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We study the head-on collision of two equal mass, nonrotating black holes. Various initial
configurations are investigated, including holes which are initially surrounded by a common apparent
horizon to holes that are separated by about 20M, where M is the mass of a single black hole. We
have extracted both 8 = 2 and f = 4 gravitational waveforms resulting from the collision. The
normal modes of the final black hole dominate the spectrum in all cases studied. The total energy
radiated is computed using several independent methods, and is typically less than 0.002M. We also
discuss an analytic approach to estimate the total gravitational radiation emitted in the collision by
generalizing point particle dynamics to account for the finite size and internal dynamics of the two
black holes. The e8'ects of the tidal deformations of the horizons are analyzed using the membrane
paradigm of black holes. We find excellent agreement between the numerical results and the analytic
estimates.

PACS number(s): 04.30.Db, 04.25.Dm, 95.30.Sf, 97.60.Lf

I. INTRQDUCTION

The spiraling coalescence of two black holes in orbit
about one another is considered to be one of the most
promising sources of gravitational waves [1]. The strong
burst of gravitational waves resulting from such an event
should be detectable by the next generation of gravita-
tional wave detectors such as the Laser Interferometric
Gravitational Wave Observatory (LIGO) and VIRGO [2].
From observing these violent events in our Universe,
we expect to obtain important insight into astrophysics,
gravitation, and cosmology. In particular, such signals
should provide the first direct and unambiguous evidence
for the existence of black holes if the unique signature of
the quasinormal modes [3] is excited. The information
gained from the detected waveforms should allow one to
reconstruct the astrophysical parameters of the system,
such as the masses, spin, and orbital angular momen-
turn and linear momentum of the colliding black holes,
and the final black hole. Since LIGO and VIRGO are ex-
pected to begin taking data by the end of the decade, it is
important to perform accurate calculations of the wave-
forms emitted during these events. Numerically gener-
ated waveform templates will be essential for the analysis
of data collected by gravitational wave detectors.

In a series of papers [4—6] we investigate a special case
of the black hole coalescence problem, namely the head-
on collision of two black holes. On the one hand, the
simplifying assumption of a head-on collision reduces the
general three-dimensional coalesence problem to a two-
dimensional axisymmetric problem, and is hence much
more tractable. On the other hand, a head-on collision
can be regarded. as an approximation to the last nonlinear
stage of inspiraling coalesence the final plunge.

Our work extends and refines the earlier calculations

of DeWitt, Cadez, Smarr, and Eppley [7—12] (DCSE).
Results from that collective body of work suggest that
the normal modes of the final black hole resulting from
the collision are excited and that the total energy re-
leased is typically less than O. l%%uo of the mass of the final
black hole. However, these numerical calculations proved
to be very dificult due to inherent coordinate singulari-
ties and numerical instabilities that plague the two black
hole system. Also, the computer power available at that
time did not permit highly resolved evolutions, and they
did not have waveform extraction techniques [13] at their
disposal for determining gauge-invariant waveforms. For
these reasons, DCSE quote their results as uncertain to
within a factor of 2, for example, in the total radiated en-
ergy [12]. It is therefore imperative to revisit this impor-
tant physical problem with the benefit of roore powerful
computers and improved analytic and numerical tech-
niques developed over the intervening 15 years to calcu-
late unambiguous waveforms and energy cruxes resulting
from the collision.

Building on the work of DCSE, and more recent work
involving distorted single black holes [14—16], many of the
numerical problems associated with colliding two black
holes have been overcome in the present work. In partic-
ular, we have used a hybrid set of coordinates to resolve
the axis and saddle point problems encountered by DCSE
so that our evolutions are more accurate and more stable.
The numerical code we have developed can evolve black
holes with initial separation distances between 4M and

20M, where M is the mass parameter defined to be
half the Arnowitt-Deser-Misner (ADM) mass of the sys-
tem. (We note that M is simply a convenient parame-
ter to characterize the coordinates and it only approxi-
mates the mass of a single black hole in the limit that
the holes are widely separated. ) We have applied more
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II. COMPUTATIONAL FRAMEWORK
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mainder of this section. The success of our methods de-
pends critically on utilizing both sets of coordinate sys-
terns (cylindrical and Cadez) to advantage.

We have investigated a number of different numerical
schemes to solve the problem of colliding two black holes
head on. The basic idea that evolved from our investiga-
tions is to solve for the Cadez metric components, which
we write as

(A C 0
g,, =e4p, , =@4 C B 0

0 0 D sin

in the coordinate order (q, (, P), on the Cadez grid and
use a shift vector to set C = B&C = 0. (We note that
only the conformal metric components are evolved. The
conformal factor @ = 4M/J, where J is the Jacobian
of the Cadez/cylindrical coordinate transformation, re-
mains constant in time. ) This choice for the shift vector
has the advantage of a diagonal three-metric which helps
to suppress the axis instability and simplifies the equa-
tions of evolution and the extraction of invariant gravita-
tional waves in the far field. Furthermore, with this ap-
proach it is possible to define variables for the two black
hole system that obey the same evolution equations with
similar boundary conditions as the single distorted. black
hole code developed in previous work [14,15]. In fact,
the two black hole code in its final incarnation evolved
from the code we developed for distorted axisymmetric
single black hole spacetimes and much of the discussion
in [14,15] is directly applicable here.

The difhculty with Cadez coordinates is the singular
saddle point located within the computational domain
at the origin z = p = 0 (see Fig. 1). We evolve data
near the saddle point by taking advantage of the fact
that the spacetime metric components in cylindrical co-
ordinates are smooth everywhere, including the saddle
point. We can therefore define a cylindrical coordinate
"patch" to evolve the cylindrical metric and extrinsic cur-
vature components on the Cadez grid over regions near
the saddle point. The two sets of components, Cadez
and cylindrical, are evolved everywhere independently of
each other (except for the coupling at the patch bound-
aries) on a single Cadez grid. The nonsingular cylindrical
components are then used to correct the singular Cadez
components in the patched region using the general ten-
sor relations T = (Bx"/Ox") (Bx /Bx'~)Ty~. The Cadez
components, in turn, provide corrections to their cylin-
drical counterparts everywhere else, helping to suppress
the axis instability that is inherently present in the cylin-
drical coordinate system possessing a nondiagonal met-
ric. A more detailed discussion of this procedure can be
found in [6].

Our code was subjected to a number of tests, including
matching waveforms to perturbation theory as we do in
Sec. III8 1. We also performed various convergence stud-
ies using 100 (27), 200 (35), and 300 (55) radial (angular)
zones. We have shown that the convergence rate for the
total radiated energy is quadratic in the grid spacing and,
more specifically, differences in the dominant 8 = 2 wave-
forms between the 200 and 300 radial zone evolutions is

of the order of just a few percent. We discuss the ac-
curacy and reliability of our calculations throughout this
article when appropriate and refer the reader to Ref. [6]
for more details.

III. NUMERICAL RESULTS

We have investigated six separate cases of the Misner
two black hole data sets corresponding to difFerent values
of p. The physical attributes of the initial data for these
six cases are summarized in Table I where we show M =
M~DM/2 (i.e. , half the ADM mass), the proper distance
between the two throats, and whether the data contains a
single global apparent or event horizon surrounding the
two holes. In this section, we categorically discuss the
dynamics of both the near and far field regions for the
various cases.

A. Near field

Spatial tnetr ie

TABLE I. The physical parameters for the six initial data
sets. M is the mass parameter equal to half the ADM mass
of the spacetime, L/M is the proper distance between the
throats, and we note whether or not a single apparent or
event horizon surrounds bath holes.

1.8
2.2
2.7
3.0
3.25

M L/M
1.85 4.46
0.81 6.76
0.50 8.92
0.29 12.7
0.21 15.8
0.16 19.1

Apparent horizon
Global

Separate
Separate
Separate
Separate
Separate

Event horizon
Global
Critical

Separate
Separate
Separate
Separate

First we present results for the case p = 1.2, which is
a data set corresponding to two holes that have already
merged initially. The initial data contain an apparent
horizon that encircles both throats. In Fig. 2 we show
the conformal metric function p„„=A at the coordinate
time t = 25M. Notice that a sharp peak surrounding
the hole is developing. This peak develops essentially
spherically around the two throats from early in the evo-
lution, showing that the system behaves as a single black
hole from the outset. These results are similar to those
observed in studies of single throat spacetimes [14,15].
The reason behind the development of the peak is clear:
As the coordinates are dragged into the hole, the proper
distance between radial grid points increases rapidly to-
wards the throat. However, as shown in Fig. 3, the lapse
goes to zero in the region near the throats, "&eezing"
all motions there. Hence we see only the growth of the
proper distance between grids in coordinate time in the
region near the horizon, developing a sharp peak. Such
grid stretching effects present one of the main diKculties
in evolving black hole spacetimes in any numerical simu-
lation utilizing a singularity avoiding time slicing. During
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Apparent Horizon Masses

1.08

1.02

0.96
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0.84—

0.78
0.0 20.0 40.0

Time (M)

60.0 80.0

FIG. 5. The mass of the apparent horizon is shown for
the cases p = 1.2 (solid line) and p, = 2.2 (dashed line).
In the p = 1.2 case the initial horizon surrounds both holes
and most of the mass energy is contained within the horizon.
After a slight increase early in. the evolution (within the first
few M) the mass of the horizon remains essentially constant
until t 30M when it begins to grow due to numerical effects
discussed in the text. In the p = 2.2 case the initial horizons
around each throat are distinct. At t 17M a new apparent
horizon appears, surrounding both holes and accounting for
essentially all the mass energy in the system.

mass Mh after the metric functions become too sharp for
the grid to resolve. (This effect has also been discussed
in Refs. [21,22] where an apparent horizon boundary con-
dition was used to circumvent this problem. )

Also shown in Fig. 5 is the result for the case p = 2.2.
In this case the initial horizons are the two distinct
throats and contain only about 79% of the total mass
of the spacetime. Because we use a slicing condition in
which the lapse is zero on both throats, each throat re-
mains a marginally trapped surface throughout the evo-
lution. We track this surface only until another trapped
surface forms across the equator (z = 0) to surround both
throats. This new horizon, when it forms, contains es-
sentially all the mass of the spacetime except for a small
amount carried by the radiation. Ideally one should see
the horizon mass leveling off just below the total ADM
mass of the system, with the difference being accounted
for by the energy carried away by gravitational radia-
tion. However, the errors in the horizon mass, due to ef-
fects discussed above, are large enough to hide this small
amount of radiation which is less than 0.1% of the total
mass. Figure 5 also shows a spurious feature appearing
at the time of the formation of the new horizon. This
feature is due to numerical difhculties with locking on to
the new horizon which erst appears near the coordinate
singularity present in the Cadez coordinate system. Af-
ter a brief period, the system settles to the Anal black
hole configuration (apart from the numerically induced
slow growth in the horizon mass as discussed above).

The results for holes with wider initial separations are
similar to the case p = 2.2, except that the time scale
for the merging of the holes is longer. Thus, by the time

Comparison of Surface Area to the ADM Mass
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FIG. 6. The area of the constant g surface that just encir-
cles the saddle point is plotted as a function of p. The solid
line is 16', the area corresponding to the total ADM mass of
the spacetime (we work with units such that the total mass
is normalized to unity).

the holes have merged, as measured by the appearance
of an outer horizon, the horizon mass is overestimated
by larger amounts. Errors in the horizon mass vary in a
monotonically increasing fashion from 2% for the p = 2.2
case, 10% for p, = 2.7, and 20% for p = 3.0 and remain at
these levels after a dynamical time of a single quasinormal
mode oscillation (see Fig. 5). Note that the wavelength of
the quasinormal mode of a black hole scales as its mass,
so this is consistent with the results of Sec. IIIB 1 which
show that the extracted waveform for these cases have
wavelengths slightly longer than expected for a final hole
of mass M/DM.

An alternative measure of errors that can be applied
throughout the spacetime can be estimated by the de-
gree in which the Hamiltonian constraint is violated. In-
variably we find the greatest errors (within the causally
connected domain) to be concentrated near the horizon.
Hence the errors in the apparent horizon mass quoted
above represent maximal error measurements throughout
the exterior spacetime. For a more thorough discussion
and comparison of different diagnostic errors, including
horizon mass calculations and Hamiltonian constraint vi-
olation, we refer the reader to Ref. [22].

Although apparent horizons can con6rm when two
black holes have definitely merged, the presence of two
distinct apparent horizons does not guarantee that the
holes are separate, as a global event horizon may still
surround the individual holes. The claim that the larger
p cases represent two distinct black holes is supported by
computing the area of a two-sphere defined on a constant
g surface that just encircles the saddle point and therefore
both holes. This surface is selected out as being repre-
sentative of a minimal" area surface and can therefore
be indicative of whether a mass of MADM can be enclosed
within the constant g surface. In Fig. 6 we plot the area
of this surface on the initial time slice as a function of
separation (and mass) parameter p. The horizontal line
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is 16', the area corresponding to a surface representing
an efFective mass equal to the ADM mass (our units are
such that the ADM mass is normalized to unity). The
point of intersection is p 2.1, and Fig. 6 suggests that
for larger values of p, the data represent two black holes.

A more convincing-and precise argument can be real-
ized by integrating light rays radially outward along the
equator starting from midway between the black holes.
If the photons "escape, " then clearly the system con-
tains two disjoint event horizons initially and hence two
separate black holes. (Whether photons escape or not
is determined by their position relative to the apparent
horizon at late times, typically 80M. At such late
times the apparent horizon is expected to lie near the
event horizon. ) We have performed several such studies
in an attempt to find a critical value for p that separates
the initial data into one or two black hole sets. Our re-
sults indicate that this value is approximately 1.8. For
p & 1.8 the photons escape, while for p & 1.8 they do
not. Furthermore, we have recently developed a method
for tracing out the actual event horizon surface [23] and
found results consistent with those obtained by integrat-
ing photons.

8. Collision timing8

In Fig. 7 we compare diQ'erent timings of the collision
for each evolution considered. The meaning of the various
timings is as follows: tN, t is the Newtonian free fall time
for two point particles to collide from rest and separated
initially by a distance I /M, th, is the time at which the
first merged apparent horizon appears, and t„„~is the
time at which the first (negative) peak in the E = 2 gauge-
invariant waveform reaches the detector at r = 40M,
indicating the (retarded) onset of the quasinormal ringing
of the final black hole. First we note the remarkable

coincidence between the free fall times to collision and
the time required for the apparent horizons to merge.
This agreement between such difFerent indicators of the
coalescence time is very satisfying.

Another interesting feature is the timing of the onset
of the quasinormal ringing. Note that for p below 2.2
(I/M ( 8.9) the ringing begins at about the same time
regardless of the separation between the holes. For holes
separated by more than this, a delay in the onset of ring-
ing becomes apparent. The fact that the ringing begins
at the same time regardless of their separation is not sur-
prising for p below 1.8. As we discussed above, the two
throats are really just a single distorted black hole and
the separation between throats is physically irrelevant.
For p between 1.8 and 2.2, as the two holes are initially
disjoint, one might expect a delay in the onset of ring-
ing. However, the important physical property of the
system governing the quasinormal ringing is the gravita-
tional scattering potential barrier surrounding the holes,
not the position of the event horizon itself. Since the
peak of this potential barrier is located near r = 3M for
a Schwarzschild hole and the horizon is at r = 2M, we
expect the potential barrier of each hole to merge into a
single one before the horizons do. Therefore, for black
holes that are initially close enough that their potential
barriers have electively merged, we expect to see a sys-
tem that behaves essentially like a single distorted black
hole in terms of quasinormal mode ringing, even if the
event horizons are distinct. From Fig. 7 it is clear that
this transition from merged potentials to distinct poten-
tials takes place near p = 2.2.

1. Gauge-invariant eaveform extraction

Collision Timings

60.0

40.0

20.0

0.0 —av - —————~ —————

8.0
I

12.0
L/M

I

16.0 20.0

FIG. 7. We plot various timings of the evolution for the six
initial data sets. t~, ~ is the Newtonian free fall time required
for two particles to collide from rest at this separation, th,
is the time at which the apparent horizons merged, and t,„.„z
is the time at which the first (negative) peak is seen in the
E = 2 Zerilli function recorded at r = 40M.

The main method v'e use to calculate waveforms is
based on the gauge-invariant extraction technique devel-
oped by Abrahams and Evans [13]and applied in Ref. [16]
to black hole spacetimes. The basic idea is to split the
spacetime metric into a spherically symmetric (static)
background and a small perturbation in the region where
the curvature is dominated by the mass content of a small
compact object. We first expand the metric perturbation
in m = 0 spherical harmonics Ygo(0) and their tensor gen-
eralizations. The Regge- tA"heeler perturbation functions
are then extracted from the numerically computed met-
ric components and used to construct the gauge-invariant
Zerilli function g. (See [13] for a detailed discussion
of this procedure. ) g represents the wavelike part of
the metric that is radiative at large distances from the
source and is commonly used in semianalytic calculations
of black hole normal mode frequencies [3]. The asymp-
totic energy Aux carried by gravitational waves can be
computed from

1
32vr ( Bt )
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independently for each E mode contribution for the nor-
malization we use for Q.

For all of the cases studied in this paper we have ex-
tracted both the E = 2 and 8 = 4 waveforms at radii
of 30, 40, 50, 60, and 70M. (Coordinate positions corre-
sponding to physical distances in units of M are approx-
imated &om the initial data in the asymptotically spher-
ical far field as r gott/M = 4 /M. ) By comparing
results at each of these radii we are able to check the
propagation of waves and the consistency of our energy
calculations.

In Fig. 8 we show the E = 2 waveform (solid line) ex-
tracted at a radius of 40M for the case p = 1.2. This
result is similar to waveforms extracted from simulations
of single distorted black holes (see, for example, Ref. [16])
even though the initial data sets and coordinate systems
used are significantly diferent. Of course since there is a
h on surrounding both throats, we expect this systemorizon su
to evolve as a single black hole from the outsi e. s a
perturbed single black hole system, we also expect the
quasinormal modes of the black hole to be excited. The
dotted line in Fig. 8 shows the fit of the lowest two (fun-
damental and first overtone) E = 2 modes of a black hole
of mass (2M), over the range 70 ( t/M ( 160, obtained
from Refs. [24,25]. The fit is excellent, showing that the
normal mode is the dominant part of the emitted radia-
tion. We note that the erst overtone quasinormal mode
is much more strongly damped than the fundamental,
and hence does not contribute appreciably to the fit at
late times. Its main efFect is to increase the accuracy of
the fit to the first peak in the extracted waveform.

Next we discuss the case p = 2.2, for whichhich there
are no initial common apparent nor event horizons. In
Fig. 9 we show the 8 = 2 extracted waveform for this
case. The solid line shows the waveform detected at a
distance r = 40M and the long dashed line shows the
waveform extracted at r = 60M. The wave is clearly
propagating away from the hole at light speed with essen-

Waveform Extraction

0.20

0.10

O
U

1I
fV

0.00

-0.10

-0.20

0.0
I

50.0
I

100.0
Time (M)

I

150.0 200.0

FIG. 9. The E = 2 waveforms for the case p = 2.2. The
solid line is the waveform extracted at r = 40M and the long
dashed line is the waveform at r = 60M. The dotted line is
the quasinormal mode fit.

tially invariant shape and amplitude, with a wavelength
of 2 x 16.8M, confirming the original endings of Smarr
[12]. However, our more accurate code now allows us to
go beyond estimating the wavelength and to Bt quanti-
tatively the waveform to results known from black hole
perturbation theory. The short dashed line shows the
result of fitting the r = 40M waveform (in the range
64M ( t ( 160M) to a linear combination of the funda-
mental and first overtone of the E = 2 quasinormal mode
for the anal black hole with mass 2M. The fit is quite
good, matching both the wavelength and damping time,
showing that the final black hole mass is indeed very close
to the total mass of the spacetime.

In Fig. 10 we show the more diKcult E = 4 waveform
for the same case p = 2.2, extracted at the same ra-
dius r = 40M. Again this waveform has been fit (over

0.04

Waveform Extraction

(p. = 1.2)
I

Waveform Extraction
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0.00

0.002

-0.02

O
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I I

O.O 5O.O 1OO.O

Time (M)

FIG. 8. The E = 2 waveforms for the case p = 1.2. The
solid line is the numerically generated waveform extracted at
r = 40M. The dashed line is a 6t of the two lowest E = 2
quasinormal modes, over the domain 70 ( t/M & 160, to the
extracted waveform.
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FIG. 10. The E = 4 waveforms for the case p = 2.2. The
solid line is the waveform extracted at r = 40M and the short
dashed line is the quasinormal mode 6t.
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2. Other v adiation indicator8

The Newman-Penrose scalar [26]

44 ——B p~gL m~k~m (6)

a similar range) to a superposition of the fundamental
and first overtone E = 4 quasinormal modes of the black
hole. Although the fit to the extracted waveform is rea-
sonably good in terms of the wavelength and damping
time, this waveform is rather sensitive to the computa-
tional parameters such as grid resolution and the extent
of the numerical "patch" of cylindrical metric functions
covering the saddle point. As discussed in Ref. [6], the
amplitude of the E = 4 waveform can vary by about a
factor of 2 over a wide range of patch, diffusion, and
resolution parameters. Future refinements of this code
may allow us to make more definitive predictions of this
difBcult waveform extraction.

Finally, in Figs. 11 and 12 we show the E = 2 and
E = 4 waveforms, respectively, for the case p = 2.7, where
the holes are well separated by about 12.6M initially.
The solid lines are the waveforms extracted at a distance
r = 40M. In this case the its to perturbation theory
are still reasonably good, but are not as close as the cal-
culations performed for holes that are initially closer to-
gether. The wavelengths of the extracted waveforms are
somewhat too long, and this can be understood as a nu-
merical artifact of our methods. The calculation must
run for a longer period of time before the onset of quasi-
normal ringing, so the peak in the radial metric function
becomes more difFicult to resolve. This leads to an er-
ror in the longitudinal (spherical) part of the field, that
causes the effective gravitational scattering potential to
be somewhat different &om the true potential. (See also
Ref. [16] for a discussion of this point. ) Since this poten-
tial is critical in determining the quasinormal frequencies
of the system, the normal modes are generated at slightly
different frequencies.

0.030

Waveform Extraction

(u = 2.7)

0.020 OM
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Time (M)

t

150.0 200.0

FIG. 12. The E = 4 waveforms for the case p = 2.7. The
solid line is the waveform extracted at r = 40M and the short
dashed line is the quasinormal mode fit.
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sin

sin ( . (10)

provides another approach that can be used to treat the
problem of radiation extraction. The vectors k and l are
orthogonal real vectors defined by adding and subtract-
ing a spacelike unit vector with a unit timelike vector.
The vector m and its complex conjugate m are orthog-
onal null vectors tangent to the surface of a two-sphere
representing the wave front of an outgoing shell of radi-
ation. The basis set we have chosen to work with is

Waveform Extraction

(V = 2.7)

Far from the source 44 represents an outward propa-
gating wave and is therefore naturally normal to a two-
sphere of constant "radius" g. The total radiated energy
loss can therefore be estimated by [27]

0.25 dE 1
dt 4' dt'4'4 r dO,

o 005—

-0.1 5

where the integration is over a two-sphere (with an area
of 47rr and a surface element dQ, where r gptt/M =

~B/M) lying in a spacelike hypersurface surrounding
the radiating system.

A third method that we have used to track gravita-
tional radiation is based on the Bel-Robinson vector [28]

-0.35
0.0

I

200.050.0 150.0100.0
Time (M)

FIG. 11. The g = 2 waveforms for the case p = 2.7. The
solid line is the waveform extracted at r = 40M and the short
dashed line is the quasinormal mode fit.

PybBn

where E p and B p are the "electric" and "magnetic"
components of the four-dimensional Riemann tensor.

= E:~~n~ is the three-dimensional Levi-Civita per-~p
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mutation tensor and n is the unit vector normal to the
spacelike t = const hypersurfaces. Although p& is con-
structed in a manner formally similar to the Poynting
vector of electromagnetism, we note that it is not a phys-
ical momentum vector for gravitational waves, since its
units differ by M . Nevertheless, p~ has been proven to
be effective in qualitatively tracking gravitational radia-
tion [11,29], and as demonstrated by DCSE in Ref. [12]
and again in Sec. III B 3, the radiated energies computed
using p~ are in good quantitative agreement with those
computed using other radiation indicators. Since p~ is
dimensionally a Aux vector quantity, the energy loss can
be approximated by integrating the radial energy Aux p"
over a closed two-sphere as described above for 44.

dE 1 ', (
I~i'r I/2

Idt 4vr p E )
The choice of sign in the integral of (13) is taken to
be the sign of 4'4. Equation (13) is motivated by the
asymptotic form p~r~ —+ 2~4'4~ applicable to the case
of monochromatic waves in linearized Minkowski space-
times [ll]. This construction yields results that are con-
sistent with the integrals of g and 4'4 in the asymptotic
far field.

As a check on our numerical methods (for evolving the
spacetime and extracting waveforms) and in defining the
wave zone, it is informative to compare the waveforms
obtained by the three different methods. In Fig. 13, we
show the E = 2 Zerilli function g (solid line), 4'4 (dashed
line), and p (dotted line) at a fixed point r = 70M
along the equator for the case p = 2.2. 44 and p" have
been normalized to the same scale of g so that a direct
comparison of their oscillatory behavior can be made.
Considering the nature of p" to behave in a positive def-

inite fashion, scaling asymptotically as p" ~44~ at a
fixed radius, the E = 2 fundamental quasinormal mode
is clearly present and dominant in all three signals. At
this radial distance the amplitude, phase, and frequency
in the 44 and g waveforms match nicely.

8. Enevgiea radiated

Total Energy Radiated

10

One Hole Two Holes

10
-i

The total radiated energy E can be computed &om
the Zerilli function using Eq. (5). We display these re-
sults in Fig. 14. The six clusters of unconnected symbols
represent the six numerical simulations corresponding to
the different p parameter values. Each of the five sym-
bols within a cluster corresponds uniquely to the total
integrated 1 = 2 energy computed at the five different
wave detectors. For reference, the early results of Smarr
and Eppley are plotted as large crosses with error bars
suggested by Smarr [12]. Within the large errors quoted,
those early results are remarkably consistent with our
more accurate results.

Clearly the results in Fig. 14 show two distinct regimes,
as denoted by the arrows in the upper part of the figure.
For p ( 1.8, the initial data contain one black hole, as
discussed in Sec. III A 2, and the energy radiated falls off
exponentially. We fit the energy output to an exponen-
tial for p & 1.8 and find that the results are approxi-
mated well by the formula E = 3.13 x 10 exp(4. 852@).

Various Radiation Indicators
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FIG. 13. The time evolutions for three different radiation
indicators are shown for the case p = 2.2. The solid line
is the Zerilli function (8 = 2), the dashed line is the Nevr-

man-Penrose scalar 44, and the dotted line is the radial com-
ponent of the Bel-Robinson vector. The data tracks the be-
havior in time of a single point on the grid located at r = 70M
along the equator. The E = 2 fundamental quasinormal mode
is clearly present and dominant in all three signals.

FIG. 14. The total gravitational wave energy output is
shown for the six parameter studies. The connected circles are
the upper limit based on the area theorem, the clustered sym-
bols show numerical results at various detector locations, and
the crosses show early results by Smarr and Eppley with their
approximate error bars. The solid line labeled "DRPP calcu-
lation" is the result of a naive application of the point particle
result, the solid line labeled "reduced mass correction, " takes
into account the finite mass of the infalling black hole, and
the dashed line is the semianalytic estimate, including several
effects discussed in the text. Finally, the dot-dashed line is
an empirical fit to the data for low values of the separation
parameter p, showing the exponential falloff of the energy in
the one black hole regime.
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For p ) 1.8, there are two holes and the energy radi-
ated is somewhat independent of the initial separation.
Three lines based on analytic and semianalytic calcula-
tions that treat the system as two black holes are also
shown, as we discuss in more detail in the next section.
The curve labeled "DRPP calculation" is based on the
work of Davis, Ruffini, Press, and Price [30], the result
labeled "reduced mass correction" takes into account the
6nite mass of a black hole falling into its partner, and
the dashed line is the complete semianalytic calculation
discussed in Sec. IV, accounting for other effects. Finally
we note that the energy radiated is very small compared
with the upper limits based on the horizon area theorem
(represented by connected circles in Fig. 14), as discussed
in the next section.

Table II compares the total radiated energy computed
using three different radiation variables: the Zerilli func-
tion @, the Newman-Penrose scalar @4, and the Bel-
Robinson vector p". The energies in Table II are re-
sults from simulations resolved with a 200 x 35 grid and
are normalized to the total ADM mass of the spacetime
(2M). The range of values quoted for the numerical cal-
culations for each of the six cases represents the range
of data across the different detector locations, with the
lower (upper) limits corresponding to the outer (inner)
detectors. As a whole, the results are remarkably consis-
tent. The various numerical constructions differ signifi-
cantly only at the innermost detectors for the low p cases.
These deviations are attributed to several effects. First,
the near zones are characterized by stronger highly dis-
torted behavior than the asymptotic wave zones, making
this region more difficult to resolve accurately. 44 and p"
are curvature type variables that have an explicit depen-
dence on first and second order gradients of the metric
components. Hence, they are more susceptible to numer-
ical inaccuracies than the Zerilli function which depends
only on first derivatives of the three-metric. Secondly,
the curvature quantities are projected onto a coordinate
based tetrad, and the Cadez coordinates are distorted
from sphericity in the inner regions of the grid, obscur-
ing the physical interpretation of these quantities.

timate analytically the total radiated energy. Our ap-
proach is based on the well-studied problem of a test
point particle originally at rest at infinity plunging into a
Schwarzschild black hole [31,30,32—34]. For the test point
particle problem, [31] combined a Newtonian quadrupole
moment calculation with the linearized theory of Landau-
Lifshitz [35] to find the in-flight radiation

105 i M)

m2
E = 0.0104

Our approach is to adopt the general relativistic result
(15) and modify it to include correction factors so that it
can describe the two black hole collision. In the following,
we shall discuss correction factors due to (A) m is not
much smaller than M, (B) the infall is not from inanity,
and (C) the black hole, unlike a point particle, has a finite
size and internal dynamics.

A. Mass scaling

Before we go into the various correction factors, it is
useful to understand why E in (15) is proportional to
m /M. For m « M, the quadrupole moment of the
system is I mr where r is the radial distance between
m and M. The gravitational wave luminosity is given

by I, the third time derivative of I. In the Newtonian
approximation, r' /2M/r and r M/r, we have

L, oc I' - m (rr') - m
~

z(M
r5 )

(16)

for infall from oo to r = 2M, where m is the mass of
the test point particle and M the mass of the black hole
with m, « M. In [30] the total radiation for the same
test point particle problem is obtained using black hole
perturbation theory (see, e.g. , [3] and references therein).
The result is comparable [30)

IV. ANALYTIC ESTIMATE The total energy radiated is

To gain a physical understanding (and confirmation)
of the numerical results, we outline a procedure to es-

TABLE II. The total radiated energy for the six initial data
sets normalized to the ADM mass (2M) of the spacetime. We
compare results using several difFerent methods of calculation
on a grid resolved with 200 x 35 zones. The energies are
extracted at five difFerent radii, and the range given here is
from the innermost to the outermost radius. See text for
details.

E = L dt Lstrong field X btstrong field ~

The integral is evaluated at the strong field region, as
most energy is released towards the end when m is falling
near the horizon of M. Putting r = 2M into (16) for I,
in the strong Geld region, and bt, t g fi jd M, we have

(18)

P
1.2 1.34—
1.8 1.95—
2.2 6.10—
2.7 7.50—
3.0 8.85—
3.25 1.37—

0.99 x10
1.64 x 10
5.27 x10
6.86 x10
7.13 x10
0.85 x 10

9.81 —1.32
3.46 —1.72
7.76 —5.21
7.16 —5.00
9.22 —4.86
4.32 —1.11

x lo '
x lo 4

x10
x lo 4

x lo '
x10

g
7.58 —1.29 x10
3.77 —1.73 x10
8.91 —5.26 x 10
7.52 —5.07 x10
10.0 —4.93 x10
3.39 —1.11 x 10

as in (15).
When m is not much smaller than M, it is more accu-

rate to use

(19)

where p—:(mM)/(M + m) is the reduced mass of the
system. Hence the above considerations [Eqs. (16)—(18)]
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suggest that Eq. (15) should be changed to Energy Factors

E = 0.0104—

as the gravitational wave energy output for the case when
m is not necessarily much smaller than M. Notice t at
for m = M the p of Eq. (20) introduces a quite signifi-7

cant factor of 1/4.

0.8

U
0.6

EO

U

B. Finite infall 0 4

E„= L dt = (L/i)dr.
tp Y p

Equation (20) is hence modified to be

E = F„,x 0.0104—,p
(22)

Th l quadrupole approximation of (16) also sug-e simp e q
gests how the expression should be modified. w en e
infall is not initially from infinity. Starting from rest at a
fiiute distance ro reduces the velocity r, which enters (16)
as r . Denote the energy radiated in such a case as E„,:

0.2
4.2 6.2 8.2

I

10.2
I

12.2

PIG. 15. We plot the energy factors E„pand Eh,and E vs ro. The
horizonta axis is e inil

' th initial Schwarzschild coordinate r0 of
the infalling hole in units of M. „p gis the ravitational wave
energy output for infalling from r0 divided by that from oo.
E„pis smaller for small ro mainly because the velocity of the
infall is sma er. p, is11 . E the percentage of the available energy
compared to the total gravitational energy available after tak-
ing into accoun e issipa

't th d ation due to tidal distortions of the
black hole horizons. As r0 ~ oo, Eh. tends to 8 0.s to 86 0. The curves
are calculated for m = M.

f r'(i) 'dr
(23)

with

I
1 — „)I

1—2M
7 p

2M
7 p

(24)

C. Internal dynamics

All considerations up to this point are the same, in e-
pendent of whether the infalling object is a point partic e
or a black hole. In the following, we consider correction
factors due to this difference. Although at the end we wi
extrapolate to two black holes of equal mass m = M, or
both generality and convenience o. iscf discussion we think
of the situation as a hole with mass m falling into a hole

Since ro can e as sma ab 11 as a few M in the numerica
simulation, we must use the relativistic expression for r'

in Schwarzschild coordinates in Eq. (24). Equations ( )
d ~24~ represent one way of extending the quadrupo e

formula to the highly relativistic regime. There is
unique way to do the extension, we have just picked a
way convenient for our present purp ose. This correction
factor F„,represents two effects: &i~~ the

&
~~ there is less time

to radiate when falling from a finite distance, and (ii)
the infalling velocity is smaller. The latter effect is muc
more important. In Fig. 15 we p lot F vs ro, the initial
Schwarzschild coordinate of m, covering the range of ro
used in the numerical simulation.

with M & m.
neer nedAs far as the gravitational wave output is concerne

the most important difference between a point mass and
a black hole is that a black hole has internal dynamics.
There are more channels that the initial gravitationa
potentia energy in e

'
1 th system can dissipate into. uc

d' ' ations decrease the kinetic energy and hence the
velocity of the infalling hole. Hence fewer gravitationa
waves are genera et d There are various mechanisms caus-
ing issipa ion) w icd ' t h h we shall describe separate y.
course as these dissipative effects are more pronounce)

in the nonlinear regime near the final coalescence, the
separation e ween eb t the various mechanisms is inevitab y
of an approximate nature.

Tidal heating

crumb + (9 ——0)o ~b + (2o'~~ + 'Y~~e) o b
——E~b ) (25)dt

1 2 ab——0+ go ——0 = 0- go.
dt 2

(26)

~ ~The first kind of dissipation we consider originates from
the tidal deformation of m as the hole me m falls in the
static gravitational field generated by M. In the mem-
brane para igm o ad ~36~ f black holes in which the horizon
is treated as a two-dimensional (2D) surface living in a
3D space endowed with physical properties like viscosity,

~ ~this tidal deformation heats up the horizon. The heating
36-38is described by the horizon equations
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d

dt gab 2oab + pabo.
0.1 0

Horizon Shear and Expansion

Here p b is the 2D metric of the horizon of the infalling
hole m, g = 1/(4m) is the surface gravity of the hole
m, and e b is the normalized electric part of the Weyl
tensor (C „b„l"l,with l" the horizon generators). 0 is
the expansion rate of the horizon generators,

0.08

0.06

1 d

LA dt
0.04

and o b is the shear of the horizon generators, 0.02

dt
—(As) = 2(o b + 20' b) Ax Ax, (29) 0.00 i

0.0 5.0 10.0 15.0

Mg-- ~ nv—88 (30)

with Lx the coordinate separation of the horizon gen-
erators.

For a hole with mass m falling in the external tidal Geld

M/r, e b in an orthonormal basis can be approximated
by [36]

FIG. 16. Development of horizon shear and expansion. The
horizontal axis is the Schwarzschild coordinate r of the in-
falling object in units of M. The solid line represents the
magnitude of the horizon shear on the horizon of the infalling
hole m. The dotted line is the expansion. Both the shear and
the expansion are in units of m and are plotted for the case
m = M.

where V is the velocity of the Gducial observers on the
horizon of m moving in the external tidal field (V
+2M/r for infall from oo). Since o b and 0 in Eqs. (25)—
(27) are driven by e b, which is small in our case, all
nonlinear terms in Eqs. (25)—(27) can be dropped, and

p b is decoupled. 0 is approximately given by

8 = o. b
t' o. t' G t, t' dt'

2M

[o~bo G/r']dr,
Pp

o. b —— ebt'Gt t'dt
2M

[e bG/r]dr,
Tp

(32)

where G(t, t') is the teleological Green's function [36]

exp[g(t —t')] for t ( t',
0 for t & t'. (33)

8 is infinite where caustics exist on the horizon, although
its contribution to the total increase of the horizon area is
finite. We do not consider the effect of caustics in this paper.

In Eqs. (31) 'and (32), r' is given by Eq. (24); the in-
tegrands are regarded as functions of r, with t = t(r)
obtained by integrating Eq. (24). In Eqs. (31) and (32)
the integrations are cut off when the hole falls through
the horizon of M. In principle, the integration should be
carried over all times, but the residue is unimportant for
the present purpose. In Fig. 16, we plot o.

&s (solid line)

and 0 (dotted line) as functions of the Schwarzschild co-
ordinate r, for the case of m = M. The horizontal and
vertical scales are in terms of M = m = 1.

A fraction of the initial gravitational potential energy
fh = Am/m is dissipated into the heating of the horizon
of m by this efFect:

1 LA 1

2 A 2
2m+2M

[0/r']dr . (34)

Eh —1 —2fh

is plotted against ro, the initial separation of the holes,
for the case of m = M. We see that Eh is decreasing with
increasing initial separation, as a larger initial separation
leads to a larger velocity and in turn larger e b in Eq. (30).
As po ~ oo, Eg decreases to 0.86. For the range of ro
covered in the numerical simulation, this e8'ect reduces
the gravitational wave output by about 10%.

Notice that the integration in Eq. (34) is terminated at
the point when the two holes are engulfed by a common
horizon. It is irrelevant whether the object that has fallen
in is a point mass or a black hole after that point. We
approximated that point to be when the holes are sep-
arated by 2m + 2M in Schwarzschild coordinates, i.e.,
when the two holes are nearly touching. For I, = M, the
heating on the horizon of M is the same as that on m,
hence the total fraction of energy going into heating of
the horizons as the holes are falling in each others tidal
field is given by 2fh In Fig. 15, th. e reduction factor for
the energy available for wave generation,



ANNINOS, HOBILL, SEIDEL, SMARR, AND SUEN S2

2. Absorption of gravitational evades Reabsorption of Waves

The second kind of dissipation arises from the fact that,
unlike a point mass, a black hole has finite size. As it
sweeps through the spacetime, it can reabsorb the grav-
itational wave already generated in the spacetime.

The gravitational wave that a black hole can absorb
depends on the frequency ~ of the wave and the l pole of
the wave:

0.10

0.08

0.06

0.04

———— dE/dm
-- " - Transmission

Product

The energy in the /-pole wave in the spacetime is given,
e.g. , in Ref. [1], and is reproduced in Fig. 17 (dashed
line) for t = 2 as a function of tu. The vertical axis (for
the dashed line) is dE/dw, all in scale of M = 1. The
transmission coefIicient Tj—2 times 0.1 is also given as a
function of w (dotted line). Notice that the quasinormal
frequency is 0.3737m . T~ 2 is about 0.5 at this point,
dropping to zero rapidly for a smaller w. As the peak of
dE/du is at a smaller w, the product of T dE/dw is small,
given by the solid line in Fig. 17 for the case of m = M.
The area under the curve is found to be 0.0012m.
Comparing to the total gravitational wave energy in the
l = 2 mode [30], Ei 2

——0.0092m, Eqs. (36) and (37)
lead to about 1% reabsorption of the l = 2 wave energy.

Reabsorption of higher l modes can be estimated sim-
ilarly. However, since the peak of dEr/d~ is always at an
u less than the corresponding quasinormal frequency u~,
whereas the transmission coefIicients rise to larger than
0.5 only for u & u~, the reabsorption is always a small
fraction of the corresponding component. As the t = 2
mode is the dominant component making 90% of the to-
tal radiation, we see that this reabsorption efI'ect can only
lower the total energy output at a 1% level:

F b, --99%. (38)

wave absorbed = ) (l-pole wave incident on m)
I,

xTr(~)d~. (36

Here T~ is the transmission coefIicient for incident / pole
waves as calculated in black hole perturbation theory,
see, e.g. , [2]. We take the l-pole wave incident on the
infalling black hole m as the l-pole wave in the spacetime
times the cross section of the hole m, as seen from the
hole M, i.e. ,

vr(2m)' 1 p,
'

cross section &- 4~ 2~+2M 2 4M2

r

o.oo i-
0.0 0.2 0.4

tn(M )

0.6

I"IG. 17. The reabsorption of the l = 2 wave. The hori-
zontal axis is the angular frequency u of the l = 2 wave in
units of M . The dashed line is dE/du, the dotted line is
the transmission coeKcient of the l = 2 wave multiplied by
0.1, and the solid line is the product T(dE/dw). For M = m
the area under the solid curve, which is found to be 0.0012m,
is roughly the total reabsorption of the l = 2 wave by the
infalling hole.

D. Caxnparisen with numerical results

In Fig. 14 we plot the final result of the analytic esti-
mate for total gravitational wave energy output

larger than the eKects considered above. For example,
in the late stages of the coalescence, the infalling hole
m is moving relativistically and is beaming gravitational
waves in the forward direction. Such beaming causes
large horizon heating [37,38]. The energy dissipated is
an order of magnitude larger than the total gravitational
wave output to infinity. However, such an effect is al-
ready implicitly included in the result of [30]. Hence no
modification factor is needed to account for the process.
The reduction in gravitational wave output due to the
interference from the difI'erent parts of a body for a finite
size object falling into a black hole has been estimated in
Ref. [39]. For the case of a two black hole collision, the
efI'ect is negligible.

We point out that there are other mechanisms causing
the heating of the black hole horizons during the coa-
lescence of black holes. Indeed, some of them are much

2

+7'p &h,+ b, x 0.0104— (39)

As the eKect of reabsorption is small, various re6.nements
of Eqs. (36) and (37) are not meaningful, e.g. , the cross sec-
tion (37) is in fact a function of the separation between the
two holes and the E = 2 mode of the two black hole system is
diferent from the E = 2 mode of the infalling hole of mass rn.

versus the initial separation between the two holes, for
the case of m = M. It is represented by the dashed line.
For comparison to the final result of Eq. (39) we have
also plotted two intermediate results as straight, solid
lines. A simple application of the standard perturbative
"DRPP calculation" [Eq. (15)] overestimates the energy
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by roughly an order of magnitude. Replacing m by the
reduced mass p as in Eq. (20) gives the "reduced mass
calculation, " accounting for the finite mass of the "per-
turbing" black hole. The three correction factors E„,, Ep„
and E b, together act to reduce the energy output fur-
ther, leading to the curved, dashed line in Fig. 14. In view
of the various approximations one has to make to obtain
Eq. (39), the agreement between the analytic and the
numerical results is remarkable, as the analytic results
were obtained without prior knowledge of the numerical
results, and vice versa. For L/M less than about nine the
analytic formula overestimates the actual energy output
computed numerically. This is to be expected since for
small enough separations the holes are initially engulfed
by a common efFective potential (in the sense of the po-
tential in the black hole perturbation theory), or even a
common event horizon. The approximation for colliding
black holes in these cases is inappropriate.

The connected circles show the maximum possible ra-
diation output obtained by comparing the initial black
hole masses estimated by the areas of the horizons (or a
single horizon if the holes are close enough) to the to-
tal mass of the spacetime. For large separations this
number approaches 29%%uo as expected from the work of
Hawking [20].

What physical understanding is gained from this semi-
analytic exercise? The central message is that, as far as
gravitational radiation is concerned, a black hole falling
into another black hole is not much difFerent from that
of a point particle falling into a black hole. As the lead-
ing order approximation, the energy output can be de-
scribed quite well by Eq. (22), which is the test point
particle result obtained in [30] modified by insight from
the quadrupole formula. We found that the biggest eKect
uue to black hole internal dynamics can be understood
as the deformation of the horizons when the holes are
falling in the tidal fields of one another. We see that the
energy of about 10 M (for black holes of mass M) is
dissipated by the viscosity of the horizon. Instead of ra-
diating out to infinity, this portion of the initial potential
energy is dissipated into the holes, increasing the horizon
area. The smallness of this number again testifies that
the horizon- of a black hole is "stifF," making a black hole
rather like a point particle. At present we can only say
the contribution from horizon heating is consistent with
our numerical results to the level of accuracy. A future
direct confirmation of this effect, especially for the case
of nonequal mass black holes, will be particularly inter-
esting.

There are other eÃects that we considered, for example,
the reabsorption of radiation (also interference calculated
in [39]) due to the finite size of the black hole. We found
these efFects to be negligible beyond the present level of
accuracy, adding further weight to the understanding of a
black hole behaving to a large extent as a point particle.
There are also other eKects that we have thought about
but do not know yet how to calculate analytically, for ex-
ample, the increase of the horizon area of the black hole
due to caustics. However, we do not expect that to be an
important contribution, and the agreement between the
numerical results and our present semianalytic approxi-

mations suggests that these other efFects most likely do
not aBect the total energy radiated significantly.

V. CDNCI USIDNS

We have performed numerical and analytic calculations
predicting the gravitational waveforms generated and to-
tal gravitational wave energy emitted when two equal
mass black holes collide head. -on. Waveforms for all cases
studied show similar behavior: the normal modes of the
final black hole are excited and account for most of the
emitted signal. Both the E = 2 and 8 = 4 waveforms are
fit nicely by a superposition of the fundamental and first
overtone of the black hole quasinormal modes. Although
the fit to perturbative calculations of the E = 4 wave-
form is quite good, the amplitude and precursor of this
waveform are more sensitive to the various computational
parameters than the more dominant S = 2 waveform.

The total energy radiated is of the order of 0.002M
(where M is half the ADM mass of the spacetime), far
below the estimate given by a simple application of the
area theorem. The analytic study, appropriate for holes
that are initially separate, confirms and elucidates the
numerical results. We find that the total energy ra-
diated can be approximated quite well using the point
particle result modified slightly to account for mass scal-
ing, finite initial separation, and internal dynamics of the
black holes. Taken together, the analytic and numerical
results indicate that even for holes that are initially in-
finitely separated, the total energy output will be of the
same order of magnitude. For throats that are close to-
gether, Price and Pullin [40] have treated the evolution
via gauge-invariant perturbation methods, regarding the
system as a single, perturbed hole. They find remarkable
agreement with our work for the Z = 2 waveforms and to-
tal energy radiated, independently confirming our results
and providing a new method for evolving distorted black
hole data sets. A detailed comparision of the numerical
results presented here to semianalytic results based on
regimes where the throats are initially near or far from
each other will be published elsewhere.

The work presented in this paper is only a first step on
the long path to computing the fully general evolution of
three-dimensional, spiraling, coalescing black holes. We
expect the more general case to be significantly more
complex to compute. In axisymmetry our current calcu-
lations can be extended to include: boosted black hole
collisions in which the holes are given initial finite veloci-
ties, unequal mass black holes which can radiate not only
gravitational waves but also net linear momentum, and
spinning colliding black holes where one can expect more
energy to be radiated, particularly if the holes have oppo-
site spin vectors. We intend to pursue such extensions to
our present axisymmetric code and to develop and apply
new, more general, three-dimensional codes [41] to these
systems as well.



2058 ANNINOS, HOBILL, SEIDEL, SMARR, AND SUEN

Finally, we note that we have prepared a video showing
results for several of the simulations reported here.

Interested readers may contact NCSA media services at
the internet address mediaQncsa. uiuc. edu for information on
how to obtain a copy of the video entitled "The Collision of
Two Black Holes. " At this address one can also obtain a
copy of a videotape of the original movies based on the work
of Smarr and Eppley. The NCSA group has also set up a
World Wide Web server accessible at the URL http: //jean-
luc. ncsa. uiuc. edu, and there one can find images and movies
of the simulations presented in this paper that cannot be pub-
lished in traditional form.
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