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Long wavelength iteration of Einstein's equations near a spacetime singularity
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We analyze the behavior of a very inhomogeneous spacetime near the singularity by using the
recently developed long wavelength iteration scheme of Einstein s equations. Near the singularity,
the local anisotropy cannot be neglected and we give the first order and third order solutions for any
perfect 8uid adiabatic index. We also clarify the links between a recently developed long wavelength
iteration scheme of Einstein s equations, the Belinski-Khalatnikov-Lifschitz (BKL) general solution
near a singularity, and the anti-Newtonian scheme of Tomita. We determine the regimes when the
long wavelength or anti-Newtonian scheme is directly applicable and show how it can otherwise be
implemented to yield the BKL oscillatory approach to a spacetime singularity.

PACS number(s): 04.20.Dw, 04.25.Nx

I. INTRODUCTION

Despite the fact that the universe is clearly inhomoge-
neous on the galactic scale and the possiblity, raised by
some inQationary scenarios (see, e.g. , [1]),that its geom-
etry may be "chaotic" on scales larger than the Hubble
radius, most works in cosmology are based on the homo-
geneous and isotropic models of Friedmann, Robertson,
and Walker (FRW). Many convincing reasons, physical
or philosophical, can be given to that state of affairs, but
there is also a purely technical one: very few inhomoge-
neous solutions of cosmological interest are known (see,
e.g. , [2]).

Various approximate solutions, however, have been
given in the past. A simple one is the "quasi-isotropic"
solution of Lifschitz and Khalatnikov (see, e.g. , [3]) the
spatial sections of which (in a synchronous reference
frame) are just uniformly stretched in the course of time
[ds = dt + a (t)h—;zdz'dx, where the arbitrary "seed"
metric h;z(x") depends on space only]. This metric is
exact and reduces to the standard FRW metric if the
spatial sections are maximally symmetric, and is a good
approximation to an exact solution of Einstein s equa-
tions if, as we shall recall below, all spatial derivatives
remain small, that is, if all "point to point" interactions
are neglected.

A more general approximate solution when all gradi-
ents are neglected is the "anti-Newtonian" solution of
Tomita [4], which, as we shall recall, depends on as
many arbitrary functions as a generic solution of Ein-
stein's equations. Finally, the "general oscillatory solu-
tion" studied by Belinski, Lifschitz, and Khalatnikov [5]
is the most elaborate approximate description of a generic

solution of Einstein's equations near the big bang.
There was recently a renewed interest in these approx-

imation solutions first of all because the observations of
the Cosmic Background Explorer (COBE) satellite urged
a &esh view on the old problem of structure formation
(see, e.g. , [6]) but also because a new line of attack on
Einstein's equations was pursued. Indeed, in a series of
papers [7], Salopek and Stewart and collaborators devel-
oped a "long wavelength" iteration scheme not of Ein-
stein's equations but of the Hamilton-Jacobi equation for
general relativity. Their method, which consists at low-
est order in neglecting all spatial gradients, leads back in
most instances to the quasi-isotropic solution mentioned
above, and yielded, for dust at least, the solution up to
and including the third iteration (that is, accurate to
order 6 in the gradients as will become clear below [8]).
(The case of a more general perfect Quid is more awkward
to handle in this Hamiltonian formalism. )

In another series of papers the present authors (to-
gether with Comer, Goldwirth, Tomita and Parry) [9—ll]
iterated in the same way the Einstein equations them-
selves. They noted that the zeroth order quasi-isotropic
solution, although not generic, is an attractor at late cos-
mological times of the generic solution of Tomita. Con-
centrating then on this quasi-isotropic limit of the zeroth
order solution they obtained the solution up to and in-
cluding the second iteration (Qfth order in the gradients)
for matter being a perfect 8uid with constant adiabatic
index or a scalar Geld. In the particular case of dust their
result is identical to that of [7] so that the link between
the two methods could be clearly made.

The motivation for going beyond the zeroth order is the
wish to describe inhomogeneities within the Hubble ra-
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dius. Indeed the approximation at the root of these long
wavelength iteration schemes is the following. Take a
synchronous reference &arne where the line element reads

ds' = —dt'+ p;, (z", t)dx'dx"

At each point define a local scale factor a and a Hubble
time H i by

where a = Ba/Bt Th.e Hubble time is the characteristic
proper time on which the metric evolves. The charac-
teristic comoving length on which it varies is denoted
L: 0;p~y = L p;~. The long wavelength approximation
is the assumption that the characteristic scale of spatial
variation is much bigger than the Hubble radius: that is,

a
aL, && H '.

At lowest order then the long wavelength approximation
is not suited to describe, e.g. , the formation of structure
within the present Hubble radius. One can hope, how-
ever, that the iteration scheme pushed at a sufBciently
high order can give results valid within the Hubble ra-
dius. Some numerical investigation of this question has
beeii undertaken by Deruelle and Goldwirth [10] (see also
[7]) but further work is nevertheless required to assess the
convergence properties of the approximation scheme.

In most of the previous works it was assumed that
the local behavior was isotropic, i.e., that the expan-
sion, when one goes forward in time, was similar in all
directions. This assumption is justified since the lo-
cal anisotropy then decays. But when one looks back-
wards in time near the singularity this local anisotropic
e8'ect can become very important. Thus one of the
main purposes of this paper is to analyze in detail this
phenomenon and to reinvestigate the validity of the
long wavelength approximation scheme (LWAS), which
naively seems to be justified near the singularity.

Another motivation to go beyond lowest order, which
is the one for this paper, is to study, within a long wave-
length approximation scheme, the behavior of a generic
solution of Einstein s equations near a spacetime sin-
gularity. and make the link between that scheme and
the Belinski-Khalatnikov-Lifschitz (BKL) general solu--
tion referred to above.

The point of view is therefore very diferent &om the
one adopted in our previous papers since, instead of the
late time quasi-isotropic solution, we consider here the
solution near a singularity, thus going backward in time.
In this case the quasi-isotropic behavior is no longer valid
and the approximate solution becomes more complicated
since it is no longer possible to separate the time depen-
dence and the spatial dependence into a scale factor and
a "seed" metric, respectively. The generic (i.e., without
assuming quasi-isotropy) first order solution was given
by Tomita [4] in the case of dust and radiation (it can
also be found in [7]). Here we consider the more gen-
eral case of a barytropic perfect Quid with an equation
of state of the form p/e = I' —1, where I is a constant.
Although an explicit solution for the first order solution

cannot be given for I' different from I' = 1 (dust) and
I' = 2 (stiff matter), an explicit limit near the singularity
can be given in all cases (Secs. II and III).

Once the first order solution has been given, we ana-
lyze the validity of the approximation near the singularity
(Sec. IV). To do this we examine the time evolution of
the terms which were neglected at first order. We find
that they could not always be ignored and we give a con-
dition of validity for the approximation scheme. In the
cases when this condition is not satisfied, we are able
to make the link with the work of Belinski, Lifschitz,
and Kalatnikov. We believe that the way we recover the
oscillatory behavior of the metric, which does not intro-
duce intermediate Bianchi type-IX geometries, is more
straightforward than the original approach of BKL, and
will allow in particular an easier analysis of the genericity
of the "spindle" singularities found by Bruni et al. [12].

We then give the generic third order solution (Sec. V).
For the sake of simplicity we then apply in detail the
approximation scheme to the case of spherical symmetry
(Sec. VI). In particular we show that, in the case of dust,
the third order solution corresponds to an expansion of
the Tolman-Bondi solution in time. Finally, in Sec. VII,
we give our conclusions and comment on the usefulness
of the long wavelength approximation.

II. THE LGNC VPAVEI ENCTH ITERATIGN
SCHEME

In this section we first rewrite Einstein's equations in
a way convenient for our purposes and then describe the
iteration procedure.

We place ourselves in a synchronous reference &arne
where the line element takes the form

ds' = —dt'+ q;, (t, x")dx'dx'

Tp~ = (e + p)u~u~ + pg~~ (2.2)

with the further restriction that p/e = I' —1 where the
index I' is supposed to be constant, positive, and less
than or equal to 2 (the limiting cases I' = 0 and I = 2
correspond, respectively, to a cosmological constant and
a "stiK" Quid whose speed of sound equals the speed of
light; I' = 1 is dust, I = 4/3 radiation; fluids with 0 &
F & 2/3 violate the strong energy condition and can be
called "inflationary" ) .

Einstein's equations are B„"= Sr with Sr—:y(T"—
b~T~) and y—:SnG—, G being Newton's constant. In a

synchronous reference &arne the components of the Ricci
tensor B~ are (see, e.g. , [3])

(Coordinate transformations involving four functions of
space can still be performed without spoiling the syn-
chronicity of the reference frame; see, e.g. , [3].) Matter is
taken to be a perfect Quid with pressure p, energy density
e, unit four-velocity u" (p = 0, 1, 2, 3), and stress-energy
tensor
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(2.3)

where K;~ = j;~ is the extrinsic curvature (an overdot
denotes the derivative with respect to time t, a semicolon
the covariant derivative with respect to p;~); all indices
are raised with the inverse metric p'~; K = v";, and R' is
the Ricci tensor associated with the metric p,~.

Now, one can always decompose ~'. = p' pp~ into a
trace and traceless part:

~; = 2Hh; + A'/a (2.4)

where the "anisotropy matrix" A' is traceless (A', = 0)
and where we have introduced a local "scale factor"
a = (detp;~)ir 3, so that the local "Hubble parameter"
H is H—:a/a. When a(t, x") and A'(t, x") are known
the metric p,~ is obtained by integrating the six linear
equations

The long wavelength approximation consists in ne-
glecting all the terms quadratic in the gradients, that is,
in the spatial derivatives, in Einstein s equations. Now,
from Eq. (2.9) or (2.10) the three-velocity u; is at least
first order in the gradients so that the right-hand side
of Eq. (2.6) is at least second order. At first order
then it can be set equal to zero so that Eq. (2.6) gives
that the anisotropy matrix A'- does not depend on time:
A' f lA'(x"). Then Eq. (2.7), the right-hand side of
which can be ignored at erst order, is an equation which,
when integrated, gives the scale factor i ja(t, x"). The
anisotropy matrix and the scale factor being known, Eq.
(2.5) yields the first order metric iijp; (~t, x"). Finally
Eqs. (2.8) and (2.9) where at first order R and u"u& can
be ignored give the energy density iile(t, x") of the fluid
as well as its three-velocity i ju;(t, x") [the three-velocity
can equivalently be obtained from (2.10)]. This first or-
der solution is given by Eardley, I iang, and Sachs [13],
and Tomita [4] but only in the case I' = 0, 4/3. It js
reviewed in the next section.

j;~ = 2Hp, ~ + A"pI,;/a . (2.5)
III. THE CENERIC FIRST ORDER SOI UTION

A' = 2a (S,' —R', ) (2.6)

(The matrix A' is therefore such that A,"pq~ = A".py;. )
Let us then rewrite Einstein's equations as equations

for a and A'. The traceless part of R' = S' gives
In this section we give the general solution (see [13]

and [4]) of the truncated Einstein equations (2.6)—(2.9)
in which all terms of order greater than 1 in the spatial
derivatives are neglected.

where R' = R' —3h'R and S' = yel'(u'uz. ——8'u"u~)
are the traceless parts of R' and S'.

The trace of R' = S' together with the (o) equation

Ro = So give

2H 4- 3I'H + (2 —F)

A. The anisotropy matrix

As already mentioned in Sec. II, Eq. (2.6) at lowest
order reads A' = 0 and gives that the anisotropy matrix
depends on space alone:

=,-'(2 —3I')R —-'y~(4 —3I')I'u" ui„(2.7)

A' = jA*(x") with i'lA' = 0.
2 2 (3 1)

(2.8)

where f]Af[' = A;A', .
Finally the (o) equation Ro = So reads

y~(1+ I'u ui, ) = 3H — + ', R, -
Sa6

B. The scale factor

H+ 3I'H'+, (2 —I') = 0, (3.2)

As for Eq. (2.7) for the scale factor a it reduces to

1 /A~)
20'H

3
= QEIu Ql + u ug.

),,
(2.9) a first integral of which is readily obtained:

(a3)
' —Qp4 + 4asa3(2 —I') (3.3)

Equations (2.6)—(2.9) are strictly equivalent to Ein-
stein's equations but are written in a form suitable for the
implementation of the long wavelength iteration scheme.
We shall also use the following consequence of Einstein's
equations [obtained by difFerentiating (2.8) and using
(2 6)-(2 9)1:

(& —&)8;e = (Dr, (eu'u. ,) + —, eu;o. Qi y
1 3

a

(2.10)

where a(x") is an integration "constant" and where we

have set p = (3~[f jA~[ /8) . [We chose a ) 0 which
will correspond to spacetimes emerging &om a singular-
ity. The collapsing situation a ( 0 is the time reversal of
the solution presented here. As for a it will have to be
positive or zero: see Eq. (3.14) below. ] Equation (3.3)
can be explicitly integrated when the anisotropy matrix
vanishes (P = 0) or when matter is dust (I' = 1), a
radiation fluid (I' = 4/3), or a stifF fluid (I' = 2) (the
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particular case I' = 0 is treated at the end of the sec-
tion):

I —2 ()qb —bba C()~/+(-)I '
(3.10)

(i) 3 (-3 + p2) (3.4)

with x = 2a~ ((')a)/P, (3.5)

3P4I' = 4/3: u = zgz2+ 1 —ln Qz3+ 1+x16a9/"

"()
P'(2 —I') )

+O(u' ' ),

0 & I & 2, (')~., = h.,P'/'C(. )u'/'+"&-»/'

r2
x 1+cj ——

(3

(3.11)

I'=2 ()a =a u with a = gP +4a, (3.6)

where u = t —to(z") with to(x") an integration "con-
stant. " For a general 0 ( I & 2 (and P2 g 0) an approx-
imate solution for small u is

0(I'(2, a =/3 u 1+cu +O(u )

with c = P ' . (3.7)

C. The metric

The anisotropy matrix and the scale factor being
known, Eq (2.5) then gives the metric (i)p;~(t, z"). The
fact that A,"p&A, ——A".p, I, implies that the matrix A' is
self-adjoint with respect to the metric p;~. Therefore
( )A' is diagonalizable in an. orthogonal basis (with re-

spect to the metric p,~) let us denote by r( )(x") its
three eigenvalues and by e three associated indepen-
dent eigenvectors with components e' (z") that we shall
normalize to unity. The triad e, forms a basis of the
tangent space. De6ning the cotriad e; by e, eb ——bb,
the components of any tensor on this new basis are ob-
tained by contracting its components in the coordinate
basis with the triad or cotriad. In particular we define

g b = p,-ze' eb and K b
= v;ze' eb. Since the triad is time

independent the relation v, b = i) g holds and Eq. (2.5)
becomes j~g = r( ) p s/a with p s = g s/a, and where

g b is diagonal. Hence we get the solution for the metric:

where C( )(x") are three integration "constants. " We
have that

detp, ~
= a = det (e;)deti) &

—det (e;)C(i)C(2)C(3)a

and therefore det (e, )C(i)C(2)C(3) = 1. We note that
when expanding the metric (3.9) in small u, one finds
the metric (3.11) for I' = 1. We also note that at lead-
ing order the metric (3.11), and therefore, because of
the previous remark, also the metric (3.9), is Kasner-
like. Indeed, setting p( )

= 1/3 + r( )/2/3, it reads

g q oc u "~ & with Pp( )
= Pp( )

——1. However,
it is important to note that the metric (3.10) for I' = 2
is not Kasner-like, since the sum of the p( )

(with the
definition p( )

= 1/3 + r( )/2a ) is less than 1 but one
has still Q p( )

= l.
Finally, we should mention that the previous calcu-

lations are only valid for P3 g 0. If P3 = 0 then the
anisotropy matrix vanishes, and the integration of Eq.
(2.5) is obvious. The metric is quasi-isotropic and reads

(3.12)

where h, ~ is an arbitrary "seed" metric that depends only
on space and the scale factor must be taken &om Sec.
IIIB depending on which type of matter one considers.
This particular case of a quasi-isotropic metric was stud-
ied in detail in our previous paper L9].

D. The energy density

As for the energy density it is given by Eq. (2.8) which
reduces to

with

(1) a b(l) (3.8) &. = 3a' —]~(')A~~'/8a',

that is, using (3.3),

(3.13)

4-3 -3r
gC = —El G

3
(3.14)

The tracelessness of A' implies that g r( )
= 0; we also

have Pr( )
——~~( )A~] = 8P /3. Explicit integration of

Eq. (3.8) with a given by Eqs. (3.4), (3.6), and (3.7)
gives

(i) Z C P&~&a& /P u&/3+&(a) //3
) 'gab = ab (a)

@=1, 1

3u(u+ P'/a3) ' (3.15)

(The positivity of e implies that a has to be positive. ) For
(i) a given by Eqs. (3.4), (3.6), and (3.7), (3.14) yields

x (ua' + P')'/' —
&-&«' (3.9)

4a 1I'=2,
4a3 + P4 3u3 ' (3.16)
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0&I'(2,

4+ —21 —1 - 2—x'
P ' u ' 1 —cru' '+O(u' "},(3.17)

ically distinct arbitrary functions of space corresponding
to the four degrees of freedom of gravity (the two gravi-
tons) and the four degrees of freedom of a fluid (e and
u'). It is therefore generic.

and one notices that the surface u = 0 M t = tp(x") is a
singular surface of infinite density. [Note also that if, in
the general case 0 ( I' ( 2, Eq. (3.14) yields (3.17), Eq.
(3.13) only gives the leading part in ye. ]

E. The three-velocity

As for the three-velocity at first order it follows &om
(2.9). However, Eq. (2.10), which at first order in the
gradients reads

ix a~ ~t'a; = (1 —I')/dt 8;a(ix a )+C,, (3.18)

gives us the behavior of u; without having to resort to
the full expression for the metric. In the case of dust it
tells us, for example, that u; is a function of space alone,
and for 0 ( I' ( 2 it gives

' u; = 8;t +C;u '[1+ (I' —l)cu' ]

1 —I Oc u
r c2 —r' (3.19)

with C; = C,.a sP ~~ l/I'. To determine the three "con-
stants" C;(x~) as functions of the constants C~ l appear-
ing in the metric, the more complete Eq. (2.9) must be
used; their explicit expressions in the case of spherical
symmetry will be given in Sec. VII.

F. Cenericity

Let us now examine the genericity of the metric thus
obtained. It depends on the following 12 arbitrary
functions: ~ lA&(x") (eight functions) [or, equivalently,
r~ l (x") (two functions) and e' (x") (six functions)]; a(x")
and tp(x"); and the two functions C~ l(x").

Now four of these 12 functions can in principle be fixed
by choosing a particular synchronous reference frame (see
Sec. VII for an explicit implementation of such a gauge
fixing in the case of spherical symmetry). One sees in
particular that the reference frame can be chosen in such
a way that the surface of infinite density is t = 0, that is,
one can choose to to be zero. Indeed, in an infinitesimal
change of coordinates, t = t + T and x' = x' + X' with
T = T(x') to preserve synchroniticity, the three-velocity
transforms as u; = &, up + &; uz 8;Tup + (t$;—
8;X~)u~ u; —0;T if ~u;~ (( 1. Therefore the three-
velocity can be set equal to zero locally by an appropriate
choice of coordinates if it depends on space only, which
is the case for dust. In all other cases this &eedom of
gauge can be used to set 0;to ——0 as can be seen &om
Eq. (3.19).

The metric & ~p,z therefore depends on 12—4 = 8 phys-

G. Late time limit

The scale factor being an increasing function of time,
Eq. (3.3) tells us that when a is large the anisotropy
P becomes negligible (unless I = 2) and the scale
factor tends to its Friedmann-Robertson-Walker value

t2)'sr (tp can be neglected for large t). Since
then f dta s (x t(r 2l1r m 0, Eq. (3.8) tells us that ~ lp;~
tends to a "quasi-isotropic" metric: ~ lp, ~ ~ t ~ h;~(x")
where h;z (x") is a "seed" metric depending on three phys-
ically distinct arbitrary functions. Five physical degrees
of &eedom are therefore diluted away: the traceless part
of the intrinsic curvature and the epoch of the big bang
(in the particular case I' = 2, the metric does not be-
come quasi-isotropic at late times and only the epoch
of the big bang is lost). The quasi-isotropic scheme
developed within a Hamilton-Jacobi framework by Sa-
lopek and Stewart and collaborators [7] and along the
lines presented here in [9], which consists in iterating
Einstein's equations starting &om the restricted "seed"
~ lp;~ = t ~ "h,~(x"), is therefore justified far away Rom
a spacetime singularity. On the other hand, near a singu-
larity, the full first order metric must be taken as starting
point.

H. The case of vacuum

I. The case of a cosmological constant

In the particular case of a cosmological constant (I' =
0), the integration of (3.3) gives

p2
sinh(/3A u),

3A
p' = O: &'la = exp(V 3A u)

with A—:4as/3 and the metric (3.8) reads

(3.2o)

The Einstein equations for vacuum can be derived &om
the general equations for a perfect Quid by imposing in
(2.6)—(2.9) e = 0 and S' = 0. Note that in this case all
the terms in (2.7) proportional to I' cancel because of
(2.8) with e = 0.

In the vacuum case the constraint (2.8), that is, (3.14),
gives a = 0 and Eq. (3.3) gives (il as = P2u so
that the metric (3.8) reads )7 q = b qP4) sC~ lu2"( ) with

p~ l
= -', + r( )/2p2. It is a Kasner-like metric since

p pi l
= g p2~ l

——1. [This incidentally shows that mat-

ter becomes negligible near u = 0: see Eq. (3.11).] The
metric depends on ll functions but (2.9) gives three ad-
ditional constraints. Therefore the solution depends on
eight functions, that is, four physical degrees of &eedom,
those of the gravitons, as it should in vacuum.
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(,)
(4p4~("g b =~ah

I

x(cosh /3A/4u) ~

C( ) (sinh /3A j4 u) ~ +"~
&

~

i A;

bc = e(a)~.A, e(b) e(c) (4.2)

complicated than if g b were only time dependent as is
the case in the BKL analysis. However, we proceed along
similar lines.

Let us first introduce the Ricci rotation coefficients (see
[14]) defined by

(3.21)

(In the case P2 = 0 the integration constant to can be
absorbed in the seed metric h;~.) Eq. (2.8) becomes a
definition of the energy density:

and their commutator

~abc = +abc Pacb&

which have the property

(4.3)

= A = const (3.22) +abc = Pbac + crab& (4.4)

and (2.10) says that A is a true constant, independent of
space, and hence is not a true degree of &eedom. The
metric therefore depends on 11 functions, three of which
disappear when the constraint (2.9) is imposed. In that
case then, as in vacuum, the solution depends on four
physical degrees of &eedom, as it should.

IV. CONDITIONS OF VALIDITY

a b
2 ei ejgab) (4.1)

where the triad e; depends only on the spatial coordi-
nates whereas the metric q b depends on both spatial
coordinates and time. The situation is therefore more

The purpose of this section is to establish in which sit-
uations the approximation scheme developed in the two
previous sections is valid and which remedy to give in the
cases where it is not. To check the validity of the approxi-
mation scheme, we simply compare the third order terms
arising &om the first iteration, which were ignored up to
now, with the first order terms that we have just calcu-
lated. We consider the scheme to be valid if the third
order terms remain small with respect to the first order
ones. In the general case this of course does not guar-
antee the convergence of the whole series. However, in
the particular case of spherical symmetry where an exact
solution is known (cf. Sec. V) one can check that the dif-
ference between the LWAS and the corresponding exact
solution tends to zero when u tends to zero. Far &om a
spacetime singularity when the first order metric reduces
to its quasi-isotropic component this was already done in
[7] and [9] with the conclusion that the next orders tend
to zero as time increases if matter violates the strong
energy condition, i.e., if the Quid is "inQationary. " On
the other hand, near a singularity where the anisotropy
matrix cannot be ignored, the next order, as we shall see
below, blows up generically as one approaches the singu-
larity, whatever equation of state matter satisfies, and we
shall recover the BKL oscillatory behavior for the metric.

Let us begin with the most tiresome part: the compu-
tation of the Ricci tensor built &om the first order three-
dimensional metric. We shall here compute the Ricci
tensor for a general metric of the form

thus enabling us to express the Ricci rotation coefficients
in terms of their commutators:

Yabc '=
2 [~abc + ~bca ~cab + ~cgab +'~b gac '~a 9bc] .'

(4.5)

It is important to rewrite the commutators A b, in the
form

d
~abc —gad@ bc + crab brac) (4.6)

where

p b. = e*,e." (Bbe,"—8;e„")- (4.7)

are time independent. In order to make the link with
the terminology of BKL it is worth noticing that these
coefficients can be rewritten in the form

Pb = ~dbe V'Xe
det e

(4.8)

It is then straightforward to compute the components
of the three-dimensional Riemann tensor in the nonholo-
nomic basis. One finds

ef ef e
+abed = 'gee/ fba7d 'Oec'gf a~bpd + Ydeb'7 ca

e e e
pdeap cb + +deep ba '7dcep ab (4 9)

Therefore the components of the Ricci tensor are

ec cd ef c e c e+ab feba+c 'g gebgfacd + + ec+ ba ~ be+ ac'

(4.10)

In terms of the functions p b, the Ricci rotation coeffi-
cients can be expressed as

7abc =
q [Pa'bc + Pbca @cab + ~cgab + ~a'gb'c ~brac]

(4.11)

so that the explicit expression of the Ricci tensor in terms
of the triad and of the metric g b is given by
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Rab = 'Kp bc ~ ~cp ba g geb 9'~cP ad + g'pea'9 ~cP db

+kV' ec(1 ba+Pba P'a b) 4 (V' ac+I ae P'e a) (I bc+ Abc I c b)

+ g P ec'g (~d'gab ~agbd ~b'gad) 4 P' ba'g ~egcf + 4 (Pba Pa b) g (2~f'9ec ~egfc)

+ g P a (2~cgbd'+ ~d'abc ~bgcd) + g Pa ~dgbc + q P b (Cfegaf

~a'ref�

)

grab

~f gea'

+ 4'g g (~dgab ~b'gad ~agbd) (2~f'gec ~egc f) + 4g 'g ~agef ~b @cd'

+g g g (~cgae'~d gbf'Cfc gabe'~fgda) + g g (~a~dgbc ~aCb @dc'~c~dgab + ~b~c'gad) ~ (4.12)

In addition to the curvature terms we have also
ignored, in the 6rst order approximation, the terms
quadratic in the three-velocity. The approximate three-
velocity that follows kom the erst order metric according
to (2.9) is given in the new basis by

!(V',.)' gi/g. gs (4.17)

(there is no term of the form gi/gsz because of the an-

tisymmetry of p b, in the two last indices). In Rzz, the
dominant term is

QEI 'B ~a——(BbKa + Kd'7 b
—K p db

—OaK), (4.13)
2

where we have used the relation

-!(V'zs)' gi/g.

whereas the dominant term in B33 is

(4.18)

j i b A: ~ b b d d b
K, I,e eje~ = 0~K~ + Kdy « —e~P (4.14)

1 2—!(S .s) gi/g' (4.19)

We have now to analyze the time dependence of these
two expressions giving the Ricci tensor and the three-
velocity and find the dominant term, i.e. , that with the
smallest power in u since we are heading towards the
singularity. To do that we shall assume that (1) the new
metric is diagonal, i.e. , g b = gab b (this amounts to sup-
posing that the anisotropy matrix is diagonalizable) and
(2) the spatial derivative of any component of the metric
has the same time behavior as the component itself (this
means in particular that we assume that to is indepen-
dent of space, which, as we saw, can be the case in an
appropriate reference kame, and that we also ignore the
logarithmic corrections that arise kom the spatial deriva-
tive of the exponents). Inspection of the above expression
then shows that all the terms in R b can be classi6ed in
one of the following categories, as far as their time behav-
ior is concerned: constant (or logarithmic), g / „gg/ b„g
g /gd, and g gb/g, gd, where a and b are fixed but c and
d range kom 1 to 3. We shall give here only the explicit
expression for the three-velocity:

with
(4.15)

b b
7 ab —P ab + q (~bgac + ~cgab ~agbc) ~ (4.16)

A. General case

X I' ' .= -- ) —~.b
——~.b - ) &-

i

—i,.gb b g b . (gb)
'gb 'ga

b ( gb)'

As for the dominant contribution in the crossed terms,
B]2 B23 and R3~, it is more complicated since there are
several terms involved. Therefore we quote only the time
dependence:

R] z ~ 'g] /'l7s ) R23 const, R» - g, /g, . (4.20)

The dominant term in the scalar three-curvature R is

(4.21)

The three-curvature thus behaves as a power law:

u2(P& P2 P3) ~ u4P1 u (4.22)

As we see the dominant terms always come &om the cross
product of the p b so that the terms with the spatial
derivatives of the metric g b do not play a role near the
singularity. One can therefore expect that we will recover
the results obtained by BKL who started their analysis
on a Bianchi type-IX model where the metric g b is only
time dependent.

The time behavior of the Ricci tensor being now
known, let us see if we were allowed to neglect it. An
analysis of the Einstein equations (2.6), (2.7), and (2.8)
shows first that u R; and Ru must be convergent for
the approximation to be valid. This is not the case if
the dominant terms are those listed above because p~ is
negative. Indeed u R is divergent as well as u Bz and
u2R2~.

As for the term containing the three-velocity in Eq.
(2.7), it varies as

(el v, tea) ~ iI, (4.23)
Now, as was shown in Sec. III, the generic behavior

of the erst order metric near the singularity is of Kasner
type, when 0 ( I' ( 2. Let us label the coordinates in
such a way that pi & pz ( ps. We know that —1/3 &
pi & 0, 0 ( pz & 2/3, and 2/3 & ps & 1 (see [3]). In Rii,
the dominant term then is

Therefore this term is convergent only if I' & 2@3. More-
over, since —1/3 ( pi & 0 and 2/3 & ps & 1, one can
see that when this term diverges it can be either more
(I' & 4pi+2ps) or less divergent than the curvature term.

The conclusion therefore is that the long wavelength
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approximation scheme breaks down in the general case
when approaching the singularity.

B. Case p, ~~~ = 0

C. BKjL oscillatory behavior

We now consider the Einstein equations (2.6) and (2.7)
where we do not neglect the curvature terms any longer.
The time derivative of Eq. (2.4), after use of (2.7) and
(2.8) and expressed in the new basis, gives

In the particular case where

1
p 23 = 0) (4.24)

a (a ri, ) = (2 —I')yebP+ 2yet'u us —2Ri, . (4.28)

Ri i l7] / gs R22 g2 /77s R33 const (4.25)

Ri 2 ~ g2/77s ) R23 ~ const, Rsi ~ const. (4.26)

all the dominant contributions listed above vanish and
the validity of the scheme must be reconsidered. In that
case the dominant time dependences are

As shown in Sec. III, the energy density e varies as
u ~. We now assume that the curvature term evolving
as u &' is dominant over the velocity term, evolving
as u 2J" (at worst). Assume moreover that the met-
ric remains diagonal in the evolution and that at some
time it is Kasner-like. In these conditions we are able to
recover the behavior discovered by BKL, initially in the
case of Bianchi type-IX and extended later to inhomoge-
nous situations.

Following BKL, let us introduce a new time defined by

Therefore

R ~ 1/gs ~ ii (4.27)

Knowing that 2/3 ( ps ( 1, one can conclude that Ru2
is then always convergent. In a similar manner one sees
that all the quantities u B,. are convergent.

Let us now look at the term quadratic in the veloc-
ity. The time dependence of this term remains the same
as in the general case. Therefore the approximation of
Eq. (2.7) is valid only (except the case I' = 4/3) if I' ) 2ps
or in the case where u3 ——0 if I' & 2p2 or u2 ——0, these
conditions being rather restrictive.

This is, however, not yet the end of the story. The
analysis of Eq. (2.8) imposes two further conditions.

(1) u u must be small with respect to 1, which implies
that I' ) 1+p for all a unless u vanishes.

(2) R must be negligible with respect to the energy
density e: this is due to the fact, already mentioned, that
the two first terms on the right-hand side compensate at
leading order. The condition is therefore, in view of Eqs.
(3.15)—(3.17), that u"R must be convergent. Therefore
one must have I' & 2@3.

Note that the condition I' & 1+p3 implies all the other
conditions, but this is very restrictive in general since p3
is limited from above only by 1.

To summarize, we find that the first order solution
given in Sec. III is a good approximation to a solution
of Einstein's equations near a spacetime singularity, if
the conditions p 2s = 0, I ) 2ps, and I' ) 1+p (for
all a = 1, 2, 3 unless u = 0) are satisfied. Diagonal
anisotropy matrices form an important subclass of ma-
trices satisfying the first condition and we shall see that
in the context of spherical symmetry, studied in detail
in the last section, the other conditions are also fulfilled
for I' = 1 or for I' ) 4/3. Now imposing (4.24) renders
the first order solution nongeneric as it then depends on
seven instead of eight physically distinct arbitrary func-
tions. However, a qualitative analysis of what happens
when p 2s P 0 can be given, which follows closely the
work of BKL.

(4.29)

and let us write the metric in the form

[q s] = Diag[e, e ~, e ~]. (4.30)

Then keeping in (4.28) only the dominant contributions
from the curvature term, we get the three following equa-
tions governing the coefBcients of the diagonal metric:

~.'~ = —
k (P'2s) " 1 ~.'/3 =

2 (P'2s)

~.'~ = —: (~'2s)' e' (4.31)

When the metric is Kasner-like, one has

B~o! = py, ~p = p3 ~ (4.32)

The equation for o. is similar to the equation for a par-
ticle with coordinate o. moving in an exponential poten-
tial. Initially the particle moves with a constant velocity
8 o. = pq. After reHection on the potential wall, the par-
ticle will move with the velocity 0 o. = —pz. The two
other equations then give the two other final velocities
pi. O~P = p2 + 2pi and 0 p = ps + 2pi. Therefore the
initial Kasner-like metric evolves into another Kasner-like
metric due to the inHuence of the curvature terms, given
by

—P1 P2+2P1 P2+2P1
rI s ~ Diag[~~+2P1 'g ~+~Pl 'g ~+&s& j (4.33)

We thus recover &om our general analysis the oscillatory
behavior between Kasner-like metrics, behavior which
was studied in detail by BKL (see, e.g. , [3]).

Let us conclude this section with the particular cases of
the vacuum, a cosmological constant, and a stifI' Quid. In
the case of vacuum, one has still a Kasner-like metric as
was shown in the Sec. III H. Therefore the above analysis
applies without modification. The same conclusion arises
from the cosmological constant case with anisotropy since
the metric (see Sec. IIII), when u ~ 0 has the same
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Kasner-like behavior as the metric (3.11). However, the
case I' = 2 gives a qualitatively diferent result. Indeed,
there is more keedom for the coeKcients p( ) and it is
then possible that pq, the smallest of the three powers,
be positive, in which case all the terms u R~ converge.
Note that the energy equation is valid also only in the
case where pi & 0. BLK showed that in the case of stiK
matter (or scalar field) the oscillating behavior (if there
exists one at the beginning, i.e., if pi is negative) will
end after a few oscillations when one goes backwards in
time. This means that, suKciently near the singularity,
the approximation scheme works.

, =()
I I

3()
I

(A) (3)A i fA)
(5 7)

('Kb = 2"Hbb+ ( )' (5 8)

where

(3)H =a3. (5.9)

The expansion of the Einstein equations then gives

where a boldfaced letter stands for a matrix. The third
order correction to the extrinsic curvature, ( }~,can be
decomposed, following (2.4), into

V. THE GENERIC THIRD ORDER SOLUTION
)Ab ——2 dt )c Sb —Bb (5.10)

Ab = 2a (Sb —Rb), (5.1)

II'
(2 r)8a6

I et us first rewrite the Einstein equations (2.6)—(2.9)
in the new basis: where the term under the integral is built &om the first

order solution and not from the exact solution as is the
case in the exact Einstein equation (2.6). (Note also
that the constant of integration that could arise &om
the above integral is supposed to be already included in
the first order term (i)Ab. ) As for the equations for a
and e they become

= —,'(2 —3r)B —-', y~(4 —3I') I'u u, (5.2)
2 —I' i fA t

2a +6raa + ()
I

—
I y4 (as)

(5.3)

where IIXII'—:AbAb and

peru = — (BbK + Kg+ b
—K P gb

—8 K) .
1 b b d d b

2 1+u u~

(5.4)

B — ( )eu u (5.11)
6 3

(3} b (3) ~ cb ~ ce (3) bd
l7ac g V7ac g 7/de 77 (5.12)

The third order correction to the metric can be com-
puted by expanding formula (2.4) (in the new basis). One
finds

In the previous sections we have only considered the
first order approximation of the Einstein equations. We
can now include third order corrections to the first order
quantities:

a = (')a+(')a+. . . g = (')/ +(')g~+. . . (55)

Using the fact that the matrix [g b] is diagonal,

(1)'g~b = Dlag[l7~])

one finds

(3) b (3) ~ —1 ~ —1 (3) —1+a gab gb ga ga 'gab Ob

(5.13)

(5.14)
These third order corrections follow Rom the approxi-
mate Einstein equations in which the terms that were
ignored previously are now taken into account but are
computed with the first order solution. Since the third
order solution is supposed to be small with respect to
the first order solution, one can linearize the Einstein
equations and all the equations giving the third order
terms will be linear ordinary differential equations. One
sees that, in principle, one can repeat this procedure at
any order and build iteratively the metric and the other
quantities.

It is convenient to define the third order quantities

(5.6)

where there is no summation on the indices. This equa-
tion can be integrated into

dt —"' (') K'.
77a

(5.15)

and therefore

' g.b
——g. dt —"' 2(')ab.'+ y3

'
77a

(5.16)

One can then obtain the third order energy and velocity
by inserting the metric (i)g b + (s)g b in Eqs. (5.3) and
(5.4) (taking for the quadratic term u~u the first or-
der solution ( )u ). For instance, the third order energy
density is given by
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+(&&

ZI (~),(i)„(i)„
3 (A)'

ye(1+ I'u'u„) = 3H ——
I

—
~

+ ,'B—
16 (a3) (6.5)

VI. THE EXAMPLE OF SPHERICAL
SYMMETRY

A. The equatiaxxs

The line element of a spherically symmetric spacetime
can be written in a suitable coordinate system (t, r, t), P)

ds = —dt + p„„dr + p(9gdO (6.1)

with

A)= a exp — dt —~, ps' = a exp -', dt-
o3 ) a3

(6.2)

where A and a are given by

A= —2 cMa S —R (6.3)

with

2H + 3I'H'+ —
~

—
~

(2 —I )
3 (A'l
16 qa3)

=:(2—3r)a-;(4 —3r)s. (6.4)

As for the energy density and the radial velocity they are
given by

dO = dg + sin t)dP .

An infinitesimal change of coordinates t = t + T, r =
r + B preserves the synchronicity of the reference frame
if T = T(r) and R = T'/p„„(where a prime denotes a
derivative with respect to r). It involves two arbitrary
functions of space: T(r) and the integration "constant"
in the equation for B (see, e.g. , [3]).

The extrinsic curvature m' = p'"july is diagonal and
therefore the matrix A' in Eq. (4) is too, so that we
are spared from the triad formalism of Secs. III—V. We
shall give here the solution to third order in the gradi-
ents. This will illustrate the general discussion of the
preceding sections, clarify the gauge issue, and allow a
comparison with the known exact solution of Tolman and
Bondi. This section is intended to be self-contained.

When the line element is (6.1) so that the traceless
anisotropy matrix A' in K& —2Hb' + A'/a (where
H = a/a) is diagonal with eigenvalues r(, )

= —A,
r(e) = r(@) = A/2, the Einstein's equations (2.6)—(2.9)
for a perfect Quid yield

Simple counting gives that a generic metric solution of
(6.2)—(6.4) depends on four arbitrary functions of r. The
total number of physical degrees of &eedom, however,
is two (there are no gravitons in spherically symmet-
ric spacetimes and the Quid is speci6ed by its density
and radial velocity). Two functions can therefore be
eliminated by fixing the gauge, that is, choosing a par-
ticular synchronous reference &arne, in agreement with
the remark below Eq. (6.1). We can first give a geo-
metrical meaning to the coordinate r by relating it to
the surface of two-spheres: this will fix a function in
ping. To eliminate the remaining gauge &eedom we note
that, in an infinitesimal change of coordinates that pre-
serves synchronicity, the radial velocity transforms as
tt = ='leap+ =Q, —Tlap+ 1 ——tc ~ tL —TBt BT I BR I

8T . Bv' Bv r — r
if u, (( 1, so that an arbitrary function of space (T') can
be subtracted &om u„.

B. The case of dust (r = 1)

At first order in the gradients Eq. (6.3) gives A = A(r)
and the solution of (6.4) is

(')a = a u(u+ n) (6.7)

with

= t —Sp and 0! = 4 Q3

and where a(r) and to(r) are two integration "constants. "
The metric then follows from (6.2) [see Eq. (3.9)]:

(i) ~ u4/3(1 + ~/ )2/3(i+2m)

(i) —( u4/3 (1 + ~/u) 3/3(i —)

(6.8)

where e = A/]A~. From now on we shall consider only
~ = 1 since the metric, in the case e = —1, tends to-
ward a metric of the Kasner type with the coeKcients
(pi ——1,p3 ——0, p3 ——0) which is nothing less than the
Qat metric as can be shown with a suitable change of co-
ordinates (see [3]): therefore there is no singularity for
e = —1. C„and Cg are two integration constants. The
first order metric depends, as anticipated, on four func-
tions of r: o., tp, C„, and Cg, and two can be eliminated
by Gxing the gauge. To do that we first impose Cg ——r,
so that the radial velocity (6.6) becomes

(~) tC~ = 4p + —0!)
2r

(6.9)

which, as we already knew from (3.19) depends on space

peru„+1 + ru u„= 2H'+ -'
~

—
I

+ —:
~

—
~
(»& ) .

(Al' f A')

Ea') ' Ea')
(6.6)
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only and can be set equal to zero (indeed when matter
is dust and hence follows geodesics there exists a syn-
chronous reference kame where the particles remain at
rest) by choosing o. = —2tor/3.

The gauge being thus completely 6xed, the erst order
spherical symmetric line element for dust Gnally reads

the integration of which yields

+ —hrt',

(6.18)

/2
(1)d8, 2 dt2 + dr2 + g2dg2

1 —br 2 (6.10)

with the definitions g = ru2/, u = t —to, and C„=
(1 hr—) (this form will be useful for a comparison with
the exact solution of Tolman and Bondi). It depends on
two arbitrary functions of r: h and to. The energy density
follows Rom (6.5) [see Eq. (3.15)] and the radial velocity
is zero:

/2

1+ f(r)
(6.19)

with

At third order then, the spherically symmetric element
for dust is (6.13) with ps and p, given, respectively, by
(6.16) and (6.18).

Now the exact solution for dust with spherical symme-
try is known. It is the Tolman-Bondi solution, the line
element of which can be written as (see, e.g. , Ref. [3])

~ (1)~—
3u(u —2tor/3)

'

Useful secondary quantities are

(6.11)
p = —(cosh g —1), t —to (r) = (sinh g —Il)

P p
2 2 3/2

(6.2o)

1'a = a u(u —2t', r/3),

(6.12)

for f)0,
p = (1 —cosI1), t —to(r) = (q —sinI1)P P

—2
' 2—

To obtain the third order metric the easiest way is as
follows. Writing a = 1Ila(1+as) and A/as = 1I1(A/as) +
ys, Eq. (6.2) gives

(1)d 2 + (3)d 2

for f ( 0, and

9p, /1/3

p = — [t —t (r)l 2/3
4

(6.21)

(6.22)
/2

= —dt'+, (1+q.)dr'+ q'(1+ q, )dO' (6.13)

with p, = 2as —fdtys and pe ——2as + —,
' jdtys. Equa-

tion (6.4) for as and ys is then transformed, by using the
relation ys ———3Kys —31 l (A/a )as —2(S—R) which fol-
lows from (6.3), into an equation for ps which eventually
reads

+3j K+ -'1 (A/a ) —R+,-'R = 0. (6.14)

(hr')'
3gg

2hrz - 2hrz 2(br~)'R= +
3g g gg

(6.15)

Eq. (6.14) becomes js + 2js/u+ hu / = 0 which is
readily integrated into

With 1 lK—:~ la/a and & l(A/as) given by (6.12), and
the relevant components of the Ricci tensor for the line
element (6.10) being

for f = 0. The line element is written in the comoving
gauge where the three-velocity vanishes and the miscel-
laneous functions appearing in the metric have an easy
physical interpretation: any particle is labeled by the co-
ordinate r, the same at any time; 4m'p (r, t) gives the area
of the sphere containing this particle at time t; p(r, t) is
the radial velocity of the particle; and p(r) corresponds
to the mass inside the sphere containing the particle.

We now consider the expansion of the Tolman-Bondi
solution in the parameter u = t —to(r), supposed to be
small. We find, for p,

&3~" . . . , 9 r 2i"'
p=

i

—
I

j' ' ' '+ — —
I p

' 'f ' ' (623)
2o &3J

In the derivation of this expansion, we assume that u' is
of the order of u. Going to the next to leading order in
the expansion we thus find

p, = ——tu/.23
10

(6.16)

Turning then Eq. (6.4) into aii equation for p, instead of
pe and using the relation j„=jg —-', y3 to eliminate y3
one gets

/' 3) / (pu2) 2/s

3fu'/' (2l"
1 + -5 ,/, I 3 I

(ln f u /p)
(ln pu~)'

(6.24)

~„+3~, ~'&K —;1'1(w/a') +2R

+iR —Sj«"(A/a') = O, (6.17)

Identifying f(r) = —hr and p = 4rs/9, we recover the
first and third orders (6.13), (6.16), and (6.18) given by
the expansion scheme.



2018 NATHALIE DERUELLE AND DAVID LANGLOIS 52

C. The general case (0 & F & 2) (»+( )
i(a ) 3t ( 2r )

(6.29)

The erst order metric is obtained as before and, with-
out going into details, it should be clear that it is given
by (3.11), the index (a) being r and 8, with r(„) = —A =

4e/3 —/3;r(s) ——r(y) = A/2 (again we shall consider
only e = +1 since e = —1 does not describe a sin-
gularity). This metric depends on four functions of r:
C„P l = g(r), CsP l, to, and c and two of those can be
eliminated by particularizing the reference kame. As be-
fore we shall first choose CeP l = r . Then, from (3.19)
and the discussion in Sec. IIIF, we know that tp can be
chosen to be zero, and that fixes the gauge completely
(note that when I' = 1 it is not the comoving gauge
chosen in the preceding paragraph). The first order line
element therefore is (6.1) with

(i)p —gt 2/s 1+ ( )t2 i +O(t i)
3 (2 —I')

(6.25)

1 — t r+(7(t )
Ai

(as) 3t . (6.so)

We therefore see, in agreement with the general discus-
sion of Sec. IV, that indeed the Grst order solution is
a good approximation to a generic solution of Einstein's
equation8 near a spacetime singularity up to and includ-
ing terms in t2 provided that 2/3 ) 2 —I', that is,
F ) 4/3. When I' & 4/3 the metric (6.25) and (6.26) is
still good at leading order near the singularity but the
energy density cannot any longer be given by (6.27).

D. The case of stifF fluid (F = 2)

which has to be compared with (i) (A/as), built with the
inore accurate first order solution (6.25) and (6.26): that
1s)

1+ ' 't' —r+(7 (t
—'

)
2c ~1 —I'~

3 (2 —r)
(6.26)

which depends on two arbitrary functions: g(r) and c(r).
As for the density and radial velocity they are given by
(3.17) and (6.6):

(i)e, (3 I)ct—r 1 —clt2 —r+ + (t4 —2r). (6.27

The 6rst order metric is again obtained by particu-
larizing the results of Sec. III to the case of spher-
ical symmetry. The anisotropy matrix depends on r
only: (i)A = A(r); the scale factor is given by (3.6):
(i)a = auils, u = t —to, and the metric (3.10) becomes

(1} ~ 2/3 —4&x/3 (1} ~ 2/3+ 2n/3'7ee = e (6.sl)

(with n—:3A/4as). It depends on four functions:
C„,Cg, tp, o, . We 6x the gauge by choosing Cg ——r2 and
t p = 0 so that the generic erst order line element, to-
gether with the energy density, given by (3.16), and the
radial velocity derived &om (6.6) are

(6.28) (i)ds2 — dt2 + t2ls C t—4~Is + r2t2~lsdfl2 (6 32)

I et us now examine the conditions of validity of the
approximation by determining the behavior of the third
order terms. The analysis here is just a very particular
case of the general discussion given in Sec. IV. Indeed
we are in the case where p 23 ——0, u2 ——u3 ——0 and
pi ———1/3, p2 ——ps ——2/3. Therefore we know that
the curvature terms do not cause any trouble, that the
condition u u & 1 implies I' ) 2/3, and finally that one
must have I' ) 4/3 in order to ensure the validity of Eq.
(6.5) giving the energy density. The reason that (6.27)
fails to give the energy density when I' & 4/3 is that
the leading orders in (6.27) compensate (the Kasnerian
metric is a vacuum solution), and that the subdominant
term is superseded, when I' & 4/3, by third order terms
coming &om the Grst iteration. I et us recover these re-
sults directly by determining the behavior of the third
order correction.

At leading order the dominant term in the right-hand
side (RHS) of (6.3) is R —s,, t ls; as for S it remains
negligible (S oc tr 4ls). The first order scale factor being
at leading order proportional to t / we have that the
third order correction to A, built out of the leading part
of the II1rst order solution, is

1 —A(1} 1 —a
3t2 (6.33)

('}u„= Io.o. lnt+
1 —o.2

30!+ PA
(6.34)

(i)+(3) (i)~ (1 + ~ ).

(i)+(s)
&

(i)
& (6.35)

The solution depends on the two arbitrary functions C„
and n, and the positivity of e imposes o,2 ( 1.

To obtain the metric at third order in the gradients we
must first evaluate the RHS of Eq. (6.3), that is, compute
B and S by means of the metric (6.31). These are sums
of terms in t ~ ( ) const, lnt, (lnt) ] and in t &( +
that we shall denote collectively by Q. Integrating
(6.3) and (6.4) will then yield ( )A" = "A + Qt and
( )a" = "( )a(1+Qt ), so that the third order metric will
be of the form
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where the time dependence of p„and ps is Qt2 .Hence
we see that the iteration scheme is valid if Qt ( 1. Since

& 1 this condition is satisfied near t = 0, in agreement
with the general discussion of Sec. IV.

The detailed calculation gives, for o. ) 0 and at leading
order near the singularity,

9(1 —2n) ~ (2 )
r'(7 —2a) (2 —n)' (6.36)

(6.37)

[For o. ( 0 the dominant third order term near the sin-

gularity is in (lnt) ts& + &.] One can also check that the
conditions of validity coming from the three-velocity are
also satisfied since I' = 2 and p ( 1.

VII. CONCLUSIONS

In this work, we have studied the early time behavior
of inhomogeneous spacetimes near the singularity. To do
that we have used a long wavelength iteration scheme to
approximate the Einstein equations. Our main concern
was to test the validity of the approximation scheme, by
comparing the terms we ignored with those we kept. The
result of this investigation is that one should be very cau-
tious with the use of the long wavelength approximation
if one wishes to get genera/ results. Indeed our analysis
shows that, in the general case, there are very severe re-
strictions on the range of validity of this scheme. The
troubles arise &om two origins.

The curvature terms. The curvature terms, which are
ignored in the first step, blow up in general near the
singularity. Going beyond the long wavelength approxi-
mation by keeping them &om the beginning enables us
to recover the oscillatory behavior discovered by BKL.
In the case where the curl of the vector field representing
the axis of contraction (going forwards in time) is orthog-

onal to the vector Beld, then the curvature terms can be
ignored and the approximation scheme is valid.

The velocity tervn8. The velocity terms may also blow
up. They do not if the perfect fluid is sufBciently "stiff"
to compensate for the dilatation (I' ) 2p ) or if the com-
ponent of the velocity along the dilatation (time going
foTwards) direction vanishes. Even if these conditions
are satisfied it is not yet enough to get a valid energy
equation, which demands that I' ) 1 + p unless the
component u vanishes.

In view of these results it should be interesting to re-
consider the study of BKL when the velocity terms are
dominant over the curvature terms. In this case the role
of matter should become important and one should not
be able to restrict oneself to the case of vacuum.

Finally we stress the fact that the problem of the ve-
locity terms disappears in the case of a cosmological con-
stant (I' = 0), and in the case of irrotational dust where
it is possible to choose a synchronous system of coordi-
nates for which the three-velocity of dust is always zero.
If we impose spherical symmetry the complete scheme
works for I' ) 4/3 (including I' = 2). However, the
scheme works weakly, i.e., without the energy relation,
for I' ) 2/3. The case I' = 1 is special since one can
choose a coordinate system so that the scheme works.
The scheme also works in general for the stiff case as
soon as there is local expansion along all the spatial di-
rections.

All our conclusions should apply to a gravitational col-
lapse, instead of a big bang, by just reversing the time.
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