
filter is matched to the signal, i.e. , E = h. This is an-
other interpretation of the matched filter —it maximizes
the signal-to-noise ratio over all linear filters [28]. How-
ever when the noise is not Gaussian the matched filter is
not the optimal filter; it does not maximize the probabil-
ity of detection of the signal. We see that in the case of
Gaussian noise the problem of detecting a known signal
by optimal filter is determined by one parameter —the
optimal signal-to-noise ratio d.

Suppose that because of certain restrictions of practical
nature we cannot afford to use the optimal filter h, and we
use a suboptimal one hN, which is not perfectly matched
to the signal. Thus (hlh~) ( (hlh). We denote g(hlhN )
by do and we assume that (hN IhN) = (hlh) = d . Our
suboptimal correlation function is given by G~ = (xlhN )
and its probability distributions pNO and pN~ when, re-
spectively, the signal is absent and present are given by

where d is the optimal signal-to-noise ratio, d2 = (hlh)
and we assumed that the noise is a zero mean Gaussian
process.

Let T be a given threshold. This means that we say
that the signal is present in a given data set if G ~ T.
The probabilities P~ and PD of false alarm and detection,
respectively, are given by

Pj (T, d): J pp(G; d)dG,

pivi(Giv, 'd, do) = exp
2Jr d

(Giv —do)'
(Di2)

We see that the suboptimal detection problem is deter-
mined by two parameters: d and do, square roots of the
expectation values of the optimal and suboptimal corre-
lations when the signal is present. The false alarm and
detection probabilities as in the optimal case can be ex-
pressed in terms of the error functions:

Pri(T, d) = pi(G; d) dG. (D6) P~(dg, d) = 2ierfc
I 2d) ' (D&3)

( d~2

Py (dz, d) = 2erfc
I 2d)

(d2 d2
P~(dz, d) =

2 1+ erf
I 2d

(D7)

(D8)

In the Gaussian case they can be expressed in terms of
the error functions.

(d2o —d~2 5
P~(dz, d, do) =

2 1+erf
I 2d

(Dl.4)

We see that the probability of false alarm for the subop-
timal case is the same as in the optimal case however the
probability of detection in the suboptimal case is always
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less than the probability of detection in the optimal case
since dp ( d and the error function erf(x) is an increasing
function of the argument x. The signal-to-noise ratio in
the case of suboptimal linear filter h~ is given by

s/
(h~lhiv) 0 d )

(D15)

Let us denote the ratio dp/d by /. The ratio l measures
the drop in the expectation value of the correlation func-
tion as a result of nonoptimal filtering. We see that due
to suboptimal filtering the signal-to-noise ratio decreases
by square of the factor t. We denote l by FF and fol-
lowing [14] call it the. fitting factor

In our considerations we need to calculate the number
of events that will be detected by linear filtering. We
shall make a number of simplifying assumptions. We
shall assume a Euclidean universe where in the sphere of
radius ro we have one source and that at the distance
ro the optimal signal-to-noise ratio is d. Moreover we
shall assume that the magnitudes of the signal 6 and the
suboptimal filter h~ are inversely proportional to the dis-
tance r from the source. Then the square roots d„and do„
of the expectation values of the optimal and. suboptimal
correlations at the distance r are given by

(D16)

(D17)

We assume that the sources are uniformly distributed
in space. Then the expected number of detected real
events N and N~ in the optimal and the suboptimal
case, respectively, is given by

4m f r2P~(dz, d„) dr
K(dz, d) =

The assumptions that led to the above formulas mean
that we neglect general relativistic, cosmological, and
evolutionary effects. Because of the noise even if there is
no signal there is always a nonzero probability that the
correlation function crosses the threshold. Thus there
will be a certain number NF of false events. For a given
optimal signal-to-noise ratio and a threshold dz this num-
ber is the same for both the optimal and suboptimal filter
and it is given by

NF ——
47r f r2P~(d~, d/r) dr

4m 3
0

x P~(dz, d/x) dx. (D20)

APPENDIX E: AN APPROXIMATE FORMULA
FOR THE CORRELATION FUNCTION

In this appendix we shall derive an approximate for-
mula for the correlation integral. Let us consider the ex-
pression for the correlation function given by (34). The
integrand of the correlation integral is the product of the
integrand of the signal-to-noise integral ind( f) considered
in Sec. II and oscillating factor. We know that the ind( f)
is a fairly sharply peaked around a certain frequency fp
consequently to obtain a reasonable approximation we
expand the phase around the frequency fp. Keeping only
the terms to second order we get

We observe that in the Gaussian case the integrals in
formulas (D18)—(D20) are convergent even though we in-
tegrate over the all infinite Euclidean volume. In Table
XIV we have given numerical examples of the effect of
lowering the threshold.

%iv(dz, d, dp) =

x PD(dz, d/x) dx,

4~ f r PND(d~, d, dp/r) dr
4m 3
3 0

(D18)
4(f) 2~(f —fp) At' —AP"

Ak@ + 0[(f/ fp —1) ], (El)

x PND(dz, d, dp/x) dr (D19).
P," = P, —2~f,'t',

d FF N NF N~
15 0.81 27 0.055 20
15 0.36 27 0.055 5.6
30 0.81 225 1.1 165
30 0 25 225 1 1 31

TN
4.5

3.225
4.5

2.875

Nl.
28
28

230
229

Na
0.16
2.1
2.2
32

TABLE XIV. Comparison of number of true events and
false alarms obtained with the optimal filter and the New-
tonian filter. We assume the signal-to-noise ratio threshold
dz ——5 and we assume we have one signal for the optimal sig-
nal-to-noise ratio d. N is the expected number of detected sig-
nals with the optimal filter, Ny is the number of false alarms,
N~ is the number of detected signals with the Newtonian fil-
ter, T~ is the lowered threshold, NL, is the number of signals
with the lowered threshold, and NfI is the number of false
alarms with the lowered threshold.

and

24 ~ & 19/9

ksg2(~ fp) + k—2(7r Jp) 192 ~ p' '~' (E3)

We shall call k~ the effective mass parameter. Ak@ is
the difference in the effective mass parameter of the sig-
nal and the filter. Thus in the above approximation the
post-Newtonian signal can be parametrized by one mass
parameter the parameter k~. In other words the di-
mension of the parameter space of the filters is effectively
reduced. This last interpretation has been emphasized in
[44] where first post-Newtonian corrections to the phase
were considered. The mass parameter estimated by New-
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tonian filter considered in Sec. III is just the efFective
mass parameter. We stress that the parameter kE de-
pends not only on the parameters of the two-body system
but also on the characteristic frequency fo of the noise in
the detector.

The next step is to obtain a manageable approximation
to the function ind(f). We approximate it by a Gaussian
function with the mean equal to the frequency fo and

the standard deviation equal to the HWHM o.
p of the

function ind(f). We extend the range of integration from
—oo to +oo. We introduce a normalization factor such
that the integral of the approximate integrand is equal
to the optimal signal-to-noise ratio d. It is then useful
to introduce a reduced correlation integral H' = H/d
where d is the S/K ratio. Thus our approximate formula
for the reduced correlation integral takes the form

H' =a exp[—(f —fo)/(2oo )] cos
~

27r(f —fo)At' —AP"+, Ak~
~

.
271 0

20p
/2

(E5)

The above integration can be done analytically. It is
convenient to introduce the new variables and new pa-
rameters

] +OO

H'(8, rv) =
7r

exp[ —y ] cos[—i)" + ry+ ry ]dy.

(E9)

then our integral takes a simple form

ply ~y/I

2o.o

5 AkE /g
K = 20p96f' ( f') I

(E6)

(E7)

(E8)

We see that in the new variables introduced above the
reduced correlation integral is independent of the char-
acteristics of the integrand ind(f), i.e. , fo and ao. The
analytic formula for the function H' (i)",r, r) is given by

1 ( r~ ),(H' (8",r, K) =
&

exp
~

—
~

cos ~ ~

arctan K-
1+K ~4 ( 4 1+r ) 2 1+r~ )

(E10)

By appropriate transformations given in Sec. II we can obtain approximate formulas to the correlation integral for
an arbitrary choice of the time and the phase parameters. Let us first consider the transformation given by Eq. (52)
for f = fo and t = t'. In the coordinates introduced above it takes the form

rp,
2

(E11)

where

p = fo/~o. (E12)

Then the approximate formula for the correlation function is given by

( r' l, (H'( ), ir)r=
&

exp
~

—
~

cos ~ ~

arctanv. —
~
+ 7.p —81+~ ~ E 41+ 21+K~ )

(E13)

We see that in these new coordinates for v = 0 the corre-
lation function oscillates with the maxima at the discrete
values of v coordinate given by

+I&8X
2v 27r

n)
P

(E14)

where n is an integer. In the original coordinates Eq.
(E14) takes the form b, t = 1/fo. Thus the correlation in-
tegral oscillates with the period determined by the char-
acteristic &equency which depends both on properties of

(E16)

I

the noise and the signal.
The expressions for the correlation function for a dif-

ferent choice of the time and the phase parameters can
be obtained by the following transformations. These are
transformations given by Eqs. (37) and expressed in our
dimensionless coordinates:

i)=i)' ——rp (1 —b ~ ),5
(E15)

rp(1 —b ~ ),4~2
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where
7

I rcp(I —8 i ),
4 2

~ = fo/f (E17) and in the original coordinates it takes the form

The above transformations are obtained from general
transformations given by Eqs. (37) and (38) with t'
t', k = k~, f' = fo and with all the post-Newtonian mass
parameters removed. From the approximate formula for
the correlation function obtained above we see that the
correlation is given by the product of an oscillating co-
sine function and an envelope. In the cosine function
there are oscillations with the period of I/fo The. enve-
lope function is exponentially damped if we move away
from the maximum at the center except for the direction
given by w = 0 along which the damping is least. The
equation of the ridge w = 0 in the primed coordinates is
given by

256 (~f,')sl's i,f.p
(E19)

Consequently we conclude that the general appearance
of the correlation function in coordinates At' and Lk is
a series of peaks aligned along a straight line given by
Eq. (E19) above and occurring with the period I/fo in
the time coordinate. Numerical investigation shows that
the correlation integral exhibits these properties and that
our analytic formula reproduces qualitatively its behav-
ior. The approximate formula obtained above may be
a useful tool for developing algorithms to recognize the
chirp signal in a noisy data set.
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