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We report on a new three-dimensional (3D) numerical code designed to solve the Einstein equa-
tions for general vacuum spacetimes. This code is based on the standard 3+1 approach using
Cartesian coordinates. We discuss the numerical techniques used in developing this code, and its
performance on massively parallel and vector supercomputers. As a test case, we present evolutions
for the first 3D black hole spacetimes. We identify a number of diKculties in evolving 3D black
holes and suggest approaches to overcome them. We show how special treatment of the conformal
factor can lead to more accurate evolution, and discuss techniques we developed to handle black
hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including
geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited
by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole
to about t = 50M, where M is the black hole mass. Comparisons are made with results obtained
by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also
demonstrate that an "apparent horizon locking shift" can be used to prevent the development of
large gradients in the metric functions that result from singularity avoiding time slicings. We com-
pute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be
conserved to within about O'Po throughout the evolution with our techniques and current resolution.

PACS nuinber(s): 04.25.Dm, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

Progress in three-dimensional (3D) numerical relativ-
ity has been impeded in part by a lack of computers with
sufBcient memory and computational power to perform
well resolved calculations of 3D spacetimes. To date, only
a few groups have attempted full 3D numerical relativity
calculations, notably Nakamura et al. [1] and Laguna et
al. [2]. Nakamura et aL have applied theinselves to pure
gravitational wave spacetimes in the linearized limit [1],
and more recently to general relativistic hydrodynamical
studies of revolving neutron stars. Laguna et al. have
designed a code for the simulation of various cosmologi-
cal spacetimes [2], and have recently turned to the prob-
lem of black hole spacetimes [3]. Such 3D calculations
in numerical relativity have proved quite diKcult due to
constraints placed by the largest computers available.

However, these arti6cial restrictions on the physical
simulations dictated by memory and speed considera-
tions are being relaxed considerably due to the intro-
duction of massively parallel machines. Machines avail-
able today have gigabytes of memory and are capable of
speeds of tens of gigaBops, allowing a completely new
class of problems to be investigated. It is our inten-
tion to develop general purpose numerical codes to model
general 3D spacetimes, including dynamic multiple black
hole spacetimes. Simulations of general black hole inter-
actions are inherently three-dimensional problems. To
date, numerical simulations of black hole spacetimes have

been limited to two-dimensional axisymmetric geome-
tries [4—6]. A grand challenge effort is currently under
way in the numerical relativity community to develop
three-dimensional codes that will be applied, for exam-
ple, to the coalescence of binary black hole systems. Some
progress has already been made to construct initial data
in three dimensions representing two black hole con6gu-
rations with arbitrary positions, radii, linear momenta,
and spin [7].

In this paper we report on progress made in the devel-
opment of a new 3D numerical code based on the stan-
dard Arnowitt-Deser-Misner (ADM) or 3+1 approach [8]
that we call the "G" code. We have also developed an-
other 3D code based on a completely different formula-
tion of the Einstein equations due to Bona and Masso
[9,10] that we call the "H" code. This promising formu-
lation and a recent extension [11]casts the equations in a
first order, Qux conservative, hyperbolic (FOFCH) form
that allows very accurate and sophisticated numerical
methods to be applied to the Einstein equations for the
Grst time. Applications of this formalism to black holes
and gravitational waves are very promising in 1D and 3D
studies. We will report on results &om the FOFCH codes
in a future paper.

Here we apply the ADM code to the problem of black
hole spacetimes, showing the 6rst evolutions of black
holes in a 3D Cartesian coordinate system. This is a
dificult problem in 3D due to the large gradients that
typically develop near the black hole, and we report on
progress we have achieved towards evolving a spherical
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black hole to about 50M in time, where M is the mass
of the black hole. This time scale is many characteristic
time scales of the black hole, as the light crossing time of
the black hole is 4M, while its fundamental quasinormal
mode period is about 17M.

There are several reasons why we study the spheri-
cal black hole spacetime before looking at more general
spacetimes. First, this system has been studied exten-
sively in 1D and 2D [4,12—14], so it can be used as a
standard system for testing out numerical schemes. Sec-
ond, evolving a spherical black hole is a dificult exercise,
as shown in Refs. [12,13], even when the coordinate sys-
tem is chosen to match the underlying geometry of the
system (e.g. , spherical-polar coordinates). It represents
one of the first major challenges to 3D black hole evolu-
tions since it is the longitudinal, or spherical part of the
calculations that presents the most serious problems in
terms of the gradients in metric functions that develop
as the system evolves. Since we are solving this problem
using 3D Cartesian coordinates, the spherical system has
no special symmetry &om the point of view of the code.
By concentrating first on solving the problems associated
with evolving this system, we will learn the techniques
that are required to evolve much more general black hole
spacetimes. Finally, the Schwarzschild spacetime is the
endpoint for any generic 3D black hole spacetime that
does not have net angular momentum, so it is important
to understand the problems associated with the end state
of more complex calculations that will be performed in
the future.

We should point out that there is work going on in
our group using the same 3D relativity code to evolve
gravitational waves. This work will be described in a
separate paper [15]. Our strategy is to study first the
issues of black holes without the complications of grav-
itational waves, and waves without the complications of
black holes, and then to combine them when we consider
distorted black holes that will evolve and emit gravita-
tional waves as they "ring down" to Schwarzschild (see,
e.g. , Ref. [14]).

We discuss the theoretical foundations of the ADM
approach and the numerical algorithms used to solve the
resulting equations in Secs. II and III, respectively. The
initial data are discussed in Sec. IVA and various issues
regarding black hole evolutions in 3D, including compu-
tational approaches and gauge conditions are discussed
elsewhere in Sec. IV. In Sec. V we present case study
tests of di8'erent slicings and shift conditions, compar-
ing our results to previous 1D and 2D studies. Finally
in Sec. VI we discuss the results and future directions
for this work. The Appendix provides information about
programming and performance issues encountered in de-
veloping a massively parallel 3D code.

using geometrized units such that the gravitational con-
stant G and the speed of light c are both equal to unity.
Throughout this paper, we use Latin indices to label spa-
tial coordinates, running &om 1 to 3. The lapse function
n and the shift vector P determine how the slices are
threaded by the spatial coordinates. Together, n and
P represent the coordinate degrees of freedom inherent
in the covariant formulation of Einstein s equations, and
can therefore be chosen &eely. Various choices used in
our code are discussed in Secs. IVE and IVF.

The Ricci tensor of the spacetime may be decomposed
into its spatial and timelike components, and when the
vacuum Einstein equations are imposed these reduce to
the four constraint equations

R i (trK) —K K b = 0, (2)

Db(K' —q'trK) = O,

and the twelve evolution equations

(3)

B~p b = 2nK b i—D pb+ Dbp, (4)

BqK b = DDbn+ —n [R b + (trK)K b
—2K,K'b]

iP'D K b i K,DbP i K,bD P'. (5)

III. NUMERICAL ALGORITHMS

Here B g is the Ricci tensor, B the scalar curvature,
and D the covariant derivative associated with three-
dimensional metric p p. The Einstein equations are con-
tained in Eqs. (2), (3), and (5), while Eq. (4) follows
&om the definition of the extrinsic curvature K g. In our
work the constraints are solved on an "initial" hyper-
surface using the well known conformal decomposition
method of York and co-workers [16] and then evolved
forward in time using the evolution equations (4) and
(5)

If the constraints are satisfied on any hypersurface, the
Bianchi identities then guarantee that they remain sat-
isfied on all subsequent hypersurfaces. In a numerical
solution, this may not be the case and the constraints
have to be monitored carefully in order to ensure that
the spacetimes generated are accurate. Traditional al-
ternatives to this approach involve solving the constraint
equations on each slice for certain metric and extrinsic
curvature components, and then simply monitoring the
"leftover" evolution equations. This issue is discussed
further by Choptuik in Ref. [17], and in detail for the
Schwarzschild spacetime in Ref. [12]. New approaches
to this problem of constraint vs evolution equations are
currently being pursued [18,19].

II. MATHEMATICAL DEVELOPMENT

We use the standard 3+1 ADM approach [16] to write
the general spacetime metric in the form

ds = —(n —p p )dt i2p dx Chip bdx dx, (1)

In this section we discuss the various numerical algo-
rithms we have developed to evolve the spacetime. The
methods presented here are not specialized to black holes
but apply generally to all systems we plan to study with
this code. We have developed methods for solving both
the hyperbolic evolution equations and various elliptic
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equations, such as the initial data and maximal slicing
equations. The numerical grid we use is a fixed Cartesian
grid with constant spacing between spatial grid points.
Cartesian grids have the advantage of covering the space-
time with coordinates that are inherently singularity &ee.
To date we have considered only fixed, constant time step
sizes in our evolution schemes, discussed below. We uti-
lize the conventional indices i, j, and Ic to label the space
steps, and n to label the time steps in the finite differ-
enced forms of the evolution equations.

A. Hyperbolic equations

m+1/2 n —1/Z —2o.; ~K, - ALt (6)

K,". +-~ ——K, -
A, + n,". .

A, K," ~ + B,. +. ~/

where we have dropped the tensor index notation to pre-
vent confusion with the indices i, j, and k which are
used to locate a quantity on the spatial grid, and where
a number of terms have been omitted for clarity.

These equations introduce first order errors due to the
placement of the lapse function and the nonlinear terms
(K, - &) . We adjust for this problem by extrapolating
the necessary variables to the n+ 2 time slice using the
formula

We have used this method of solution in previous work
[4—6] and found it to work very well.

Spatial first and second derivatives of the metric com-
ponents present in the terms (V'V'o. ); ~ x, and R; z g are
defined using either standard second or fourth order cen-
ter differences. The added complexity of higher order

The use of MACSYMA scripts written by Hobill [4] to
generate symbolic expressions for the ADM forIn of the
Einstein equations and the ability of MACSYMA to trans-
late symbolic expressions into FORTRAN code tremen-
dously reduced the amount of time spent on laborious
calculations and allowed us to write a 3D code in a short
period of time. Our numerical methods are adopted &om
previous work in developing 2D axisymmetric codes. We
brieQy describe those methods here but refer the reader
to Refs. [4—6] for further details.

The explicit leap&og method is used to evolve the hy-
perbolic system of equations explicitly in time to second
order accuracy. In the conventional leapfrog method, the
extrinsic curvature (K x, ) variables are offset a half step
in tixne relative to the metric field variables (p x, ). Plac-
ing the metric components at the half time step and the
extrinsic curvature at the full step, we can write the finite
differenced forms of (4) and (5) schematically as

differences poses certain performance problems with re-
gard to parallel machines. These issues are discussed in
the Appendix. We found in previous work [4—6] that
fourth order differences provide more accurate solutions
and propagate gravitational waves with less dispersion
and damping than the second order difFerences. Our code
is designed to allow for both second and fourth order dif-
ferences as options. However, fourth order differences
are more unstable than second order, particularly at late
times in the evolution when large gradients develop near
the horizon. All results presented in this paper were ob-
tained with second order derivatives.

B. E11iptic equations

The 3D code allows for an arbitrary set of initial con-
ditions, time slicings, and gauge conditions for the space-
time, all of which can require solutions to elliptic equa-
tions. For example, in previous work (see, e.g. , [4] or
[6]) maximal slicing has frequently been used for black
hole spacetimes due to its singularity avoiding nature
and smooth properties (although this is not necessarily
the case in SD, as we show in Sec. VB). Satisfying the
maximal slicing condition requires the solution of an el-
liptic equation, however. Fiuthermore, the initial data
problem is usually formulated in terms of elliptic equa-
tions that must be solved on the initial hypersurface.
The Schwarzschild initial data evolved in this paper is
known analytically, but for more general initial data sets
we often will need to solve an elliptic partial differential
equation (PDE). The solution of elliptic equations, par-
ticularly on large meshes and on parallel computers, is a
costly operation.

At the time this code was developed, there was no gen-
eral purpose package for solving linear systems of equa-
tions on parallel machines. I'iuthermore, we found pre-
viously that many standard packages available on other
xnachines (e.g. , Cray) were not efficient enough to solve
elliptic equations in a time that made them effective for
these problexns [6,20]. This prompted us to develop a
specialized 2D solver for the Cray and then to develop a
more general 3D solver called cMsTAB [21], initially for
the CM-5, to provide a variety of conjugate gradient and
conjugate gradient —like algorithms for solving the ellip-
tic equations. The CMSTAB code is publicly available and
can be obtained from our Web server (see Sec. VI). We
are presently moving it to other architectures.

Genernting the linear system

In order to solve elliptic equations numerically, the
usual approach is to approximate the derivatives with
finite difference operators and solve the resulting system
of simultaneous equations. Fortunately, our elliptic equa-
tions are linear, so the resulting system is a linear system
of simultaneous equations. (Nonlinearities are typically
handled by linearizing and iterating, so the technique is
essentially the same. ) As an illustration of this process,
the maximal slicing equation for the lapse function o. will
be used (see Sec. IV E 2 below for a discussion of this con-
dition):
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8 (~p(p *8 n+ p*"Byn+ p*'o, n))

+By (~p(p*"0 n + p""Oy o. + p"'O, n))

+~.(~~(~*'~*~+~"'~&~+ ~"~.~))

= ~PK K kn. (9)

Here, p is the determinant of the covariant three-metric.
Equation (9) involves both first and second order deriva-
tives of o.. Second order accurate, central finite diAer-
ences are used. Since the differencing is done in three di-
mensions and all mixed derivatives are involved, we have
a nineteen-point stencil leading to the following equation,
valid at each grid point (i, j, k) not on the boundary:

(&) (&) . . (3) . (4)Ci . ko'. ,&,k+ Ci j ko'.+i,~,k + Ci . ko'. —i,&,k+ Ci

(5)+Ci -ko.; j
(9)+Ci j k~i+1,j—l, k

(&3)+Ci j ko"+i,j,k-i

(6) (7) . (8)C, ko.;jk+g+Ci -ko.; jk g+Ci
(~o) (ax) (x2)+ Ci j k~i —l,j+1)k + Ci j k~i —1,j—1)k + Ci j k~i+lijik+1
(x4) (&5) (&6)+ i j k i—&,a, k+& + i j k 2 —&iaik —& +;j k zia+&, k+&

(i7) (xs) (&9)+C,. ~ kn; ~+1 k 1 + C,. ~ kn, ~ 1 k+1 + C,. ~ kn; ~ 1 k 1
——0. (10)

The stencil coefFicients C( ) are obtained by 6nite difFerencing the left-hand side of the maximal slicing equation in
such a way as to make the resulting matrix symmetric, at least before the application of boundary conditions. For
terms of the form 0 (fO a), a finite difFerence equation that results in a symmetric matrix is

1
&x (f&x o') =

2 [ii'i+1 ~ k)( f)i + 1 )j ) k + fi ) ~ ) k ) cubi )~ )k (fi+ 1)~ ) k'+ 2fi j ) k + fi 1,j)k ) + c—ii 1~')k ()fi )~)k +—fi 1)j)k ) ]1—
and, for terms of the forin 0 (fB„n),

1
cia (f~y~) — [fi+1j,k (o'i+1,j 1+, k ~i+1 j 1,k) fi —1,—j,k (~i 1j+i,k— ~i 1j 1,k)] ~—— (12)

The equation for solving the Hamiltonian constraint for
the initial data would be handled similarly.

Equation (10) forms a set of % equations in K un-
knowns, where N is the total number of grid zones, that
can be solved for the values of o. at each grid point. The

I

standard form for a set of linear equations is that of a
matrix equation Aw=b, where A is an N x N square
matrix containing all the finite difI'erence coefBcients, w

is a vector of N elements consisting of all the unknowns,
and b (the right-hand side) is a vector containing all the
source terms of the difFerential equation. In this way we
generate a standard matrix form of the problem where
A is now a very sparse matrix with diagonal structure as
shown in Fig. 1. Each of the diagonals corresponds to a
Gnite difIerence coeKcient in the nineteen-point stencil.
For details on this procedure see Press et al. [22]. Other
details of our solver can be found in the Appendix or in
Ref. [21].

IV. 30 EVOLUTION OF BLACK HOLES

FIG. 1. We show the banded structure of the matrix which
results from finite di8'erencing the maximal slicing equation
for the lapse function. Note that this matrix is sparse and
structured, making it suitable for iterative methods for solu-
tion. It is a symmetric matrix: with 19 diagonal bands.

At present the evolution of 3D black holes is very dif-
ficult because of problems with boundary conditions and
resolution requirements. In this paper we outline these
difFiculties and present techniques we developed to over-
come them. The boundary conditions on the black hole
throat are generally provided by an isometry condition
that maps the black hole exterior to a geometrically iden-
tical interior sheet, and these can be troublesome if the
coordinate system does not naturally match the throat.
(See Sec. IV C 1 below, where we show that one can either
evolve the entire domain, including the region interior
to the throat, or just the exterior region, when we use
an isometry condition to provide boundary data inside
the black hole throat. ) The outer boundary conditions
for black hole evolution are often taken to be static [6],
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Radial Metric Function obtained with 1D Tl Code where the conformal factor is g = (1+—&. Here r is the2
isotropic radius, related to the standard Schwarzschild
radius r, by r, = (1+ 2 ) r. Transforming to Cartesian
coordinates, we have

60.0 ds =g (dz +dy +dz), (14)

40.0

20.0

where the Cartesian coordinates x, y, and z are related
to the isotropic radius r in the usual way.

In this paper, we shall concentrate on this spheri-
cal black hole initial data set. The study of other 3D
data sets representing a black hole distorted by a Brill
wave [23] and two colliding black holes [5,24,25] will be
reported elsewhere.

0.0
0.0 1.0 3.0

Tl
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FIG. 2. We show the radial metric function A = p„„/g for
a spherical black hole evolved with a 1D code with maximal
slicing. Time slices are shown at intervals of t = 10M until
the final time of t = 50M. The spacetime shown here was
evolved with the logarithmic g coordinate described in the
text, with a resolution of Ag = 0.03.

A. Black hole initial data

The spherical initial data set that we consider in this
paper is the Schwarzschild spacetime represented by a
single, Einstein-Rosen bridge. This construction is dis-
cussed in detail in Ref. [12]. The initial three-metric is
given by

ds = g [dr +r (d9 +sin 9dg )], (13)

but this is acceptable only if the outer boundary is suf-
ficiently far away, a condition that is difFicult to obtain
in an evenly spaced Cartesian 3D grid with present com-
puter memories. The resolution requirements are quite
severe, as has been stressed in previous 1D and 2D stud-
ies of black holes [6,13]. Whenever a singularity avoiding
lapse is used, large gradients in the metric functions de-
velop due to the pathological nature of such a slicina s acing
condition [13]. The evolution of the system is &ozen in-
side the horizon, while it marches ahead just outside,
leading to severe stretching of the coordinates and sharp
peaks in the metric. An example of this effect is shown in
Fig. 2, where the radial metric function is shown at var-
ious times for a maximally sliced black hole (see below
for definitions and more discussion of this point). This
behavior often leads to instabilities in 1D and 2D beyond
about t = 100M, depending on the resolution, and the
problem can be more pronounced in 3D because of the
limited resolution that can be achieved.

In this paper we compare extensively the results ob-
tained using the 3D Cartesian code with those obtained
using the 1D codes we previously developed. Such com-
parisons are very important in understanding the effect
of various boundary condition and resolution effects in
the 3D code.

The present version of the code is written with a fixed
coordinate grid with equal spacing Lx = Ly = Az in
the Cartesian coordinate labels. Because the conformal
factor v/r is singular at the origin, we usually use a grid
which straddles the origin (and coordinate axes), so that
the coordinate axes are offset from grid zones by a half
zone, located midway between them. However, the code
can also place grid zones coincident with the coordinate
axes if desired. In this case we can set the coordinate
values of the origin to be very small but finite to avoid
numerical overflows. Results presented in this paper have
been computed with the staggered grid.

Before going into the details of the calculations, it is
instructive to compare the current Cartesian grid with
the logarithmic g grid used in other numerical work on
black holes [6,12]. In that system, a radial coordinate g
is defined by

(15)

where r is the Schwarzschild isotropic radius and M is
the Schwarzschild mass of the black hole. This coordi-
nate has the advantage of providing fine resolution near
the throat of the black hole and also near the peak that
develops in the radial metric function, while also allowing
the outer boundary to be placed far &om the hole. Typ-
ical high resolution calculations in 1D and 2D based on
this coordinate use Ag = 0.03, with the outer boundary
placed at g = 6, or r 200M. I ow resolution calcula-
tions are performed with Lg = 0.06. Disadvantages of
this coordinate are the following. (i) The throat region
remains extremely well resolved, even after the horizon
has moved significantly away &om the hole. Therefore
much computational effort is wasted well inside the hori-
zon where the lapse is typically near zero and the region
is causally disconnected &om the outside. (ii) The grid
becomes very coarse outside the horizon in the radiation
zone, because equal spacing in the g coordinate leads to
larger and larger spacing in the more physical r coor-
dinate. Under these conditions waves may be reflected
back toward the black hole as they are scattered off of
the coarse grid at larger radii, as discussed in Refs. [6,14].
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One can estimate what kind of resolutions will be nec-
essary to solve the spherical black hole problem in 3B
by doing runs with a spherically symmetric (1D) code
in g coordinates. It is instructive to study a high res-
olution 1D black hole run (Ag = 0.03) with maximal
slicing to t = 50M, as shown in Fig. 2. At that time,
the peak in the radial Inetric function is located at ap-
proximately g = 2. This corresponds to an isotropic
radius r of approximately 3.7M. The efFective resolu-
tion at the peak in isotropic radial coordinates is thus
Lr —0.1M. Given that this peak is the sharpest fea-
ture in the domain, one might expect that it would be
possible to obtain reasonable results with a 3D code with
Ax = Ay = Lz = 0.1M. We also have a 1D code which
uses isotropic radial coordinates, which are more closely
related to our 3D Cartesian coordinates. Experiments
with this code suggest that a resolution of Ar 0.05M
is actually needed to obtain reasonably accurate results
to a time of 50M. This difFerence is due to the fact
that although the equally spaced g coordinates cover the
throat region extremely well, where the peak begins to
develop at early times, the equally spaced r coordinates
do not, and therefore higher resolution is required. There
are also important geometric factors to consider in 3D,
such as the length of the diagonal of a Cartesian cube be-
ing ~3Ax, which make the resolution requirements more
stringent yet. We show the size of the black hole throat
on a grid of typical resolution (Ax = 0.15M) in Fig. 3.
In this figure the throat is located at r = 0.5M, so we
see that the throat itself is not extremely well resolved.
(Recall that r denotes the isotropic, not Schwarzschild
radius. ) We show below why it is not necessary to have
the throat highly resolved in many cases.

As mentioned above, the 1D code with g coordi-
nates was run with an g „=6, which corresponds to
r~~„= 200M. With equally spaced Cartesian zones such
a luxury is impractical with present computer memories
and speeds: the resolution Lr = 0.05M recommended

Numerical Grid

FIG. 3. We shower the Cartesian coordinate grid with the
black hole throat superimposed as a dark solid line at the
lower left corner. The throat is located at r = 0.5M, where
r is the isotropic radius, and the resolution of the grid is
A~ = o.&5M.

above would require 4000 zones. Experiments with 1D
codes show that if one is interested in following the met-
ric @nd extrinsic curvature components only to a time of
50M, the outer boundary should be placed at a radius
of greater than about 30M. When the outer boundary is
too close, its infIuence will be felt by the interior solution
if the boundary conditions are not properly formulated,
producing error in the height of the peak. Common treat-
ments of the outer boundary involve holding the metric
functions fixed or extrapolating them to the outer zones
[6], but these are adequate only when the boundary is
placed quite far away. When the boundary is placed at
r „=30M, by t = 50M the error in the peak of p„„(re-
constructed from the six Cartesian metric functions) due
to boundary effects (using maximal slicing) can be about
10%%uo, depending on the treatment of the outer bound-
ary conditions. These effects clearly point to the need
for appropriate outer boundary conditions for black hole
spacetimes, which we discuss in Sec. IV C.

Although experiments with 1D codes allow us to esti-
mate how much resolution will be needed, they are in-
complete guides to the 3B problem. First of all, reso-
lution issues will be difFerent in Cartesian coordinates.
In 1D and 2D (axisymmetric) codes, constant coordinate
lines are essentially perpendicular to the gradients, so
that symmetries are easily preserved. However, with a
Cartesian grid the constant coordinate lines cross devel-
oping features at all angles, causing finite difFerence er-
rors to be larger than a 1D treatment would show. Thus
one expects that even better resolution will be needed
than that implied by the 1B code tests. Also, when
considering how far out to put the boundary of a Carte-
sian grid, one must take into consideration that the outer
boundary does not have the shape which is characteristic
to the problem (it is a cube, not a sphere). Thus bound-
ary conditions must be applied carefully there. However,
in spite of these problems we believe that Cartesian coor-
dinates are to be preferred over other specialized coordi-
nate systems. The symmetries of this first 3D black hole
problem are artificial. A general 3B spacetime with rnul-

tiple black holes will not suggest a preferred coordinate
system, as a single hole does, so a Cartesian mesh should
be just as efFective as a spherical or boundary fitted co-
ordinate system (e.g. , Cadez coordinates [24]), at least
as far as the near zone is concerned. Furthermore, the
singularity &ee nature of Cartesian coordinates is clearly
desirable. All axisymmetric numerical relativity codes
[written in either (p —z) or (r —8)-type coordinates] that
we are aware of have di%culties near the symmetry axes
and origin (see, e.g. , discussion in Ref. [6]), and in 3D
these problems are much more severe [26].

Present memory available on the NCSA 512 node CM-
5 (16 GBytes) allows calculations of up to about 200
zones with our present code (see the Appendix for dis-
cussion of memory requirements for 3D numerical rela-
tivity. ) With the above discussion in mind, it is clear that
in 3D black hole simulations, balancing the demands of
high resolution with the need to place the outer bound-
ary sufIiciently far &om the hole are quite difIicult with
a fixed, equally spaced grid.

We have explored a number of techniques to deal with
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these diKculties, including (i) testing better boundary
conditions that allow one to move the boundary closer
to the hole, thereby increasing the aBordable resolution,
(ii) using a variable grid spacing or adaptive mesh re-
finement (AMR) to add resolution where it is needed,
and (iii) using an apparent horizon boundary condition
to remove the peak &om consideration, thereby reducing
the resolution requirements dramatically. The boundary
conditions and apparent horizon shift are discussed in
Secs. IVC and IVF, respectively. The use of variable
meshes and dynamic adaptive mesh refinement will be
reported elsewhere.

C. Boundary conditions

B/ack hole isometv y

Application of boundary conditions on the inner sur-
face that is the black hole throat is made difEcult by the
choice of an "unnatural" grid. Cartesian grids do not con-
form to the spherical black hole surface and as a result
the formulation of accurate finite diKerenced conditions
at the throat is considerably more involved than would be
the case if we had adopted a spherical coordinate system
as we have in previous 2D work [4—6].

We use an Einstein-Rosen bridge construction to con-
nect two asymptotically Hat sheets and form a black hole.
This construction provides boundary conditions by allow-

ing the use of an isometry to map the metric exterior to
the throat (or isometry surface) to the interior regions.
The isometry conditions take the form of a map J which
identifies the two sheets through the throat [27]:

~-b( ) = +ZJb&.~(J( )) (16)

with

J(x) =a 2+c

In this section we discuss our choice and implemen-
tation of boundary conditions. Because we are evolving
a spherical black hole, it is not necessary to evolve the
entire system. In order to achieve the highest possible
resolution, we often choose to place the black hole at the
origin of our coordinate system and evolve only a single
octant of it. Then the boundary conditions on the x = 0,
y = 0, and z = 0 planes are given by the symmetry of the
spacetime, as discussed below. Note that this treatment
can be extended to all spacetimes which have both axial
and equatorial symmetry, so that all of the NCSA ax-
isymmetric black hole studies performed to date, includ-
ing the collision of two equal mass black holes, can be
studied with this geometry. As we report below, we also
have performed simulations where the entire domain is
evolved, and comparisons with the evolutions performed
with symmetry conditions show identical results, as ex-
pected.

and J = &, where a is the radius of the black hole
throat centered at c. The mapping (16) is applicable to
both the metric and extrinsic curvature tensor fields.

This isometry technique has been used extensively in
the construction of black hole initial data sets [7,28,23],
but a variation of it has also been used to provide bound-
ary conditions during the evolution of black hole space-
times. For example, in all previous NCSA 2D evolutions
of distorted [14], rotating [29,30], and colliding [5,24,25]
black holes, a coordinate system was chosen so the isom-
etry condition on the three-metric took on a very simple
form: g —+ —g, where g is a radial coordinate. The evo-
lution equations themselves also respect this symmetry
if the lapse, shift, and extrinsic curvature variables obey
the isometry as well. Generally, the radial component
of the shift must vanish on the throat, and the lapse
and extrinsic curvature components must have the same
isometry sign (positive or negative). Under such condi-
tions all evolution and constraint equations are preserved
across the throat. The same situation occurs in the 3D
case, as long as one is careful to apply proper boundary
conditions on all variables. As we discuss in Secs. IVD 2
and V below, it is also possible to evolve the data inside
the throat, so that the isometry condition need not be
applied if it is not desired.

The change of sign in Eq. (16) results &om the square
of the map being an identity so that J is its own in-
verse and is chosen &om the continuity and consistency
constraints of the Einstein equations. For example, the
metric must obey the isometry with a plus sign to be non-
singular on the throat and we define the lapse condition
as

n(x) = +n(J(x)) (18)

with the sign taken to be the same as that of the extrinsic
curvature. In the 'work presented in this paper we have
used time slices in which the lapse is either symmetric
or antisymmetric across the throat so that either of the
isometry signs in (18) may be used.

If the metric is conformally flat so that p b = g f b

where f b is the flat space background, we get, from (16),

(20)

where p b is the conformal metric. We found this con-
struction to be more accurate and stable than performing
the isometry to the full unconformed metric components,
since the conformal factor is known analytically and the
"Oat" metric functions can be more accurately interpo-
lated. Note that this important trick can be used even if
the conformal factor is known only numerically.

Boundary conditions on p b at the throat can be de-

&(x) = —,@(J(x))

for the conformal factor. Because our initial data is de-
fined to be conformally Hat and we fix vj to be constant in
time, we compute the conformal factor at the first time
slice and apply the isometry to the conformal metric in
subsequent time slices. Denoting p b = @4p b, we can
write the isometry on p g as
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rived by differentiating Eq. (20) and taking the limit
r -+ a (see for example Ref. [27]). An alternative con-
struction that we have developed is to compute the iso-
metric coordinates J(z) for lzl ( a and evaluate the cor-
responding tensor components inside the throat by vol-
ume weighting the nearest isometric neighbors as

0= (9~c(l~=o = &yalw=o = (9zo'lz=o

~*~**I*=o= ~y~**ly=o = ~.~**I.=o

~zpyylz=o = ~ypyyly=o = ozpyylz=o

~*~-l*=o = ~y~-Iy=o = ~.~-l.=o

~zTyz Ia=o = (9wtzz ly=o = (9z'Y.y lz=o. (25)

(21)

2. Other beundariea

Uniform grid spacing and limitations on available com-
puter time and memory severely restrict the placement
of the outer boundaries. Ideally we would like to impose
asymptotic and conforrnal flatness @,p s ~ 1 as r -+ oo.
One would expect that in 3D, where the outer boundary
is not far enough away &om the throat, neither asymp-
totic fIatness nor static outer boundaries would be sufI1-
cient. However, we found that for most of our runs, static
outer boundaries worked better than any extrapolation
boundary condition.

For the runs which used an apparent horizon locking
shift, however, one extrapolation outer boundary con-
dition worked well. The method involves matching a
Schwarzschild-like solution to the outer boundary zones
and is applicable to the diagonal metric components.
This is done by def1ning an efFective mass "constant" K,

(22)

independently for the outermost zones (labeled by the
index IO —1) that still live inside the computational do-
main. We then construct the boundary condition by
extending the Schwarzschild-like solution to the outside
boundary zone as

k,o,pro=
I
1+

rxo )
(23)

Another kind of boundary in our code comes from our
evolving only one octant of the system. Boundary condi-
tions must also be supplied for the planes x = 0, y = 0,
and z = 0. The setting of boundary condition there is
straightforward as they are determined by the symme-
tries of the problem

o = ~*yl*=o = ~*ylw=o = ~*.l.=o

=o = t I
=o = & I =o (24)

where the index n refers to the eight cells overlapping a
cube of size (Ax, Ay, Az) centered around J(T). V(
are the corresponding volume weights. In this way we
solve algebraic identities and not difFerential relations
across the throat which would require a complex net-
work of discrete stencils and logical switches as discussed
in Ref. [7].

The extrinsic curvature components obey identical con-
ditions as the corresponding metric components.

We stress that our code is not restricted to the use of
these boundary conditions, and that the black hole may
be placed in the center of the grid if desired. In Sec. V
below we present examples of such calculations which
show that the results are identical whether the black hole
is placed in a corner of the grid or in the center, as they
should be. We are exploiting this symmetry in order to
achieve the highest possible resolution, while still treating
the black hole as a true 3D system in one octant. This
treatment allows us to study 3D evolution with efFectively
eight times the memory than we would have with a black
hole at the center of the grid.

D. Computational considerations

In this section we discuss a few important computa-
tional issues regarding the evolution of 3D black holes in
Cartesian coordinates. We have developed various tech-
niques to make black hole evolution calculations accurate
and stable. Specific examples of results obtained using
these techniques are provided in the sections that follow.

Confor mal derivatives

The conformal factor g is usually obtained by solving
the Hamiltonian constraint on the initial time slice in
numerical relativity calculations. For black hole initial
data, this function often peaks up near the throat of the
black hole(s). For our initial data set, g is known ana-
lytically to be @ = 1+ 2 . Since the metric functions
are related to @, they can become quite steep near the
throat. In 3D Cartesian coordinates, it can be diKcult
to afford high resolution in this region of the spacetime
if one also wishes to cover the radiation zone away from
the hole, so derivatives of the full metric functions can
be particularly inaccurate if special care is not taken to
compute them.

We have dealt with this problem by constructing the
conformal factor @ and all its spatial derivatives on the
initial time slice and storing them in memory with ma-
chine accuracy. Then, while the full metric functions
(e.g. , p ) are evolved, their spatial derivatives are com-
puted by taking the conformal factor explicitly into ac-
count. The conformal metric functions are computed
by dividing out the conformal factor. Derivatives of
these (more slowly varying) conformal functions are corn-
puted numerically, and the full metric derivatives are
constructed by substituting the appropriate stored "an-
alytic" values for the conformal factor and its deriva-
tives. This procedure, which we call "conformal differ-
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entiation, " proves critical in obtaining accurate and sta-
ble evolutions particularly near the throat. It should be
noted that this technique will be useful even when we
have numerically generated initial data, because the ini-
tial data problem for the conformal factor @ can be solved
with very high accuracy, and then its numerically com-
puted derivatives can also be known as accurately as de-
sired on the grid used for the evolution. Experimentation
shows that it is most important to apply this technique
to the diagonal three-metric functions.

2. Iaom, etc y

In Sec. IV C 1 above we discussed the implementation
of the isometry condition on the black hole throat. This
condition provides a good, stable boundary condition on
the inner region of the black hole spacetime. Its applica-
tion allows us to evolve only the region on and outside
the black hole throat.

However, this is simply a choice that one can make
as a matter of convenience in evolving the spacetime.
Alternatively one could evolve both sides of the throat as
one sees fit. In our 3D Cartesian coordinate system, this
is an easy option. The initial data are known everywhere,
both inside the throat and out, so in principle one can
simply evolve the entire spacetime without appealing to
an isometry condition on the black hole throat. Although
the region inside the throat is very poorly resolved and
the spacetime will not be very accurate there, this need
not pose a problem since we are really only interested in
the exterior region.

As we discuss in the sections below on the evolution
of the black hole, we decide whether or not to apply the
isometry depending on the behavior of the chosen lapse
in the region of interest. If one is interested in evolv-

ing the black hole with geodesic slicing, where large gra-
dients will develop near the throat, it is important to
use the isometry boundary condition for accurate results
that can be compared with 1D codes. For some singu-
larity avoiding lapses that tend to collapse quickly, the
isometry need not be imposed and the entire spacetime,
inside and outside the throat, can be evolved without
problems (until late times when large peaks develop in
metric functions near the horizon). In these cases the
lapse tends to collapse near the black hole throat and
also inside it, so that the evolution is essentially kozen
in this region. For lapses that have the negative isome-
try sign initially, we have found it to be important to use
the isometry throughout the evolution because of large
gradients that develop in the lapse near the origin, as
we discuss in more detail in Sec. V below. Finally, we

point out that we are ultimately interested in applying
an apparent horizon boundary condition in 3D black hole
spacetimes, which in principle obviates the need to con-
sider any treatment of the throat [31]. In Sec. V D below
we will show an example of how this can be achieved in
3D.

8. 2Vumerical viscosity

Another important problem that occurs when evolving
black hole spacetimes is related to eKects of singularity

avoiding time slicing conditions. Large peaks develop in
the vicinity of the black hole horizon as time slices push
forward away &om the hole but are held back inside it
(see, e.g. , Fig. 2). Sharp peaks that develop in the solu-
tion to hyperbolic equations can cause numerical insta-
bilities [22], as we have seen in the black hole problem.
A common strategy to cope with this problem is to add
a small difFusion term to the evolution equations that
effectively smooths out short wavelength features (such
as numerical noise). The usual way of achieving this is
to add a second derivative term to an evolution equation
with a small coefficient in &ont. In this way, for example,
the evolution for the metric functions would be

Og f Q
— 2oK Q+D pb+Dgp +&V f b (26)

where e is very small. As we discuss below, this technique
is important for the lapse evolution used for algebraic slic-
ings but it has not cured the difBculties associated with
grid stretching. It does damp out some noise at early
times, but at late times when peaks are poorly resolved,
it is not adequate.

E. Lapse

It is weB known that the Einstein equations do not
determine either the lapse funct on or the shift vector.
These quantities may be chosen &eely. As nearly all
work to date in numerical relativity has been done in 1D
or 2D, most lapse and shift conditions have been devel-
oped with a particular symmetry or coordinate system in
mind. In 3D Cartesian coordinates, with no symmetries,
these gauge and slicing conditions must be reexamined.
In this section we discuss standard slicing conditions and
their use in 3D, and propose another class of algebraic
slicings that seem especially suited to 3D work.

When evolving black holes numerically, the choice of
lapse function is motivated by the need to keep the nu-

merical grid &om falling into the singularity. It has been
shown that maximal slicing has this singularity avoiding
property [32—36], so this slicing condition has been the
most &equently used in 1D and 2D calculations. How-

ever, using maximal slicing requires solving an elliptic
equation, which is computationally expensive, especially
in 3D. Therefore, as we report below, we have also used
a number of algebraic slicings which mimic maximal slic-
ing.

Geodesic eliciny

A very strong test of the code can be made by evolving
the black hole with geodesic slicing, or simply n = 1 and

P = O. With this slicing condition one can show (see,
e.g. , [37]) that a point initially on the black hole throat
must fall into the singularity after a proper time (in this
case identical to coordinate time) w = t = vrM. In a nu-
merical evolution, this is manifested by the radial met-
ric function p„„approaching oo and the angular metric
function ping going to zero as a true curvature singular-
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ity develops. In short, the code must crash at t = AM.
But particularly as all the various Cartesian metric func-
tions are evolved, not the just spherical metric functions
p„„and egg, and the isometry routine is used to provide
boundary conditions on the throat as grid points crash
towards the singularity, this is a serious code test. The
system must remain spherical, even as singular structures
are developing in the various Cartesian metric functions.

Geodesic slicing also allows us to compare data &om
the 3D code with that obtained &om a spherically sym-
metric 1D code without the complication of a lapse com-
putation. See Sec. V A for both the crash time tests and
the 1D comparisons.

2. Maximal slicing

Maximal slicing has been used extensively in numerical
relativity (see, e.g. , [32,38,12,4,25]) for several reasons:
considerable analytic work has been done delineating its
excellent singularity avoiding properties [32-36]; it was
used in early numerical work which centered on comput-
ing black hole spacetimes with Einstein-Rosen bridges,
and it is conveniently computed Rom the three-metric
and extrinsic curvature. Maximal slices (i.e. , hypersur-
faces with maximal volume) are characterized by the van-
ishing of their mean curvature

trK=p K g=0. (27)

Inserting this condition on the evolution equation for trÃ
yields a condition on the lapse

D D o. =o.B, (28)

or, using the Hamiltonian constraint,

D D a=oK Kb. (29)

This latter form, fully expanded in Eq. (9), is the form
used in the code. The right-hand-side of Eq. (28) con-
tains second derivatives of the metric functions, which
can become difficult to compute accurately when peaks
develop at late times. The form given by Eq. (29) elim-
inates these derivatives and tends to be better behaved
numerically. As noted in Sec. IIIB, we have developed a
routine for the CM-5 which solves this kind of 3D elliptic
equation. The results we obtained using this routine are
discussed in Sec. VB.

8. Algebraic slicings

Maximal slicing is an efFective time slicing condition
for avoiding singularities, but it sufFers &om several prob-
lems. It is very costly, especially in 3D on parallel ma-
chines, and it must be solved to a very high tolerance if
noise in the solution is to be avoided, as we discuss in the
Appendix below. However, slicing conditions are com-
pletely arbitrary, and there are many singularity avoid-
ing lapse conditions that do not involve solving elliptic
equations.

The most convenient of these slicing conditions for nu-
merical purposes belong to a class of algebraic lapse con-
ditions. These lapse functions are algebraic combinations
of the three-metric components; typically they are func-
tions of the determinant of the three-metric. One of the
most well known of these slicing conditions is the har-
monic time slicing condition. In the absence of a shift
vector, this condition reduces to the simple equation

(3o)

where p is the determinant of the conformal three-metric
and f(x ) is a function of the three spatial coordinates
to be speci6ed. This lapse choice is known to be singu-
larity avoiding, but just barely so. It has been shown
by Bona and Masso [39] that this condition does not al-
low a time slice to hit a curvature singularity within a
Gnite coordinate time, but it will come arbitrarily close.
A separate code that uses this slicing condition exclu-
sively, based on the formulation of Bona and Masso [9],
has been developed [40,15]. However, it is not considered
here as the weak singularity avoiding nature of harmonic
slicing makes it difficult to apply to black holes with-
out some sort of apparent horizon boundary condition.
Their formulation has recently been extended to cover all
singularity avoiding slicing conditions considered in this
paper, including maximal [11],and a 3D code based on
this formulation is under construction.

Motivated by the harmonic slicing, we have explored
a number of algebraic conditions that are simple to
compute and avoid singularities more strongly than the
harmonic condition. Many such conditions have been
explored by Bernstein [41] in his studies of spherical
black holes. Generalizing the harmonic condition we can
choose

~ = f(* )~(~) (31)

where again f(x ) is an arbitrary function of the spatial
coordinates and g(p) is some function of the conformal
determinant of the three-metric. These functions can
be chosen as desired. One choice for g(p) that works
particularly well leads to the slicing condition

~ = f(* )[1+»(~)] (32)

This lapse condition has the remarkable property that
it mimics the acti.on of maximal slicing. For spherical
black holes, even at late times this slicing condition leads
to spatial metric functions (e.g. , p„„and ass) that are
quite similar in profile and size to those obtained with
maximal slicing. A comparison of the metric radial func-
tion obtained with these two slicings in 1D is shown in
Fig. 4. Furthermore, one can show that if f itself obeys
an isometry condition, this lapse condition has the nice
property that it transforms properly under the isometry
operation discussed in Sec. IV C 1.

The algebraic slicings do have one notable drawback
relative to maximal slicing in that they tend to be a bit
too "local." If some feature develops at a particular point
in the three-metric, the algebraic lapse responds instantly
and locally. This is then fed back into the evolution
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Radial Metric Function obtained with 1D Code

100.0
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———— Algebraic Lapse
Maximal Slicing Lapse
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r(M)
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FIG. 4. We compare the radial metric function A obtained
with a 1D code using maximal slicing (solid line) and the
"1+in" algebraic slicing (dashed line) discussed in the text.
In these simulations we chose n(t = 0, r) = 1. The profiles are
shown at intervals t = 10M. Both cases were evolved with
Ar = 0.05M, and develop similar profiles as the evolution
continues.

where j is given by

j = p( —2ntrK+ 2D P ). (34)

With lapse choices such as this we were able to evolve the
spherical black hole to nearly 50M in time, as discussed
in Sec. VC.

equations through 6rst and second spatial derivatives of
the lapse, which can exaggerate undesirable features in
the solution. The solution to an elliptic equation, on
the other hand, tends to smooth over any local inhomo-
geneities. In order to decrease the locality of the algebraic
lapse conditions, we have taken advantage of the evolu-
tion equation for the determinant of the three-metric and
used it to actually evolve the lapse. Then we may add
a difFusion term to the evolution equation for the lapse.
The difFusion tends to smooth out any local, higher &e-
quency features that develop, leading to a more stable
evolution. This approach leads to the following scheme
for the lapse:

n = f(x )g'(p)j + eV'2o, ,

marily in the radial direction. For this reason, in these
systems one could afFord to add enough radial zones to
solve or tame the problem by brute force for a certain
period of time. However, even in these cases significant
errors (particularly evident in the horizon mass) emerge
&om t 50M and grow to severe code crashing propor-
tions by t 100M [12,31].

An approach that is often tried is to use a shift vector
to help reduce the gradients that develop in black hole
simulations. A careful study of many commonly used
shift conditions applied to the Schwarzschild spacetime
has been carried out by Bernstein [41]. He has found
that, at least for maximal time slicing, shift vectors such
as minimal distortion, quasi-isotropic (for this spherical
case the quasi-isotropic gauge is the minimal distortion
gauge [41]), minimal strain, and various others, fail for
the spherical black hole. However, in that study the ra-
dial component of the shift was forced to vanish at the
throat of the black hole to satisfy the boundary condition
that the isometry surface remains there.

In a new approach to evolving black hole spacetimes,
the inner boundary of the computation is chosen not to
be the throat of the wormhole, but the apparent hori-
zon [42] or some point just inside the apparent hori-
zon [13,31,43]. Data inside this region, including the sin-
gularity, are causally disconnected &om the region out-
side the horizon and are simply deleted from the calcu-
lation. For this reason, a singularity avoiding lapse is
not required for black hole evolution; the singularity is
avoided by removing it &om the problem. Such an ap-
parent horizon boundary condition has shown dramatic
improvements in evolving black hole spacetimes in 1D,
allowing evolutions of order t 1000M with errors of
order a few percent or less [13,31,43]. We believe this
sort of apparent horizon shift condition will be essential
to the development of accurate and stable 3D black hole
codes in the future.

In Ref. [31] a number of shift vectors were introduced
and studied for the realization of the apparent horizon
boundary condition. Although the location of the hori-
zon is independent of the shift vector on any particular
time slice, the time rate of change of its coordinate po-
sition is not. Hence we can determine the value of the
shift at the horizon that is needed to keep the horizon
&om moving across coordinates by, e.g. ,

BgO(x)]- - = 0, (35)

F. Shift vector

For the most part the simulations presented in this pa-
per are performed using a vanishing shift vector. How-
ever, the presence of black holes in numerical spacetimes
introduces extreme behavior in the metric variables lead-
ing to large gradients that inevitably develop in the vicin-
ity of the horizon when traditional singularity avoiding
lapses are used. In 1D and 2D codes these problems
have been troublesome, but not insurmountable, as the
coordinate systems have generally been well suited to
the problem at hand. In 2D, the trouble is essentially
reduced to a 1D problem since the gradients occur pri-

where x~H is the horizon position and

0 =a~8 +K~b8 8 —K (36)

is the expansion of the outgoing null rays on the spacelike
two-surface that defines the apparent horizon (8 = 0)
with unit outward pointing three-vector s [44]. In addi-
tion to de6ning a local shift vector to control the motion
of the horizon, we must also specify values for the shift
at all other points in the spacetime. Several such con-
structions were presented in Ref. [31], including a "dis-
tance &eezing" shift, an "area &eezing" shift, and the
"minimal distortion" shift. Here we adopt one of these
constructions, namely the "distance &eezing" shift, to
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explore the feasi i i y o if b'1't f implementing horizon locking
3D. In articular, we require t at t e ra-

u l etric function remain constant in time suc a
Oq „„——0. In spherical geometry this yie s a r

uset e eh thr Cartesian shift componen
t' Results using this particularin this construction. esu

vector are discusse ind' d n more detail in Sec. VD.

V. RESULTS

A. Geodesic slicing

Run la
Run lb
Run lc
Run ld
Run le
Run lf
Run 2
Run 3
Run 4

n Az/M
128 0.05
128 0.075
128 0.15
128 0.05
128 0.075
128 0.15
128 0.05
64 0.075
64 0.075

3 t/Ax
0.1
0.1
0.1
0.25
0.25
0.25
0.1
0.1
0.1

Isometry
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes

Crash time/M
3.13
3.18
3.29
3.20
3.24
3.38

TABLE I. Summary of geodesic s
'

gslicin runs. The param-
eters listed are num er o grif d zones in each direction grid

or not the isometry con-s acing, Courant factor, whether or no e i

e black hole was placed at the center
dition was used, an a w a
applicable. In run 4, the ac o e w

of the grid.

Sec. IV E 1, when a
arzschild black hole is evolved with geodesic s ic-

ing the analytic solution requires a eing,

runs were made at different resolutions to test our co e

re uired to hit the singularity for a set of runs in w ic
all parameters are e cons a

n and the Courant factor. The parameters useresolution an e
in Table I, runs 1a—1f.for these runs are summarized in a e

acin or the Courant factorClearly, as either the grid spacing or
is decrease, e crd, th " ash time" approaches AM. ere
are two effects at wor ere.k h First as one increases the

u ble to more accurately resolve theresolution, the coue is a e o
~ ~

throat region w ere mh metric functions are becoming singu-
lar. Second, as the time step is made smaller one is a e
o t hich the slice hits the singularityto resolve the time at w ic

with more precision.
a so al-Evolving the black hole with geodesic slicing a so a-

lows one to per orm a ser'f serious test of the evolution equa-
tions without the complication of the lapse computa ion.

e.g. , Lx = Ay = Lz = 0.025M, the peaks in p„„an
g

'
u & the Cartesian metric functions line upping obtaine om e ar

almost exact y wi osl th those produced by a spherical,
d th the same resolution, as shown in igs.co e run wi
d 7. These functions have been construe e oan . ese u

Cartesian metric function that are actua yll evolved. The
parameters use to o aina bt ' the 3D data are summarized
in Table I, run 2.

I Fi . 8 we show a 2D slice through the p ane z =In ig. wes o
evolvedo e arf th C rtesian metric function g

e a ofthetoatimet= . e a= 3M. &We factor out the dependence of
i r ~ t show the dynamical evolution more

clearly. ) Along the x direction, this function behaves i e
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g„obtained with Geodesic SlicinIcing
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FIG. 7. As in Fiig. 6, except that we plot peg/(r Q ).
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A
MAH = )

16m

where A is the surface area of the horizon. For a
Schwarzschild spacetime, MAH should be equal to the
ADM mass of the spacetime throughout the evolution,
but due to numerical error this is difIicult to achieve at
late times, even in 1D and 2D codes [13,25,45]. With our
3D code we have computed these quantities along four
different lines (the x, y, and z axes and the diagonal).
Using the location of the horizon found along these lines,
we can compute an efFective mass at each point by taking
the metric functions found there and computing the area,
assuming spherical symmetry. Both the mass M~H and.
the location of the horizon agree well both along differ-
ent lines in the 3D domain, and with the values obtained
with a 1D code. The position of the apparent horizon is
shown in Fig. 10. All lines are shown, but they are indis-
tinguishable on this plot. In Fig. 11 we plot the apparent
horizon mass computed along all four lines in 3D, as well
as the 1D result. The masses are all within 0.07%%uj of each
other and the ADM mass at t = 3M.

B. Mmcixnal slicing

We now turn to results obtained using maximal slic-
ing. These simulations were all performed by evolving

Apparent Horizon Location for Geodesic Slicing Case

2.0 l—

5

o
Fl

o 10I-

+ 0.5 '~

1D
3D, x-axis
3D, y-axis
3D, z-axis
3D, diagonal

0.0 l

0.0 1.0 2.0 3.0

FIG. 10. We plot the position of the apparent horizon for
1D and 3D runs with geodesic slicing. The 1D data were ob-
tained using 128 grid points and resolution Ar = 0.0375M.
The 3D data were obtained using 128 grid points and resolu-
tion Ax = 0.0375M using a procedure described in the text.
All 6ve lines are plotted, but they are virtually indistinguish-
able in this figure.

zon along that line using a 1D apparent horizon finder.
Using this method, we were able to locate the position of
the apparent horizon and compute its mass M~8 using
the area relation

Apparent Horizon Mass for Geodesic Slicing Case
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FIG. 11. We show the mass of the apparent horizon for 1D
and 3D runs with geodesic slicing. The 1D data were obtained
using 128 radial points and resolution Ar = 0.0375M. The
3D data were obtained using 128 grid points and resolution
&2: = 0.0375M. All results agree with the analytic result to
better than 0.07'70 for the entire evolution.

the spacetime both outside and inside the throat, with-
out using the isometry condition. Earlier work on numer-
ical black hole evolution with maximal slicing in 1D (see,
e.g. , [12]) and 2D (see, e.g. , [4,45]) has taken advantage
of the isometry to use the throat as an inner boundary on
both the evolution and the solution to the maximal slic-
ing equation. In those cases, the isometry was a simple
difFerential condition across the throat in the spherical
coordinate system used. In this 3D case the Cartesian
boundary conditions on the lapse are cumbersome to ap-
ply in the elliptic solver, so we have chosen to evolve the
entire domain inside and outside the throat. As we will
show below, the lapse collapses quickly both outside and
inside the throat, halting the evolution there. Although
in this case the evolution inside the throat is no longer
isometric to that outside, it is of little consequence.

The first case we consider is a simulation evolving a
single octant of the full 3D spacetime. This is a typi-
cal run, with a resolution of 130 equally spaced zones,
with Lx = 0.1M. The outer boundary was located at
2; = 12.95M. The parameters used in this run are sum-
marized in Table II, run 5. Such a calculation can be
performed on a daily basis on the NCSA CM-5. In this
case the boundary conditions on the metric and extrinsic
curvature components are treated as in Sec. IV C 2. The
boundary conditions on the lapse are treated in a sirni-
lar manner, with refIection symmetry used at the inner
boundaries (x = 0, y = 0, and z = 0 planes) and the
spherical Schwarzschild value is maintained at the outer
edges of the grid [i.e. , n = (2r —M) j(2r + M)]. This
treatment at the outer edges of the cube was crucial in
maintaining a stable evolution there. If the lapse is taken
to be, say o. = 1 in the outer region, serious edge efFects
and. nonspherical behavior develop quickly.

First we show the lapse function n at a late time of
t = 28M. In Fig. 12 a 2D slice of the lapse through
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Time evolved/M
28
15
15
48
30

Lapse
Maximal
Maximal
Maximal
Algebraic
Maximal

Run 5
Run 6a
Run 6b
Run 7
Run 8

130
126
64
128
140

TABLE II. Summary of production runs. The parameters listed are number of grid zones in
each direction, grid spacing, Courant factor, lapse, whether or not the distance freezing (DF) shift
was used, whether or not the isometry condition was used, and the time the code was evolved. In
run 6a, the black hole was placed at the center of the grid. In run 8, maximal slicing was used to
a time of 3M. Beyond that, the lapse was held constant in time at the value it had at 3M.

Az/M At/Az Isometry
0.1 0.25 No
0.075 0.25 No
0.075 0.25 No
0.06 0.208 Yes
0.15 0.25 No

the plane z = 0 is shown. It has collapsed throughout
the throat region and also in a region outside it, and
then climbs steeply towards its outer Schwarzschild value
in spherical step function fashion. A full 3D analysis
indicates that the lapse is quite spherical throughout the
volume, in spite of the fact that our solution is carried
out in Cartesian coordinates with boundary conditions
imposed on the faces of a Cartesian cube.

In Fig. 13 we show a 2D slice (at the plane z = 0)
of the conformal metric function g = p /@ at the
same time t = 28M. By this time serious gradients and
shearing are developing in the metric functions due to the
grid stretching efFects that result from maximal slicing.
Along the x direction, the metric function g behaves
much like a radial metric function g„„. Along the y di-
rection, however, the function g is essentially Hat, and
along the diagonal there is a very sharp transition region.
This is quite typical of the efFects of singularity avoiding
lapse conditions. In Fig. 14 we show a 2D slice (through
the plane x = 0) of the metric function g „=p„„/vP
reconstructed &om the six Cartesian metric functions at

iVlaxirnal cx (t.—28.00 M)

time t = 28M for the same simulation. The familiar
spherical peak is developing around the black hole, as in
1D and 2D calculations (see, e.g. , Fig. 2).

As in the previous section on geodesic slicing, we have
tracked and analyzed the apparent horizon in these sim-
ulations, and compared the results to those obtained us-

ing a spherical, 1D code. In Fig. 15 we show the ap-
parent horizon location from our 3D code as determined
by considering radial lines along the x, y, and z axes
and the diagonal of the cube. The independent results
obtained by evolving a maximally sliced spherical black
hole with a 1D code are shown as a dot-dashed line. The
agreement is quite good, within one 3D grid zone at late
times. We do not expect perfect agreement in the lo-
cation of the horizon in coordinate space, since the slic-
ing and bound. ary conditions are slightly difFerent. In
the 1D case, the evolution was performed with an isome-
try condition across the throat. Consequently, the maxi-
mal slicing condition was implemented with a symmetric
boundary condition there. The 3D calculation was per-
formed without an isometry at the throat. Furthermore,
the maximal slicing condition becomes a simple ordinary
difFerential equation in 1D, whereas in 3D it was solved
as a full 3D elliptic equation with boundary conditions
applied on the faces of a cube. For these reasons the slic-
ing and geometric meaning of the coordinates will difFer
somewhat from the 1D case.

M BX i Irl B1 g„(L: c- 8 M )

0 0 ) 0,'-

0-

FIG. 12. A 2D slice through the plane z = 0 is show'n for
the lapse function o. at time t = 28M for maximal slicing.
The resolution is Ax = 0.1M, and total number of zones
is 130 . The singularity avoiding properties of the maximal
lapse create a steep 3D well in a. surrounding the throat.

FIG. 13. A 2D slice through the plane z = 0 for the metric
function g is shown at time t = 28M for maximal slicing.
The resolution is Ax = 0.1M and the total number of zones
is 130 . The sharp peak developing in this 3D calculation
cannot be resolved, causing difBculty with the calculation at
late times.
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gO .„.
- Maximal g,„(t=- 2Q M) Apparent Horizon Mass for Maximal Slicing

gO- 1.3

1.2

x-axis
y-axis
z-axis
diagonal line
1D

10

FIG. 14. A 2D slice through the plane x = 0 is shown
for the metric function g = p /g at time t = 28M for
maximal slicing. The resolution is Ax = 0.1M, and total
number of zones is 130 . The sharp spherical peak develops
in this 3D calculation just as in the 1D and 2D calculations.

Apparent Horizon Location for Maximal Slicing
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FIG. 15. We plot the position of the apparent hori. zon for
1D and 3D runs with maximal slicing. The 1D data were ob-
tained using 130 grid zones with a resolution Ar = 0.1M. The
3D data were obtained using 130 grid zones with a resolution
Ax = 0.1M.

A more geometrically meaningful measurement is of
the mass of the apparent horizon as defined by Eq. (37),
which we compute in each of four directions, as described
in the geodesic slicing case above. Results are plotted in
Fig. 16, and compared with results obtained for the 1D
simulation. As this is a Schwarzschild spacetime, MAH
should be the Schwarzschild mass and constant in time.
From the figure one can see that the error is slightly
larger along the diagonal than in the other cases after
about t = 10 —15M. This can be understood by consid-
ering that the effective resolution in the radial direction
is less along the diagonal due to geometric effects. The
measurements made along the three axes agree with each
other, as expected, and agree reasonably well with mea-
surements made along the diagonal line. Also, the mea-

0.9

0.8
0.0 10.0

t(M)
20.0

FIG. 16. As in Fig. 15, except that we plot the mass of the
apparent horizon. The 1D results are reproduced to within
about 5'Fo by the end of the calculation.

surements made along all four lines agree well with the
1D result, although at the end of the calculation, when
the peaks in metric functions are growing dramatically
(see, e.g. , Fig. 14), the 1D result is slightly better.

As noted above, these results are typical of what is
achieved at "medium" resolution. With this resolution,
instabilities develop in the region of strong metric peaks
and the code crashes by about t = 30M. At the high-
est resolution achievable with our present code and the
present NCSA CM-5 (about 180 zones with maximal
slicing), we can reach about t = 35M. As the code is
second order accurate, the results are better at higher
resolution.

To demonstrate that our code can also evolve a black
hole in full SD, without symmetries used at the bound-
aries, we show results for a maximally sliced black hole
placed at the center of the computational grid. Be-
cause this calculation requires eight times the memory
and computer time, it cannot be run at the same reso-
lution as the calculation discussed above. In Fig. 17(a),
we show a 2D slice through the z = 0 plane of the metric
function g„„on the full grid at a time t = 15M. The
spherical nature of this function is evident. For compar-
ison, in Fig. 17(b), we show data Rom an analagous run
in which only one octant was evolved. In Fig. 18 we show
a comparison of a 1D cross section of this slice with the
same function. In the plot, it is clear that the functions
agree extremely well. It turns out, however, that for the
maximal slicing case the results are not exactly the same
because of the iterative solver used to compute the lapse
function. However, the resulting difFerence is negligible.
The parameters used in these runs are summarized in
Table II, runs 6a and 6b.

It is clear that maximal slicing presents a number of
problems for 3D black hole evolution. Not only is it very
time (and memory) consuming to solve a 3D elliptic equa-
tion on every time slice, but it is also difIicult to resolve
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Algebraic cx (t.— 0 M) Algebraic g„, (t. =- 48 M)
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Algebraic n (&= &8 M)

FIG. 20. We show the function p„„/vP obtained with alge-
braic slicing. The data are taken from the x = 0 plane. 128
grid points were used, with a resolution of Ax = 0.06M. The
peak inside the throat is a result of the isometry condition,
which maps data outside the throat to points inside.

0 0
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Algebraic n (t= 48 M)

The parameters used for this run are summarized in Ta-
ble II, run 7. As the lapse is antisymmetric across the
throat, it approaches the value o. = —1 at the origin, and
its gradient becomes undefined there. For this reason it is
essential to perform the evolution with the isometry con-
dition imposed so that the throat interior is obtained by
mapping the exterior solution rather than through evo-
lution equations. By time t = 30M the lapse has begun
to collapse around the throat and by t = 48M it has
collapsed dramatically with a profile very similar to that
seen with maximal slicing.

In Fig. 20 the metric function g, = p, /g is shown,
also at t = 48M. As before, this function has been
constructed &om the Cartesian metric coefFicients, and
shows the familiar peak surrounding the black hole
throat. The prominent peak structure inside the throat
results from the mapping of the exterior to the interior
region. As in the previous cases, we have also compared
the evolution with the black hole placed in the center of
the grid to the evolution with the hole in the corner, with
the same results.

Because of the growth of the large gradients in the
metric functions, the evolution becomes unstable shortly
after this time, causing the code to crash by t = 50M
at this resolution. Higher resolution can stall the de-
velopment of this instability somewhat, but at some
point it develops for all computational parameters tested
to date (e.g. , artificial viscosity parameters, resolution,
outer boundary, slicing choice, etc.). As we discuss in
the next section, the use of a shift and an apparent hori-
zon boundary condition is a promising way of avoiding
this problem.

FIG. 19. We show the evolution of the lapse for the "1+in"
algebraic slicing case discussed in the text. Initially, the lapse
is Schwarzschild, as shown in (a). After a while, the lapse be-
gins to collapse (b) as in the maximal slicing case. Eventually,
the lapse is completely collapsed (c) and the troubles due to
steep gradients that also occur in maximal slicing cause the
code to crash shortly after this time.

D. Apparent horizon shift

It is clear &om the results in the above sections that
in using singularity avoiding slicings, independent of the
choice of lapse, a sharp peak will develop in a region
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Lapse Function with AH Locking Shift
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FIG. 21. The lapse function is shown for the apparent hori-
zon boundary condition test along a 1D diagonal line at se-
lected times between t = 0 and 30M. A nonvanishing shift
vector is slowly phased in over the interval t 1 to 2M to
lock the apparent horizon at a constant coordinate position.
Also by t = 5M, the lapse function is frozen so that the time
slicing ceases to be singularity avoiding. Only the points that
are evolved (r ) 1.3) are displayed.

slightly inside the horizon, where the lapse has not com-
pletely collapsed. This is the major limitation to an ac-
curate long term evolution. As discussed in Sec. IV F the
development of such a peak can be suppressed by using
an apparent horizon boundary condition [13,31]. Here we
report on the first results obtained in testing this condi-
tion in 3D.

In this 6rst trial implementation of the apparent hori-
zon boundary condition, we compute the "distance &eez-
ing" shift for the 3D Cartesian evolution by first going
back to spherical coordinates, determining the appropri-
ate shift at each time step and then transforming the
resulting shift vector back to 3D Cartesian coordinates.
The determination of this shift in the spherical coordi-
nate case has been discussed in detail in [31].

Figures 21 and 22 show the results for the lapse func-
tion and conformal radial metric function g„„=p„„/@4
(reconstructed from the Cartesian components) at vari-
ous times, up to t = 30M. These results are run using
a 140 grid with cell sizes of Lx = 0.15M placing the
outer boundary at —21M in each direction. The param-
eters used in this run are summarized in Table II, run 8.
The data are displayed along the diagonal line running
&om the center of the black hole to the furthest corner.
In this case, the shift vector is imported and translated
&om a 1D simulation, but all other computations in the
evolution are performed in the full 3D code. The equa-
tions are evolved in their most general 3D form, without
using explicitly any simpli6cation due to the particular
gauge choice. In this simulation, we allow the space-
time to evolve for a short time ( 1M) before phasing
in the shift vector. During this period, the maximal slic-
ing condition makes the lapse collapse slightly (as shown

Radial Metric Component with AH Locking Shift

1.30 I-

1.20
I

1.10

I,

V

0.0 M

0.9 M

1.8 M

5.0 Mg

1.00

0.0 20.0 40.0
Isotropic Coordinate r

60.0

FIG. 22. A 1D line of the conformal radial metric compo-
nent p, /vP is shown at selected times between t = 0 and

30M. A nonvanishing shift vector is slowly phased in aver
the interval t 1 to 2M to lock the apparent horizon at a
constant coordinate position and approximately freeze p„„.
Only the points that are evolved (r ) 1.3) are displayed.

in Fig. 21) and the coordinate position of the horizon
moves outward. This motion of the horizon allows for a
"buffer" region of zones inside the horizon [13,31]. From

1M, while the horizon continues to move outward, we
smoothly phase in the distance &eezing shift vector. By
t 2M the shift vector is fully phased in and the horizon
remains approximately locked in place at r —1.5M. At
this point we drop the inner part (r ( 1.2M) of the grid
&om the dynamical evolution. At the inner most grid
point retained in the evolution, we import the values of
the metric functions determined with the spherical code,
in the same way as we import the shift vector. With the
part of the grid which is going to run into the singularity
dropped &om the evolution, there is no need to further
collapse the lapse, which is hence held constant in time
&om this point onward. Notice that with such a time
independent lapse, which is nonzero everywhere in the
evolved domain, it is not possible to evolve the space-
time in the usual treatment without a horizon boundary
condition. The metric functions (of which ",'„„ in Fig. 22
is typical) evolve rapidly before and during the phase-in
period, but settle down afterwards. There is no sharp
peak, and p„„ is of order one throughout the evolution.
This is to be compared to p„„ in Figs. 14 and 20 above
obtained without the distance &eezing shift. Without a
sharp peak in the metric function, the requirement on
resolution is reduced substantially.

Ideally the radial metric function p„„would remain
constant in time with the imported shift vector. How-
ever, at late times there is a slow downward drifting
of the metric functions observed away &om the values
at which they are supposed to be "locked" (for details,
see [13,31]). We note that, in this implementation, once
the metric functions start drifting, there is nothing to
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Apparent Horizon Location for AH Locking Shift
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FIG. 23. We plot the position of the apparent horizon for
the 3D code using a horizon locking shift and for a typical 1D
run using maximal slicing.

stop them &om drifting further, as the shift is taken to
be a constant in time in this implementation. What is
noteworthy is that such a simple implementation is al-
ready efFective. It nearly &eezes p„„as designed for quite
some time, and, more importantly, the steep peaks ob-
served in the previous sections have been eliminated. In
comparison to those fast growing sharp peaks, the slow
and rather smooth drift shown in Fig. 22 should be con-
sidered very satisfactory.

The elimination of steep peaks is important, and is ex-
pected to lead to a much more accurate evolution. As
a check on the accuracy of this simulation we have com-

Apparent Horizon Mass for AH Locking Shift
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FIG. 24. We plot the position of the apparent horizon for
the 3D code using a horizon locking shift and for a typical
1D run using maximal slicing. Clearly, the full 3D simula-
tion using the horizon locking shift preserves the mass of the
apparent horizon better than a typical 1D simulation.

puted the location and mass of the apparent horizon as
in the previous sections. In Fig. 23 we show the location
of the apparent horizon computed during this simulation
as a solid line, and the same quantity computed with
a 1D code at the same resolution without the use of a
horizon locking shift. After the initial phase-in period,
the horizon is firmly locked in place by the shift, while
it continues to move away &om the throat without the
shift. In Fig. 24 we show the apparent horizon mass
obtained in the 3D code with the horizon locking shift,
compared to the 1D case without such a shift. In this
first 3D test case the error in the horizon mass is about
the same as the 1D case without shift at t = 30M, the
final time computed in the 3D case. However, and. more
importantly, the slopes of the curves suggest that the 3D
result will be significantly more accurate at later times
than the 1D result without a horizon locking shift. We
consider these results very satisfactory in this first test of
the horizon boundary condition in 3D, using a highly sim-
plified treatment. These results support the claim that
apparent horizon boundary conditions are realizable in
the near future and we are currently working on the full
scale horizon boundary treatment. Progress on that will
be reported. elsewhere.

VI. SUMMARY AND FUTURE DIRECTIONS

We have developed a general 3D Cartesian code for
solving the Einstein equations in the absence of symme-
tries. This code has been applied to the problem of black
hole spacetimes, and we have reported on the first long
term evolution of a black hole in 3D. Black hole space-
times are made quite difFicult to study by the need to
avoid the singularity inside the horizon. We concentrated
in this paper on the evolution of a spherical black hole,
since it has the most troublesome feature (the singular-
ity) and can be studied very carefully in 1D as a bench-
mark for what is required of a 3D evolution. However,
because we treat the spherical test problem in a general
way in Cartesian coordinates, we have been able to learn
a great deal about the generic 3D black hole spacetime
problem, which we summarize here.

The boundary conditions on the spacetime can be
treated in a number of ways. We have demonstrated that
the isometry that is commonly applied at the black hole
throat can be applied efFectively in a 3D black hole evo-
lution in Cartesian coordinates, but this is not necessary.
For some slicing conditions the isometry condition is im-
portant in maintaining accuracy near the throat, but for
others it is not required. For example, in our maximal
slicing simulations, the isometry is not needed and the
entire black hole spacetime inside and outside the throat
can be evolved.

The boundary conditions at the outer edge of the grid
are more delicate, however. In previous calculations car-
ried out in 1D and 2D, the outer boundary has been
placed far enough away that the metric could be held
static, but in 3D this does not work as well. We have
tested several conditions that use extrapolation, but in
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most cases, extrapolation boundary conditions give worse
results than keeping the outer boundary static. The rea-
son why these methods do not work well is clear: these
methods deal only with the spatial part of the metric,
without taking the time slicing into account. The time
slicing introduces two e6'ects. First, as the constant t
slices, with t not the Killing time of the Schwarzschild
geometry (e.g. , maximal slicing with certain boundary
conditions), are "tilted" with respect to the Killing one.
With the grid points moving normal to the time slic-
ing as in the case without a shift, they are moving (for
maximal slicing, infalling) with respect to the geometry.
This directly aÃects the angular part of the metric func-
tions, here in Cartesian coordinates some combination of

Secondly, as the constant t slices are also "curved"
with respect to the Killing one, the "speeds" with which
the grid points move with respect to the geometry will
be difFerent. This afFects the radial part of the metric
function, here a difFerent combination of p g. With the
assumption that the spacetime geometry near the outer
boundary is locally the same as that of Schwarzschild,
both of these two eEects can be taken into account by
analyzing how a time slicing, as specified by a given lapse
function, is locally embedded in the Schwarzschild geom-
etry. In the present case, as we are actually evolving a
Schwarzschild hole, this boundary condition is exact and
can be put arbitrarily close to the hole. For a general
spacetime, whenever the outer boundary can be placed
far out enough so that the spacetime there can be approx-
imated by the Schwarzschild geometry locally, this will
provide an accurate outer boundary condition. We have
successfully constructed such an outer boundary scheme
in the 1D case, and its extension to 3D is at present under
development, and will be reported elsewhere.

Many slicing and gauge conditions have been tested
and reported in this paper. For geodesic slicing, we
demonstrated that the 3D code reproduces the results
&om a 1D code with a high degree of accuracy, both
by comparing metric functions and by looking at derived
quantities such as apparent horizon locations and Inasses.
A number of singularity avoiding slicings have been de-
veloped for 3D, including maximal and a class of alge-
braic slicings. Maximal slicing works well, as in 1D and
2D simulations, until the gradients in the metric become
very pronounced. At that time very tight tolerances on
the elliptic solver are required to improve the accuracy
and smoothness of the lapse solution, but problems de-
velop at late times in all cases studied. We have shown
that the algebraic slicings are quite promising and eco-
nomical, and in some cases we have been able to evolve
beyond t = 50M. We regard the algebraic slicings as a
major step forward for 3D black hole evolution, but in all
slicings studied the evolution cannot be carried beyond
a certain point due to extreme grid stretching eÃects.
These difBculties have been long recognized in 1D and 2D
studies, but they are more severe in 3D. By adding more
resolution or viscosity terms one can delay the growth
of instabilities, but a more fundamental approach to the
problem is needed. DiB'erent formulations of the equa-
tions, such as those discussed in [11],allow for the use of
other numerical techniques that may be able to handle

the peaks that show up in the metric functions better.
In order to solve these problems, apparent horizon

boundary conditions are under development by a number
of researchers [13,31,42,47—49]. We have demonstrated
that a shift vector designed to prevent coordinates &om
falling into the hole, combined with cutting away the sin-
gular region inside, can work quite well in a 3D Cartesian
black hole simulation. In fact, our simulations indicate
that with apparent horizon boundary conditions, 3D cal-
culations can be as accurate or better than standard 1D
calculations without such a boundary condition. We are
presently working to develop a full implementation of an
apparent horizon boundary condition in 3D.

In the near future we plan to use our code to solve
the problems of the axisymmetric distorted black hole,
both rotating and nonrotating, and also the axisymmet-
ric Misner data for two colliding black holes. These will
be the first truly dynamic black hole spacetimes with
gravitational radiation to be studied in 3D, but they can
be compared with results obtained with mature, axisym-
metric codes. These are all steps towards the simulation
of general, 3D binary black hole interactions.
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APPENDIX: CODE PERFORMANCE AND
PROGRAMMING STRATEGY FOR PARALLEL

MACHINES

Here we discuss various issues involved in developing
our 3D code, making it efBcient for a wide variety of
architectures, and particular numerical issues relevant to
the black hole problem.

1. General code strategies

a. Portability

We are currently running our codes on the Thinking
Machines CM-5 massively parallel distributed memory
system, the Cray C90 vector multiprocessor, and the Sil-

Scientific animations of some of our simulations have been
prepared and are kept on our WWW server. They may be
viewed at the URL http: //jean-luc. ncsa. uiuc. edu.
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icon Graphics Power Challenge multiprocessor. We are
extending our codes to run on many other parallel sys-
tems. In the approach we have taken, the basic pro-
gram. ming language is Fortran 90, a data parallel model.
Extensions available in. High-Performance Fortran (HPF)
are used. when needed, but special functions unique to a
particular rnachine are avoided. whenever possible. In
this way the vast majority of the code can be used on all
machines.

To deal with differences among the machines we im.—

plement a preprocessing stage to all the source files. By
using compiler conditionals to select appropriate code for

specific operations, we are able to xnaintain a single set
of source files that can be used for compilations on all
the systems. For example, at present, only the CM-
5 supports Fortran 90 array intrinsic functions such as
MAxLQc(A). In these situations, ere use such functions
when supported, but also provide alternate code for other
machines to perform the same operation where necessary.
This has led to a rather sophisticated build process, but
provides great benefits in the maintenance and develop-
ment of the code.

b. Mem, ary v equi~I, en$8

In nuxnerical relativity a large number of variables
must be stored. In the standard ADM split, the basic
variables are six metric functions, six extrinsic curvature
variables, three shift components, and the lapse. During
an evolution, most of the quantities must be stored on
two time slices, requiring approximately 30 variables just
for the evolution alone. In addition, in ord.er to reduce
the complexity of expressions and to save repeated com-
putation, it is convenient to compute the contravariant
metric components g, three-Ricci components B g, and
numerous temporary variables throughout the code, re-
sulting in excess of 50 variables that need to be stored
on every time slice.

However, there are other important considerations for
distributed memory machines. There are dozens of spa-
tial derivatives that must be computed an every time
slice, and these derivatives appear repeatedly in the Ein-
stein equations. Each derivative operation requires com-
munication between memory locations, which can be
computationally expensive on a distributed memory ma-
chine because the d.ata required for a derivative oper-
ation may reside on different processors. The commu-
nications overhead is m.ore serious for higher order ac-
curate derivatives (e.g. , second vs fourth order) because
more data points and hence more communications are
required. Therefore, we adopt the strategy of computing
and storing all spatial derivatives on each time slice, so
we may compute derivatives once and reuse the results
as needed.

This technique improves performance dramatically on
distributed memory machines (although it is unimpor-
tant on shared memory machines such as a Cray C90),
but it requires much more storage on each time slice.
However, in 3D if ane doubles the storage requirements,
the maximum resolution one can achieve in each direction

only decreases by 2i ~ i, or about 28%. With techniques
like these we have been able to achieve performance for
the "G" code used in this paper of nearly 12 Gflopjs
for very large problems on a 512 nod. e CM-5, although
smaller problems run less efhciently. On that machine,
with 16 GBytes of memory, we can perform simulations
of about 200 zones.

2. Hyperbolic solvers

We use an explicit hyperbolic scheme to evolve the
spacetime. Such algorithxns are especially suited to par-
allel computing, because most computation is local to a
processor. The spacetime data are distributed across the
various processors, and the evolution of data on a par-
ticular point on the grid depends only on "nearby" in-
formation in a hyperbolic system. Communication time
between processors, which is usually the bottleneck in
parallel computing, is required. only when computing spa-
tial derivatives via 6nite differences that connect different
processors. Communications are done only once on each
time slice, and then extremely long numerical calcula-
tions are performed to evaluate expressions in the evolu-
tion equations. Therefore, the relevant communications
to computation ratio is very small, leading to excellent
performance. The Einstein equations are ideal for dis-
tributed, parallel computing.

8. Elliptic solvers

A dificult code optimization problem comes in solving
the elliptic equations necessary when we evolve the sys-
tem using maximal slicing. The code then needs to solve
a new elliptic equation on every time step, although one
can save work by solving the equation less &equently, as
it is only a gauge condition.

For efficiency in memory use, the matrix of finite dif-
ference coeKcients can be stored as nineteen 3D arrays
requiring us to store only 19K elements as opposed N
elements for the full matrix which consists primarily of
zeros. This also allows us to store the coefFicients in a
manner that relates logically to the computational grid.
If the elliptic operator for the equation is symmetric in
form, we could also realize further memory conservation
by storing only the upper or lower triangular portions of
the coefFicient matrix and need to have only ten 3D ar-
rays. However, because of the communications expense
in implementing this scheme an parallel architectures, it
is much more efficient to store the entire matrix, even
when it is symmetric.

When we use maximal slicing to foliate the spacetime,
the lapse function develops a nearly step-function pro6le,
making it difficult to compute accurate finite difference
derivatives of this function for the hyperbolic evolution
part of the code. Therefore, we need to solve the max-
imal slicing equation to a very high tolerance to resolve
sharp features accurately, requiring many iterations of
the solver. Each iteration of the iterative solver requires
one or more products of the sparse coefficient xnatrix with
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a vector. When running the code on the CM-5, the com-
munications become very time consuming, because in or-
der to compute the matrix-vector product, each process-
ing node requires some data &om another processor. Op-
timization of this communication is crucial for an eKcient
implementation.

Investigation into alternative solvers has shown that,
particularly for massively parallel architectures, itera-
tive methods are typically more eKcient than direct
solvers. Recent work in parallel direct solvers may change
this [50], but at present iterative methods are quite good
for problems involving regular computational meshes.
Experience in development of NCSA 2D evolution codes
indicates that multigrid solvers will play an important
role for very large meshes that will be needed to solve
the 3D evolution problem accurately. We are currently
investigating a parallel implementation of multigrid for
our problem.

using a grid of 200 points and evolving the system with
geodesic slicing. It takes approximately 2 seconds of CPU
time per time step, with every grid point requiring more
than 4000 Qoating point operations per time step. Alge-
braic slicings require a bit more time per iteratio~ due to
the use of the isometry conditions. Typical daily runs of
128 grid points on a 256 node CM-5 require about 1.5
hours to complete an evolution of 2000 iterations.

With maximal slicing, the elliptic solver slows down
the performance to nearly 6 Gfiop/s for a maximum grid
size of 180 . Both the performance and the run time
strongly depend on the tolerance imposed on the iterative
solver and on how often one solves for the lapse. Typical
runs of 128 take more than 3 hours.

These numbers are constantly changing, as we continue
to optimize the code and new versions of the compiler are
released.

4. Code performance

The current performance of the code is nearly 12
GHop/s on the 512 node CM-5 at NCSA. This is achieved

A complete table showing the latest performance num-
bers for the current version of the code and analysis of lin-
ear speedup can be found in our Web server at http: //jean-
luc. ncsa. uiuc. edu.
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