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Perturbations of an anisotropic spacetime: Formulation
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We present a formulation for studying the evolution of perturbations in an anisotropic model
universe. The formulation is designed to allow the systematic study of the evolution of perturbations
in the spatially homogeneous and anisotropic Bianchi type-I spacetime. The spatial anisotropy in the
background causes the couplings of the density perturbation mode with the gravitational wave and
the rotation to the linear order Ou. r formulation includes the imperfect fluid terms in the background
and the perturbations, and the cosmological constant in the background. We use the complete set of
perturbed equations without fixing the gauge mode. After resolving the gauge issue we present the
equations so that we can use the advantage of having the gauge freedom efficiently, i.e. , in a gauge
ready form. The formulation is extended so that it can treat the system of multicomponents.

PACS number(s): 98.80.Hw, 95.30.Sf

I. INTRODUCTION

The evolution of perturbations in cosmological mod-
els is important for describing the generation and the
evolution of the observed large scale structure (see [1]).
This study has been thoroughly made in a simple case
where the background universe model is spatially ho-
mogeneous and isotropic. We call such a background
cosmological model the Friedmann-Lemaitre-Robertson-
Walker (FLRW) model. In this work we will study the
evolution of perturbations in a Bianchi type-I background
model. The Bianchi type-I model is the simplest model in
the class of homogeneous, but anisotropic universe mod-
els; for review see [2]. In the isotropic limit the Bianchi
type-I model becomes the FLRW one with the vanish-
ing spatial curvature. The anisotropic expansion stage is
supported by the nonvanishing background shear in the
metric. If we consider a fiuid (or a field) in the energy-
momentum tensor we can find models in which the early
shear-dominated axiisotropic expansion stage later be-
comes the matter-dominated isotropic FLRW universe.
Thus, in such a scenario it is interesting to investigate the
evolution of perturbations while the background model is
isotropized. As an example, the anisotropic background
metric can consistently include the magnetic field which
is aligned in one of the principal axes. In the magne-
tized model we can investigate the evolution of a self-
consistently excited (perturbed) magnetic field and the
gravitational field.

There are only a few previous studies on the pertur-
bations of the anisotropic background model; see [3—6].
The situation is particularly striking if we consider the
considerable amount of literature concerning the pertur-
bations in the isotropic background model. The isotropic
background model can be considered as a (measure zero)
special case of the anisotropic universe models. The au-

thors of [3] considered the perturbations in the Newto-
nian context. In the Bianchi type-I model, the authors of
[4] considered a dust medium in a particular gauge con-
dition. The authors of [5] considered ur = const an ideal
fluid using gauge invariant variables which correspond to
the variables in certain gauge conditions. Related stud-
ies using the gauge invariant, covariant, or gauge specific
treatments can be found in [6].

In [7] one can find a new formulation for studying the
cosmological perturbations in a spatially homogeneous
and isotropic background spacetime. The "gauge ready
method" presented in [7] was originally suggested in [8].
In this paper we will present a companion part of [7]
which is applicable to the perturbations in a spatially
homogeneous but anisotropic spacetime. As in [7], our
formulation is general and systematic. Using our formu-
lation one can treat the general perturbations in various
fluids and fields as long as the background model is sup-
ported. by the Bianchi type-I metric.

The gauge ready method starts with the full pertur-
bation equations without fixing any gauge. The gauge
will be chosen depending on how much the gauge choice
leads to the mathematical simplification of the problem
at hand. In [7], thus in the FLRW model, we find six
diferent temporal gauge conditions. Because of the spa-
tial homogeneity of the background model the spatial
gauge condition can be trivially treated. Except for the
synchronous gauge condition which has been used pop-
ularly, the rest of gauge conditions fix the gauge mode
completely. Any variable in such a gauge has a unique
corresponding gauge invariant combination of variables.
Thus, the variables in such a gauge condition can be con-
sidered as gauge invariant ones. Sixnilar situations remain
valid in the Bianchi type-I background. In the Bianchi
type-I model, due to the spatial homogeneity of the back-
ground model, the spatial gauge transformation does not
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have an important role. We can fi.nd a unique set of
gauge conditions which completely fix the spatial gauge
transformation property. In order to fix the temporal
gauge mode we can identify several different variables;
compared with the isotropic case, due to the existence of
the background shear in the anisotropic background, the
zero-shear condition is replaced by a uniform-shear condi-
tion which fixes part of the perturbed shear tensor of the
normal frame vector field (for details, see Sec. III B 1).
Out of these variables, except for the synchronous gauge
condition, the rest of the gauge condition fixes the tem-
poral gauge transformation property completely. Thus,
the variables in such a gauge condition have the unique
corresponding gauge invariant combination of variables.
Thus, even in an anisotropic model, the &eedom in choos-
ing the gauge depending on its convenience can be used
as an advantage in treating each problem. In order to use
the advantage, we present the equations without fixing
the temporal gauge condition; the gauge condition will
be chosen depending on the consequent physical or math-
ematical simplifications of the problem. We call this the
gauge ready method.

Compared with the FLRW case, we have one new
feature of the cosmological perturbations in a spatially
anisotropic background. The nonvanishing background
shear causes couplings between different modes. These
are the scalar, vector, and tensor modes which evolve
independently in the isotropic background. The nonde-
coupling of three modes was shown in [4]. In the set of
linearly perturbed equations there appear the coupling
terms between the background shear term and various
perturbed order variables. Thus, these coupling terms
disappear in the isotropic limit where we have the van-
ishing background shear. In the isotropic background the
perturbations can be described by a second-order differ-
ential equation for the scalar mode, a second. -order dif-
ferential equation for the tensor mode, and a first-order
differential equation for the vector mode. These three
modes evolve independently. However, because of the
couplings in anisotropic background, the equations are no
longer decoupled. In general, we may have a higher order
differential equation in which all three modes are com-
bined. Thus, except for some particularly simple situa-
tions, we may be no longer able to analyze the evolution
analytically. One expected feature &om such couplings
is that as the perturbations experience the anisotropic
background evolution stage, the resulting amplitudes of
the different modes of the perturbations in the subse-
quent isotropic stage will be related to each other. In
a purely isotropic background, since all three modes are
decoupled &om each other, the initial condition for each
mode should be given independently. It will be interest-
ing to investigate the interaction between different modes
while the background model evolves &om anisotropic into
isotropic stage.

As the inflation (accelerated expansion) model be-
comes popular as a part of the early universe scenario,
the anisotropic models have lost some of their important
merits as models for the early universe. The accelerated
expansion of the model, if it occurs, will rapidly dilute
(stretch) the preexisting classical structures (anisotropies

or inhomogeneities) so that the observationally relevant
local patch of the Universe becomes homogeneous and
isotropic after the acceleration phase [9]. In the ac-
celeration stage the currently observable scales become
macroscopic during some e-folding times before the end
of the acceleration era. If the acceleration phase lasts
long enough, the seed fluctuations (for the scalar field,
the gravitational wave, etc.) relevant for structures
will be regenerated &om quantum fauctuation during the
isotropized stage near the end of the acceleration stage.
The scalar- and the tensor-type fIuctuations evolve sepa-
rately in the isotropic background. However, since both
fIuctuations are generated &om quantum fIuctuations of
each component in the same physical situation, the gener-
ated seed fIuctuation of each component could be related.
This relation between the scalar and the tensor modes in
the isotropic model follows from the same seed genera-
tion mechainsrn [10]. Meanwhile, if the perturbations go
through an anisotropic expansion stage, the couplings be-
tween the perturbations and the background shear cause
the relation between the scalar and the tensor perturba-
tions; thus, the relation follows &om mixing due to the
evolution of the background model.

In Sec. II we introduce the notation and equations for
the background and the perturbations. Our method of
the decomposition of variables into three different types
is presented in Sec. IIB. In Sec. III we discuss the gauge
issue in detail. We identify a unique set of spatial (scalar
and vector) gauge-fixing conditions. We identify several
temporal gauge conditions, and each of which completely
fixes the temporal gauge transformation property of ev-
ery variable. Any variable under such gauge conditions
corresponds to a unique gauge invariant combination of
variables; this is discussed in Sec. IIIC. In Sec. IV we
present a set of complete equations without fixing the
temporal gauge condition. In Sec. V we present sup-
plementary equations which can treat a system of multi-
component medium. In Sec. VI we present a discussion.
For convenience, in the main text we present only the im-
portant ideas of our formulation. Details of the methods
and the equations are presented in the Appendices. As a
unit we set c = 1.

II. NOTATIONS AND EQUATIONS

In order to derive a complete set of equations to the
perturbed order we use the equations based on the ADM
(Arnowitt-Deser-Misner) formulation. The ADM formu-
lation of the Einstein's gravity theory is summarized in
Appendix A; see also [11,12].

The metric to the perturbed order is introduced as

goo: —e (1 + 2A),
2s

go~ = e B~)
~-n = e" (~-~ + &-~)

where
3

p p =—e'-h p, ) s =0, s =s (t), s=s(t). (2)
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A(x, t), R (x, t), and C p(x, t) are the perturbed order
metric variables. We consider B and C p as tensors
based on 7 p. a, P, . . . run &om 1 to 3, and a, b, . . . run
&om 0 to 3.

Comparing the metric in Eq. (1) with the ADM defi-
nitions in Eq. (Al) we can express the ADM metric no-
tation in terms of the notation based on p p..

N = e'(1 +A), N = e 'H, h p = e '(p p+C p).
(3)

8~G A 1
3 "+3+6)-'-'

CX

(s ~ 3ss ) bg = 8vrGIIp,

(9)

(10)

~ 2s = —4m. G (p+ p) ——)

where A is the cosmological constant.
Equation (8) can be derived &om Eqs. (7), (9), and

(10). Combining Eqs. (8), and (9) we can derive

We introduce Quid variables to the perturbed order
directly through the ADM notation:

E—:p+e,
S:—3 (p+ m),

J =e'Q
S p=e'(II p+bll p),

where Q, II p, and hll p are based on p p. The back-
ground fiuid variables p(t), p(t), and II p(t) are the
energy density, pressure, and anisotropic pressure, re-
spectively. The perturbed fiuid variables s(x, t), vr(x, t),
Q (x, t), and b'll p(x, t) are the perturbed energy den-
sity, perturbed isotropic pressure, energy fiux (or veloc-
ity), and perturbed anisotropic pressure, respectively.

Using Eqs. (3) and (4) ADM equations in Appendix A
can be reexpressed in terms of our perturbation variables
based on the Bianchi type-I spacetime and its perturba-
tions. The perturbed set of equations is presented in
Appendix B. In Appendix B we also present some useful
quantities for derivation.

A. Bianchi type-I equations

B. Decomposition

We decompose the vector- and tensor-type perturba-
tion variables as follows:

B B + B("),

Cp p+C, p+2C( p)+C p,
(v) (a)

q + q(~)

bII~.p + bII.p + 2bn,'"'p) + err.'p), (12)

As we see in Eq. (B6), to the background order we have
the nonvanishing trace-&ee part of the extrinsic curva-
ture Kg = —s bj, this corresponds to the shear [see
Eq. (E6)]. Thus, s characterizes the background shear.

In the isotropic space limit of the background metric,
the background becomes FLRW with zero spatial cur-
vature. We have s = 0, thus &om Eq. (10) we have
II p = 0. Introducing a = e' and H = a/a = s, our
background equations [Eqs. (7)—(9)] reduce to the Fl RW
ones; compare with Eq. (21) of [7]. For a multicomponent
system, in addition, we have Eqs. (44) and (E12).

The background order equations can be read &om
equations in Appendix B2. We express the equations
using s . From Eq. (2) we have

pnp = 28npcxp)

where an overdot denotes the time derivative based on
the background proper time, t; dt = e'dx . Since the
index in 8 is not a tensor index, we do not assume the
summation convention on such index. We also introduce
a convention such as

&.~n-~ = 2) s.&.~11-~ =—2) s.ll:,

p, + 3s ()Li + p) = —) s II (7)

4~G 1s+s'= — (u+»)+ ——-) '-
3 3 3

where in the second step the lowering index is done by
the P index which is not affected by s . Thus, the back-
ground parts of Eqs. (B8), (Blp), (Bll), and (B13) be-
come

where the indices in Eq. (12) are based on p p, C(

2 (C p + Cp ). The superscripts (v) and (t) denote the
vector-type and the tensor-type modes, respectively, de-
6ned as

B(v)l~ = 0 C( )I =0
q(~)l~ = p glI(~)l~ = pa a

C(&)~~ 0 C(c)cx

ap a)bII:—0:—hll '
exp CX

(A derivative in superscript is denoted by a vertical bar;
this is to indicate that the indices are raised by p p.
Since the connection symbol based on p p vanishes, the
covariant derivative based on p p is the same as ordinary
spatial derivative. ) Equations (12) and (13) can be con-
sidered as our definition of the scalar-, vector- and tensor-
type modes. The vector-type mode is defined to preserve
the trace-&ee condition. The tensor-type mode is defined
to preserve the transverse and the trace-&ee conditions.
In a decomposed set of perturbation equations we will see
that the existence of the background anisotropy (shear

s ) causes the couplings of all three types of modes
to the linear order. From S = 0 [Eq. (A3)] we have
[Eqs. (4) and (12)]

(8)
bII = 3bII+ LbII = II pC P. (14)
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We introduced 4 =p PB Bp = V'( ) 8 .
Using the decomposed variables in Eqs. (12) and (13)

the perturbed set of equations in Appendix B 2 can be re-
expressed. The vector- and tensor-type equations can be
decomposed into two and three difFerent types of equa-
tions, respectively. A method of such a decomposition
can be found in Eq. (27). After a discussion of the gauge
issue in Sec. III, we will present the decomposed equa-
tions with the spatial gauge mode axed in a unique man-
ner. The correspondence of our notation with the one
used in the perturbed FLRW model is presented in Ap-
pendix G.

~gab = ~gab gab, c( gcb(, a gac(, b&

~T b = ~T b
—T b,.( —T.b(,.—T .(,b.

(17)

(18)

where ( is based on p p. In order to derive the gauge
transformation properties of the decomposed variables in
Eq. (12) we introduce

We can impose four gauge conditions on bg b and bT b

which can fix ( .
In order to rewrite the gauge transformation properties

in the perturbed anisotropic spacetime we introduce

(O (O (n (a

III. THE GAUGE ISSUE + ((~) ((c)la = 0 (20)

A. The gauge transformation

We introduce a coordinate transformation

i =x +( (x'), (15)

The gauge transformation properties of the decomposed
metric and Quid variables [Eqs.(1),(4), and (12)] are pre-
sented in Appendix C.

B. The gauge conditions

gab = gab + hgab& Tab —= Tab + bTab& (16)

where an overbar and b indicate the background or-
der and the perturbed order, respectively. Using the
transformation in Eq. (15) the metric and the energy-
momentum tensor to the linear order transform as

where ( is based on g b. Let us write the metric and the
energy-momentum tensor to the perturbed order as

We can impose three types of gauge conditions on per-
turbed variables. These will fix ( (= e'(0), (, and (~(" .
We call the gauge conditions on(, (, and((") as the tem-
poral, the spatial-scalar, and the rotational gauge condi-
tions, respectively. The last two conditions belong to the
spatial gauge conditions which fix ( in Eq. (20).

Temporal gauge conditions. From Eqs. (C2)—(C17) we
can identify the following temporal gauge conditions:

synchronous gauge (SG):
comoving gauge (CG):
uniform-curvature gauge (UCG):
uniform-expansion gauge (UEG):
uniform-density gauge (UDG):
uniform-pressure gauge (UPG):
uniform-shear gauge (USG):

A—:0,
Q—:0,
C=O,
bz =—0,

0,
0,

2=0,

(' = ('(x),
(t
(t 0
(t
(t
(t
(t 0

(21)

Except for the synchronous gauge, other gauge conditions
completely fix the temporal gauge mode. In an ideal fluid
situation the uniform-pressure gauge is equivalent to the
uniform-density gauge. For the uniform-shear gauge, see
Sec. IIIB 1 below.

Spatial-scalar gauge conditions. We assume the tem-
poral gauge mode (» is completely removed by the tem-
poral gauge condition. In such a case we can identify the
following two spatial-scalar gauge 6xing conditions:

Rotational gauge conditions. We assume (' and ( are
completely removed by the temporal and the spatial-
scalar gauge conditions, respectively. In such a case, we
can identify the following two rotational gauge-Axing con-
ditions:

rotational B gauge: B ") = 0, ( " = ( " (x),
.rotational C gauge: C(") = 0, ( " = 0. (23)

spatial-scalar B gauge: B = 0, (+(A/b, )(=0,
spatial-scalar C gauge: C = 0, ( = 0. (22)

The spatial-scalar B gauge does not completely fix the
spatial scalar mode, (. However, the spatial-scalar C
gauge completely fixes (. For this reason, taking the
spatial-scalar C gauge will be convenient. We have
p PO Bp = ppV'(') V'(')P = ——2 g s V'(') 8 .

The rotational B gauge does not completely Gx the ro-
tational gauge mode, (~~" . However, the rotational C
gauge completely fixes ((" . On this regard, taking the
rotational C gauge will be convenient.

Thus, if we take any temporal gauge condition men-
tioned above, except for the synchronous gauge, together
with the spatial-scalar and rotational C-gauge condi-
tions, all gauge modes will be completely fixed (removed).
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We call the spatial-scalar and the rotational C(B) gauge
conditions simply as C(B)-gauge conditions. In the fol-
lowing we will concentrate on the gauge conditions which
remove the gauge modes completely. Thus, for the spatial
part we will take the C-gauge conditions. Together with
the temporal gauge condition which fixes (t completely,
the C-gauge conditions fix both ( and $" completely.
We do not choose the temporal gauge condition a priori.
An appropriate temporal gauge condition will be chosen
depending on how much the condition allows the problem

to be simplified mathematically or on the correspondence
of the result with Newtonian ones, etc.

1. The uniform-shear gauge

The trace-free part of the extrinsic curvature, K p in
Eq. (A4), contains information about the shear (with
negative sign) of the normal frame vector; see Eq. (E6).
From Eqs. (86) and (3), using K p = h ~K&~, we can
derive

Tr 28
xY~p — 6 Sn+~p Znp )

Z p =——e2' s p p(A —C)+e '~B p
— 7pAB—

~

—— C, p
——p p(&C)

3 ) 2 ' 3

~()+~( +| ( (24)

where Z p is based on p p. We note that K p is trace-
&ee, thus K = 0, however Z g 0.

In the FLRW limit, using the corresponding notation
derived in Eq. (G13) we can show that Z p becomes the
shear tensor; thus,

Z = ——e ' (A —C) — e'AB—
2 2A

+-(SC) -) s.C~'~: . (28)

~np —Znp —np ) (25)

Z p=Zp p+Z, p+2Z( p)+Z p,
( ) (~)

Z(v)ln = 0 Z( n = 0 = Z(a)na —
& ~p — a (26)

Each type of the decomposed variables can be derived
&omZ pas

LZ=Z —3Z,

which contains information about the scalar, vector, and
tensor modes of the shear of the normal kame vector;
see Eqs. (53), (64), and (81) of [13]. In the 8ianchi type-
I background, Z p contains information about the per-
turbed part of the shear of the normal frame vector.

We can decompose Z p into the scalar, vector, and
tensor type modes as in Eqs. (12) and (13) ) .2 g(s)ng (t (29)

Thus, imposing Z = 0 can be used as a temporal gauge-
fixing condition which fixes the temporal gauge mode,
(t, completely. We call this condition the uniform-shear
gauge condition as presented in Eq. (21). Although we
named the condition Z = 0 the uniform-shear gauge, this
does not mean that the total shear (Z p) is uniform in
the hypersurface; see Eqs. (26) and (27). In the Fl RW
limit, using the notation in Eq. (G13), we can show that
Z = —3Ay, thus Z = 0 leads to y = 0 which is the
zero-shear gauge condition.

The rest of the decomposed variables are presented in
Appendix C1. Under the gauge transformation, using
Eqs. (C2)—(C8) we can show that

l, hb, . 4 2Z=Z ——e ' +s —-e —'b, +2)
2 2L 6 3

~Z(v) Z lP Z lP'Y

(~) ( )Z p
——Z p

—Zp p
—Z, p

—2Z( p). (27)
C. Gauge invariant combinations

From Eqs. (24) and (27) we can derive the decomposed
parts of the perturbed shear using the metric variables.
For Z we have

From the gauge transformation properties of the vari-
ables presented in Appendix C we note the following. In
an ideal fiuid background, thus II p = 0, Q ", hll [for
6'll, see Eq. (14)], bll, and bII p are gauge invariant;(v) (&)

see Eqs. (C13)—(C17). Assuming II p = 0, we can con-
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A/g =A+
/

r e'Q)
&v+ p)

eq
C]~ =—C+

~

2'+
l 2+) ~+p

(&) (&)
CnplQ = C~p + 'Y~p 2s~—

(30)

struct the following set of gauge invariant combinations.
Each combination becomes the first variable on the right-
hand side in the comoving gauge condition:

Thus,

ab. e'Q
2A2 p, +p'

C( ))g —C( ) + . Ieq.
) v+s

The gauge transformations of B and R "
depend on the

spatial-scalar and rotational gauge modes, respectively.
In order to construct the gauge invariant combinations
we need the following steps. The following combinations
are temporally gauge invariant:

e8

s~q = s —aie'Q,

vr~g
—= vr —asc, e'Q,

~8
brig —= bK —(as+ e 'A)

P+P

(32)

(33)

(34)

(35)

Clq = Cl~ —2~ (37)

Using these combinations we can construct the following

gauge invariant combinations which become H and B'( ),
respectively, in the combination of the comoving gauge
and the C gauge:

~S
Blg c[

Ba Iq,c~,c&"'I = B~ + e(~) = (~)

{e) + ~8

(ac[~)

2A l 2E P+P)

—pp C() ~ + s+
l

l
1. b. . ~ e'Q,—8~ ——4s
2 A p, +p

(38)

(39)

One can similarly construct the gauge invariant corn-
binations using C, bK, s (or m), and Z together with
the C-gauge variables C and C" . In Eq. (21) we find
some variables which can be used for imposing the tem-
poral gauge conditions. Out of these variables, only the
gauge transformation of Q depends on the background
anisotropic pressure. Thus, similarly constructed gauge
invariant combinations using C, bK, c, and Z with C-
gauge variables are gauge invariant for general back-
ground with the nonvanishing anisotropic pressure.

Concerning the spatial gauge &eedom, only the C-
gauge conditions fix the corresponding gauge modes com-
pletely. Thus, in the following we will take the C gauge.
In the C gauge, by a variable B(" ~c s „s,g we imply
B

~& c c~.& in Eq. (39). The C-gauge conditionsQ,C~g, C

impose C = 0 = C("). From Eqs. (C6) and (C7) we have

a~

Thus, in the C-gauge condition, using Eq. (40), the gauge

transformation properties of B and B " in Eqs. (C3) and
(C4) depend only on the temporal gauge transformation,
(t

IV. EQUATIONS IN A GAUGE READY FORM

C =—O =—C("). (41)

The fundamental perturbation equations in this gauge
condition are presented in Appendix D. We use the de-

We will present a complete set of perturbation equa-
tions in a gauge ready form concerning the temporal
gauge fixing condition. However, the spatial gauge trans-
formation properties will be fixed using the C-gauge con-
ditions which are the unique choice as explained in Sec.
IIIB. Imposing the C-gauge conditions, the spatial gauge
modes are completely fixed. This is true as long as we
take a temporal gauge condition which also completely
removes the temporal gauge mode; see Sec. IIIB. The
C-gauge condition imposes
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composed variables introduced in Sec. IIB. The vector-
and the tensor-type equations are also decomposed into
three different modes; for a method, see Eq. (27). How-
ever, all three types of decomposed variables are coupled
through the equations.

We have seven difFerent temporal gauge conditions at
our disposal; see Eq. (21). Except for the synchronous
gauge, each of these gauge conditions Gxes the temporal
gauge &eedom completely. As discussed in Sec. III C
any variable using these gauge conditions has the unique
gauge invariant counterpart. In this sense we can regard
the variables in these gauge conditions as the gauge in-
variant ones.

V. MULTICOMPONENT SY'STEM

%{i)a=

(i)a—
A{i)gaia + F{i)ai

0,

5-&{')= = ). {')a~ (45)

a b
T{i)a, b A{i))

bP T()b. —F( )

(46)

(47)

where P is the projection tensor defined as P b =—g b+
n nb. %'e define

where F(;) is based on g b and n is a normal &arne
vector (see Appendix A). Using this notation Eq. (43)
can be decomposed into

'A{i) = %{i)1 F{i)n = F{i)n~ (48)
The formulation can be extended to the system in-

cluding arbitrary number of di8'erent Quids and fields
with general interactions between them. In a system
of multicomponent sources, the energy-momentum ten-
sor (T b) consists of all components. The total energy-
momentum tensor in previous sections is the sum of the
energy-momentum tensor of the individual component

Tab = ) T{i)ab~ (42)

where a subindex (i) indicates the ith component of the
source. The interaction between components can be char-
acterized through the covariant conservation relation of
each component as

where F(;) is based on p p. To the perturbed order, we
write

&{')=—&{*)+ ~&{')
(~)F() = F() + F(')

(~) l~F(.) —0, (49)

where P(;) and F(,) are the perturbed order quantities.
Equations (46) and (47) lead to the energy and the

momentum conservation equations of the ith component,
respectively. The conservation equations for individual
component are derived in Appendix E.

b
+{i)a;b = 'I{i)a) 5 %{i)a = O) (43) VI. DISCUSSION

p = .P(')~ P = ) P{i)) + 0=5 +{') P

Qn = ) q{i)n)

sn.~ =5 en{;) ~. (44)

The decomposed Quid variables in Eq. (12) can be repre-
sented similarly.

The fundamental equations derived in this paper re-
main valid for the Quid quantities regarded as the to-
tal ones in Eq. (44). The metric quantities remain the
same. The equations of motion of the individual Quid
component can be derived &om the covariant energy-
momentum conservation equation [Eq. (43)]. For an eas-
ier derivation we introduce a covariant decomposition

where Q{;) is based on g b and the second condition fol-
lows &om the covariant conservation of the total energy-
momentum tensor.

Since the Huid quantities are linearly related [see
Eqs. (A3) and (El)] to the energy-momentum tensor, the
Quid quantities used in previous sections can be regarded
as the sum of the individual Quid component as

Our formulation is very general. It can be applied
to diverse physical situations as long as the background
evolution is supported by the Bianchi type-I model. The
equations are presented in a gauge ready form. In this
way, we can choose a particular gauge condition which
makes the mathematical manipulation most convenient;
solutions in the other gauge can be expressed as the lin-
ear combinations of the known solutions in the partic-
ular gauge. Since our formulation includes the full im-
perfect Quid contribution both to the background and to
the perturbations, it can be applied not only to various
Quid systems, but also to various types of Gelds. The
examples include the scalar Geld and the magnetic Geld.
In fact, one of our main motivations for this study is
to investigate the evolution of the perturbed magnetic
field to the linear order. The energy-momentum tensor
of the magnetic Geld contains magnetic Geld strength, B,
in B form. As we decompose B into B + bB we have
B = B + 2B - bB + bB . The FLRW metric cannot ac-
commodate the magnetic Geld as the energy-momentum
tensor. Thus, in the FLRW background B2(= SB2) be-
comes the nonlinear order. However, in the anisotropic
background, we can have nonvanishing B. To the lin-
ear order the term B —B = 2B bB does not vanish.
Thus, the study of the evolution of perturbations in a



52 PERTURBATIONS OF AN ANISOTROPIC SPACETIME:

magnetized anisotropic background model will allow us
to investigate the magnetohydrodynamic instabilities in
general relativistic system self-consistently including the
simultaneously excited gravitational Geld.

An ideal Quid is a case with

II p ——0 = bII p, e = bp —c,bp = 0,

where we introduced

(50)

2 P
C

P
(51)

We call e as the entropic pressure. In cosmological study
one often considers a case with m = const. In this case
we have w = c„seeEq. (7). Dust or radiation 8uids
correspond to m = 0 and 3, respectively.

The energy-momentum tensor of a minimally coupled
scalar Geld can be reinterpreted as an imperfect Quid with
e P 0, but II p = 0 = hll p, see [7]. This is true even in a
perturbed Bianchi type-I model. The energy-momentum
tensor of a magnetic Geld can be reinterpreted as an im-
perfect Ruid with e g 0 and II p g 0 g bli p. Appli-
cations to these Quid and Geld systems will be made in
subsequent work.

Our imperfect Quid formulation can be also conve-
niently used when we use more generalized versions of
gravity theory. For a class of generalized gravity the-
ories, the contribution &om such a gravity other than
the Einstein tensor part can be reinterpreted as the new
contribution to the energy-momentum tensor. Such rein-
terpretation is mathematically equivalent to the direct
approach. In fact, such reinterpretation, in combination
with the covariant formulation, allows a simple way of
deriving the perturbation equations without heavy cal-
culations. This approach was applied in the FLRW case
in [7,14].

For a given equation of state, i.e., for a given energy-
momentum tensor, the evolution of the Bianchi type-I
model is characterized by the expansion rates 8 and 8
For the Bianchi type-I model supported by the dust or ra-
diation we can derive analytic solutions. These solutions
show the transitions of the background models &om the
shear-dominated anisotropic stage to the matter- (dust-
or radiation-) dominated isotropic FLRW stage. The evo-
lution of perturbations in such background models will
be considered in subsequent work.

Since the Bianchi type-I model is spatially Qat we can
decompose the spatial dependence of the perturbed vari-
ables using a wave vector k as A(x, t) oc J' Ag(t) e'"'"dsk.
The k vector can be represented as k = (ki, k2, k3)
where x, x, and x3 represent three principal axes of
the background anisotropy. Prom the transverse condi-
tion, a vector-type variable (q

" for example) has two
independent components. Whereas, &om the transverse
and trace-free conditions, a tensor-type variable (C p for
example) has two independent components. We can clas-
sify perturbations according to the alignment of the wave
propagation vector k with respect to the principal axes.
These are presented in Appendix F.

In the Bianchi type-I model, the authors of [4] adopted
the synchronous gauge in a dust medium for k

(0, 0, ks). In a dust medium, the synchronous gauge is
equivalent to the comoving gauge. The authors of [5]
considered m = const an ideal Quid using gauge invariant
variables for k = (O, k2, ks). The gauge invariant vari-
ables used in [5] correspond to the variables in the co-
moving gauge and the uniform-curvature gauge together
with the C gauge. Other studies can be found in [6].

The strength of our formulation can be summarized as
follows. First, we derived the evolution equations with-
out fixing the temporal gauge condition beforehand; the
spatial gauge &eedom is fixed in a unique way. We call
this a gauge ready approach. This gives us the &eedom
to choose any gauge which turns out to be most suit-
able for the problem which we will deal with. We iden-
tified some gauge choices which remove the gauge &ee-
dom completely. The variables in such gauge are, in fact,
equivalent to the gauge invariant ones. Using the gauge
ready form of the equations we can easily relate a vari-
able in one gauge to the other variable in other gauge.
Since we are dealing with a linearized theory, a solution
for a variable is linearly related to the solution for any
other variable. Thus, &om a known solution in a gauge
choice we can derive all the other variables in the same
gauge and also all the other variables in any other gauge
choice. In this sense, it is convenient to work using some
particular gauge choice where the mathematical manipu-
lation becomes simplest. By comparing the behaviors of
variables in diBerent gauges we may be able to get a bet-
ter perspective on the subject. For example, even in the
FLRW analyses we found that, only in certain gauge(s) a
variable shows the correct Newtonian limiting behavior.

Second, our formulation includes the full imperfect
Quid contributions. As we discussed above, this implies
that our formulation can be conveniently used for treat-
ing other fields (including the magnetic Quid) or other
generalized gravity theories. Practically, such reinterpre-
tation of the Geld or generalized gravity contributions
as an imperfect Quid allows us to simplify a lot of the
mathematical analyses involved; for the FLRW case, see
[7,14]. We also include the cosmological constant in the
equations.

Third, our formulation can be applied to the system
which includes any number of difFerent Huid or field (in-
cluding the generalized gravity situations) components.

In essence, we present the formulation which can treat
the evolution of general perturbations in the Bianchi
type-I background. As long as we have the Bianchi type-I
model as the background, the energy-momentum tensor
can include various Quids, fields, and the combinations
of those. As a gravity theory our formulation can treat a
class of generalized gravity theories where the Einstein's
gravity is a simple case. This formulation can be re-
garded as a companion of the similar formulation for the
FLRW background case presented in [7]. Applications of
our formulation to various Quid and Geld systems will be
made in subsequent work.

ACKN(3Vf LEDC MENTS

H.3. wishes to thank Dr. T. Futamase and Dr. M.
Kasai for hospitality during the early part of the work in
Hirosaki and for stimulating discussions.



i978 HYERIM NOH AND JAI-CHAN HWANG 52

APPENDIX A: ADM EQUATIONS J N-' —J NN' —JN N' —KJ+EN N'

We summarize a set of equations based on the ADM
formulation; see [11,12]. The spacetime is split into the
spatial and the temporal parts based on a normal vector
field. The metric is written as

goo = —N +N N go

g
00 N —2 On N —2Nn

g P=hP —N N Np

gap = hap)

(A1)

where N is based on h p. The normal vector n is
introduced as

n = —N, n =O, n =N, n = NN—. (A2)

The fluid quantities are defined as

E —A~ 71bT ) Ja — ~bra )

1S p = T p, S = h PS p, S p = S p ——h pS, (A3)
3

+S
i

+ SpN pN = 0. (A9)

The trace of ADM propagation equation is

KN' —K NN'+N N' —K K —-K'1

—4~G (E+ S) + A = 0. (Alo)

The trace-&ee ADM propagation equation is

X N ' —X- N&N '+X N-l&N ' —X-N' N '
P,o Pl~ » ~ lp

= ZX- —
~

N' —-h-N~~
~

N-'+ A'"'- —s~aS. .')
(A11)

For a system of multicomponent medium, we have ad-
ditional equations describing the evolution of individual
component; see Eqs. (E7) and (ES) in the Appendix E 1.

where J and S p are based on h p. The extrinsic cur-
vature is introduced as

1
(N ip + Npi —h p, p),

hpKp,
1

Nap h ap K) (A4)

where K p is based on 6 p. A vertical bar denotes the
covariant derivative based on 6 p, this notation for a
vertical bar applies only in this appendix and Appendix
E 1. The intrinsic curvature is based on h p as the metric:

(h)a (h)a (h)a

p(h)~ j-(h)a I (h)~ p(h)a
ph p& pg he)

APPENDIX B: A SET OF PERTURBATION
EQUATIONS

1. Useful quantities

g = —e '(1 —2A),
Oa —2spa

)

op —2s
(

exp ~np) (81)

We can express the ADM notation in terms of the no-
tation for the perturbed Bianchi type-I spacetime; see
Eqs. (3) and (4). In the following we present some useful
quantities.

The metric inverse is

(h) (h)gB p
——B

ap )

Bp ——Rp ——hpR
—(h) (h) 1 (h)

a

The connection is

p(h)a 1 Ca Ca C ln

I (h)p 1Cp
ap 2 p,n (82)

I'
p

———h (hpg ~ + hg~ p
—hp~ g) .(h)n (A5)

R(") = K PK p
——K + 16~GE+ 2A.

3
The momentum constraint equation is

(A6)

~
Ip

K —8vrGJ

A complete set of the ADM equations is the following.
The energy constraint equation is

A vertical bar indicates the covariant derivative based on

p p. Since the spatial part of the Bianchi type-I back-
ground model is flat the connection based on p p van-
ishes, and the covariant derivative based on p p simply
becomes an ordinary spatial derivative. However, for the
derivatives in superscript, in order to indicate that the
index is raised by p P we denote it by a vertical bar; ex-
cept in Appendices A and El a superscript index "~n"
indicates V'( ) = p POP.

The intrinsic curvature is

The energy conservation equation is

Z,N ' —Z N-N ' —-Z
~

Z+ —S I—1

S-PEC p+N-'(N—'J-), = O. (A8)

The momentum conservation equation is

(h)n 1 a ln laB p ~
——— C~p —Cp~ —C p~+Cp

+(h)a 2, Cay Calp Cp a + C1-
p

~(h) —2s CaP Ca I p
,ap a p

The extrinsic curvature is

(83)
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Kp =
~

sbp + p—~jp~
~ (—1+A)

2 )
+—e ' B p+Bp

2Cp + 2i 'Cp~+ 2C 'ip~ (B4)

1K = —3s + 3sA + e 'B ——C:— 3i—+ bK, (B5)

Kb = g«jb«(——3 +4) 4- —e '
(Bb +B 4)

——Gb

1 ( , 1 ) 1. 1.——
~

e 'B~ ——C~
~ bp y j~Cp—~+ jp~C —~.

3 q
'~ 2 ~) 2 2

(B6)

An overdot denotes a time derivative based on the back-
ground proper time t, where dt = e'dx .

2. Equations

The ADM equations can be expressed in a perturbed
Bianchi type-I spacetime. We use the ADM metric
and Quid variables expressed in terms of the perturbed
Bianchi type-I variables [Eqs. (3) and (4)j and use some
useful quantities presented in Appendix B 1. We intro-
duce L—:V'~ ~ 0 . The parts of the equations in curly
brackets indicate the terms to the background order.

The definition of bK is

1-bK—:3sA+e 'B ——C
2

The energy conservation equation is

1 ~pp + 3i (p, + p) + —j' pII P + e + 3s e + ~ + (p, + p) A —(p + p) bK + e 'Q

~-&.p(bll- —2C~ 11 ) —11-P
~

e-'a. p
—-C.p ~

=O. (Bs)
1. p p t', 1

The momentum conservation equation is

.+ 48 . + p+ J A,.+ ~,.+ hIIp
p + A pal p —C» D, + -Cp ~~ —-C~ ~p = 0.

The Raychaudhuri equation (trace of the ADM propagation) is

—3(4+ 4 )
—4«eG(bi+ 34i) +K+ 343 )

+ 3K—+3ebK —4eG(e+ 3e)

+ e 'b, —3i —4vrG (p+ 3p) + A — jpj P A+ j—P
~

—pp&C~ —e 'B p ~

= 0. (B10)
4

The energy constraint equation is

~ ~1.—6s ——j pj p + 16vrGp+ 2A + 488K+ 16vrGe —e ' C p
p

—LC

+ j~pj PA —e 'j—~pB ~(P — jPpp~C~ = 0. —(Bll)

The momentum constraint equation is

2 , 1 , ( 1 p 5 1 ( .p 1 .p——bK, —8vrGe'Q + —e '
]

AB + B[——
(

C ———C
3

+—j pA + —j ~C ~,p+ —j ~C p
——Cp j ~+. —C~ jp~ = 0. (B12)1. Ip l.p~ 1. p~ 1 pI~. 1

2 2 ' 2 ) 4 qCX

The trace-Bee ADM propagation equation is
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+ -" C-' +C i'- —~C- —C'i- —-S- C" —~C~2
pv pw p y p 3 p

—(p ~jp~A) —2' e '
i

Al ——bpAA
~

—p ~pp~bK

2—8 Bcx + B i + /ex —8BP
p

+e ' B i~jp~+j ~B~ p —16m| IIp+ XIII —C ~IIP~ ——0.

B p+ Bp + —bpB~

e '
(«. 'p «pp«) —16i«Gn)l+ r«« i3iicg —

6&
—(r «+ 3iic«) —e ' e '(j «r ~» ip«««r «)

(B13)

For a system of multicomponent we supplement Eqs. (44), (E10), and (Ell).

APPENDIX C: GAUGE TRANSFORMATION

The gauge transformation properties for our metric variables in Eqs. (1) and (12) can be derived Rom Eq. (17). For
Quid variables we can use Eqs. (4), (12), (A3), and (18). The energy-momentum tensor can be constructed from our
perturbation variables through the ADM notation in Eq. (A3). We have

Tpp ——e"(1+2A)E,
Tp ———e8J + BPS p,

Tp ——Sp.
We express the equations in terms of t, e = e'(o, and s [Eqs. (2), (5), (19), and (20)t:

A = A —(',
. (.B=B+e '(' —e', (+ —(

'
~B( ) B( )+e ~ j( )P+

(C1)

(C2)

(C3)

(c4)

C= C — 2s+
2A)

C=C+ 3L
2L2

c(~) c(~) g(~)

)
"() ()C p=C p

—p p» — ~('+ — +2(s +sp)

bK = SK+ (3'+ e-"Z) g',

s =s —p$',
A ~

7r —7r Sl

q = q + e '
(p + p) (' + II p ('l p-

q(") = q(") + e
—

~

ll g~lP ~ gtlP~

~n = ~n —) ..n:c'+ -' (n., + 2'rr. ,) —'r'ii-&,

(c5)

(c6)

(C7)

(c8)

(c9)
(C10)
(C11)

(C12)

(C13)

(c14)

&n = bn+ ) «.n:—r' —— n.~+ 2«n. «,
r'i-& qn.~ gi-«+r(. )-t~)

1
q 3 . . 1 ~ ]

(C15)
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Plr(") = irl(") —(I'l.p+ 2'rr. p)
—g'(P + (I'rp, + 2'rrp, ),g'(P».

IP + (v)P + II t~P + (v)~IP

bII~
p

——bII p
— II p+28II p +-p p 8~II~ ' —— II~g+28II~g — I~

—) i»II» —g p
—— II»p + 2ill»p g p + 2—I'

( Iip)» + Pillp)») .~ 1 ~ 1 - . 1 q(~g 1 ~l~ 2 (C17)

1. Decomposed parts of the perturbed shear variable

In the following we present the decomposed parts of the perturbed shear variable in terms of the metric variables.
From Eqs. (24), and (27) we can derive [Z is presented in Eq. (28)]

LZ= —e ' ———(A —C)+~i.—a —-C i+) '.
i

-2C~ ii-+-Ci'i: i,s~ (
4b. ( 2 ) -

q 2 )
(C18)

~
~EI ( ) = —e»' () i. (g —( ) i. & (~

— II(") (I( )) i ) (~(")I P (&)(I)(P

(,) „(.il 1 (.
Z p

———e' p p, i — (A —C) ——~i +sp+ (A —C)
)

(C19)

'y Y

(C20)

APPENDIX D: EQUATIONS IN THE C GAUGE

We present a complete set of perturbation equations in decomposed forms. We take the spatial C gauge without

losing any generality; thus we let C = 0 = C(v)

The de6nition of bK is

The energy conservation equation is

h'K = 3i A + e ' AB ——C.
2

(D1)

p P Pi(p i ») i ( P p) (pig —III) i ~ ~q = —~ill —) I (2PII(") i Ill(')
) i ~ (II(l i II(")

)

+C) s bp + ) ipCi ~p ——C p
IIP.

C1 p

The scalar part of the momentum conservation equation is

(D2)

Q+ 4iQ+ e ' 7r+ (((J, + p) A = ——) i qi"~ —e ' (bII+ ALII) —e 'IIP —
~

A+ —C
~

——C2 ( 1 l 1 (g)~

The vector part of the momentum conservation equation is
(D3)

q(~) + 4iq(~) ) spq~"~p

p

The Raychaudhuri equation is

.= —e '&~11.'"'+e ' -11p.
I

A+-C
I

+ —11'I A+-C
I

t' 1 & 1, (
(D4)
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bK+ 2shK+ e 'A —3s —4vrG(p+ 3p) + A+ ) s A —e 'Aa —4mG (e+ 3~)

2—e -) ..a("i-.+) s.C('):. (D5)

The energy constraint equation is

16~Ge + 4shZ —2) '.A+ e-'aa + 2e-'&C = 2e '-) s.a(")-.—) '.C('i:. (D6)

The scalar part of the momentum constraint equation is

8m.Ge'Q+ —(bK —e 'Aa) +
i

A ——C
~

= —) s C('~3
3 2d 2 y 2

The vector part of the momentum constraint equation is

8 G"q(") ——.-'~a(") = '. + ~

~

A —-C
I

—) 'pC
(. a ( 3 ) . . ()p2a)(2)

The trace-&ee ADM propagation equation is

C ) + 3s+2(s —s ) C —e 'Ac

(D7)

(D8)

2spbp bK+ A —3sA + e ' 2
i

A ——bpAA i + C ——Spic(
i

1 i
)

1
P 3 P ) P 3 P

+e-' 2
I

B — hp&a I+—4s
I

a — hp&a
I

—-—bp&a —2(s +sp) a(
i

1 i . (
i

1 i 2

) CX P

+e a( ) &+a( )i +2s a~ )i +a( i —2 s a( )i +s a~wP~ P P p ~cx p 8P p

+16~G b hII+ bIIi + SII" + b11'"" + bII"p

—(C —2A) IIp —II C~ )
p (D9)

The scalar part of the trace-&ee ADM propagation equation is

( (B+ 2s+ —
I a+e '

i
A+ —C

)

——e' hK+A —3sA = — —) s B~"i + —) s spC, ( 1 ) 3 ~ ~ (~) IP

2 j 4 A2 b,

8
—12vrG —hII+ ALII ——IIp (C —2A)

(D1O)

The vector part of the trace-&ee ADM propagation equation is

B(")+ I
2s+ —

~

H(") ——) Hps" = —— 28 i — bIC+A —344 —e 'ER)( . A „2. ()p e' (
A) A 'p A 4)

p p,.
+16~G AbII~") —IIP (C —2A) p

(D11)
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The tensor part of the trace-&ee ADM propagation equation is

+(t)a 3 ~

2 ( ~ ~
q +(t)a ~ . +(t)p a + +(t)a)7 —2eg+(t)a

p + 8+ (8 —8p) p
——~ 8~ pi p

—e p

+—) s~sa
~

—C a p ybpC a ~

——) s~(s —s~) C(i)~la ~ (i)~la - . . (i)~l~

p, a 'y

28p—
1 /a

~ bg bK+ A —BiA) ——2 (I + rtp) + (brr + A —3rIA)

—e ' 2 S gg(" +S g" ~a + —g" ~a+g a +2 S g(&)& a pa~(~)p l/1
p p a p + p ,p & ~ ~p p p v)

+16vrG b'II(')
p

— (3811+ Ahll) p + —bp (3bll + Abil)

—(C —2A) IIp + —(C 2A)
Ip

11 + (C

' rr' —' (r: —2x) ' - + s- (r; —2x) ~' —rr-r;" + —rr' (r;" " + r.""-')l.
1

»p+ p» ~ p ~ » p p~

(D12)

For a system of a multicomponent we supplement
Eqs. (44) and (E13)—(E15).

APPENDIX E: MULTICOMPONENT SYSTEM

1. ADM equations

b cF(,)~ ——(P(;) +P(;)) a~+ P P(,) b+ 7r(,.)b.c+ q(;)b

4+ I
~ s+ -()Pos

~ q(;).3 )
We used the kinematic quantities

8—:n. ,

(E3)

(')ai ~(*)~a~&+ (&(') + ~('))
+q(, ) nb + q(;)bn~ + 7r(, ~~b (El)

In the following we derive the energy and the momen-
tum conservation equations for the individual component
using the ADM notation (see Appendix A). We can de-
rive the equations directly from Eq. (43). An easier way
is to derive the conservation equation for the individual
component using the covariant formulation (based on the
normal frame vector), then to derive the equations using
the ADM notation &om the covariant equations. For the
covariant formulation of the Einstein gravity, see [15] and
the Appendix of [13]. The ith component of the energy-
momentum tensor for a general imperfect Quid in the
normal frame (n ) is

b
aQ nQ nQ bn

1
oab= +~+b nc'd ~Jab —na;b + aanb&

c d

where 0, a, and o b are the volume expansion scalar
(trace of the expansion tensor 8 i, = P(' P&~n, .g), accel-
eration vector, and shear tensor (trace-free part of the
expansion tensor) of the normal f'rame vector, respec-
tively. The rotation of the normal kame vector vanishes,
u s(n, ) = P'P&n, g= 0. In Eqs. (E.2)—(E4) an. over-
dot denotes the covariant derivative following the kame
vector; p, = p. n, etc.

In terms of the ADM notation, the Quid quantities
become

where q(;~ and vr(,
~ b are the energy Aux vector and the

anisotropic pressure of the ith component; vr(;~ is an en-
tropic part of the isotropic pressure and di8'ers &om the
definitions in Eqs. (4) and (44). From Eqs. (46) and (47)
we can derive

Q(i) p(i) + (p(i) + p(i)) ~ + q(, ) . + q(i)aii + ~(')rrab

(E2)

J =q,

S = 3p,

Sap —Rap ) (E5)
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and are similar for the individual component. The kine-
matic quantities can be expressed using the ADM nota-
tion

Np NpI
J(i)n, o J(i)n~p J(i)p ~J(i)n

1+
~

@(*')+ ~(') ~ ~ + ~('),3 ) N 3

~p= —zp

N ' (E6) The vertical bar in Eqs. (E6)—(E8) indicates the covariant
derivative based on 6 p. 1A'e introduced

and 0 = 0 = a . Thus we can derive

Q(i) = Q(i)) F(i)n = F(i)n)

where F(i) is based on h p.

(Eg)

1 N ( 1
(') e g (') ~ ~ (') + (') ~N ' K g 3 )

+J(')1 + 2 1(') S('p)E p Q(')' (E7

2. Perturbed equations

In the following we present the perturbed set of equa-
tions which can be used to treat a system of many com-
ponents. From Eqs. (E7) and (ES) we can derive the
energy and the momentum conservation equations in a
perturbed Bianchi type-I model:

~

i i i
1.

()(') + 3' (&(') + &(')) + & ))+(;) &(') ) + '(') + (&(') + &(*)) (~'+ ~~) + ~' ('(') + ~( )) + ' '&('),-

+—p p hll(, )
—2C~ II(,)

—II(,.) ~

e 'B p ——C p ~

—bQ(;) —Q(;)A = o, (E10)

e' q(;) +4sq(;) +&(;), + (p{,) +p(,)) &, +&II(;) p+II(;) ~
&,p+ —& p

—( p ~

——( p, II(;) —F(')p pt' 1 ~ ~l 1 ~ p

(El1)

where for Q(;), hQ(;), and F(;), see Eqs. (48) and (49); F(;) is based on p p. Equations (E10) and (Ell) can be
supplemented to equations in Appendix 8 2.

To the background order, &om Eq. (E10) we have

~(') + 3s (~(') + &(')) = ) s~ (')~ + Q('). (E12)

The perturbed parts of Eqs. (E10) and (Ell) can be decomposed using Eqs. (44) and (12). In the C gauge, using s
we have

'(') + 4'(') + &(')) (3'+ ~~) + 3' ('(') + ~(')) + ' +&(')

= —66H(;) —EB (2bB(,} }

+EH(,} )+C) s H(;}

+II(ip) e ' B p+B( p +2 BpC p
——C p +b (i) + (i)A, E13

p
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q(')+ q(')) + (&(') +)'(')) + ()

e'
p 1 (= —2—) s q . —hil(, )

—Ahll{;) —II . —
~

A+ —C
~(i),a

CX ,~p

——C p + F(;), (E14)

rtP~ + F(v)
(') (')~'

(E15)

where for F(;) and F(".
)

see Eq. (49). Equations (E13)—
(E15) can be supplemented to equations in Appendix D.

APPENDIX F: CASES OF THE WAVE
PROPAGATION

We take three principal axes of the background
anisotropy as x ) x ) and x . The wave propagation vec-
tor k can be in arbitrary direction. Depending on the
alignment of k relative to the principal axes we can con-
sider three situations: (i) k is directed along one principal
axis as k = (0, 0, ks); (ii) k is in a plane of two principal
axes as k = (0, k2, ks); (iii) k is in arbitrary direction
as k = (k] k2 k3). The transverse condition for the
vector-type variable, and the transverse and trace-&ee
conditions for a tensor-type variable leave two indepen-
dent components for each of the vector mode and the
tensor mode; see Eq.(13). We can take qz" and Q2",

(t)1 (t)1and C(
1 and C 2 as characterizing the vector mode

and the tensor mode, respectively. The two polariza-
tion states of the gravitational wave are characterized by
C 1 and C 2 ~ According to the direction of the wave(t) 1 (t)1

propagation the other components can be expressed in
terms of these components.

(i) In the k = (0, 0, ks) case,

2
C(t)1 k C(t)1

3 k3 2)

(t)3 k (t)1
k

(t)2 22 {t)1

q(v) kyq(v) + k2q(v)
3 k3 1 2 )

q( )& g&q(") ~ y&q("))I
k3

C(t)3
1

C(t) 3
2

C(t)2
1

C(t)3
3

C(t) 1
3

33 C(t) 1
+11 3)

(t) 2

(t)1

C(t)1 C(t)2
1 2

1 C' 'k'+ C ' 'k'
2

2 + 3

+2k k C() j

(iii) In the k = (kq, k2, ks) case,

(F4)

(F5)

qs" =0,(v) (F1) s( 2 s k (krak +ksk )C(')~
k3 I k2+k k3

C(t)2 C(t)1
2 1)

C(t)2 22 C(t)1 —2(sg —s1)C(t)1
2)

and 0, otherwise.

(ii) In the k—:(0, k2, ks) case,

(F2)

+ '
(k,k' —k.k') C(')', .k1

y22

APPENDIX G: FLRW LIMIT

(F6)

k2 k2
q(v) q(v) q(v)3 q(v)

k3 k3

(t)2 k k3 (t)1 C(t)3 k'k2 (t)1
k. kC 1' C 3 k-kC

(t)3 k k2 (t)1 (t)2 k k3 (t)1

(F3)
We consider a limit where the shear terms are negligi-

ble. From Eqs. (10) and (14), we have

~ o, a ~ o, rr ~ = o, abri = —3brr.

Equations in Appendix D become

bK = 384+ e 'LB ——C,
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e + 3s (e + ~) + (p+ p) (3sA —bK) + e 'Aq = 0, (G3)

Q+4iQ+ e ' sr+ (p, + p) A = 2e 'bII, (c4)
q(") + 4..q(") = —e-'~bll(")
bK+ 2sbK+ e 'A —3i —4vrG(p+3p) + A A

—4~G(si3~) =O,
16~Go + 4sbK + 2e 'LC = 0,

svrGe'q + —(bK —e 'AB) = 0,
2

3 (G8)

S~G"q(") —-e- aB(") = O
1 —.

(G9)

2. Background evolution

8' G
p, = —3(1+m) sp, s' = p.3

The solution is

(c15)

2 2
a OC g S(1+w) (X: qX+Sw (G16)

We are considering a Hat FLRW model with constant
m and A = 0. From Eqs. (7) and (9) we have

, ( 1 ) e'
B + 2sB + e '

~

A + —C
~

= 24vr G—bil,

B(")+ 2sB( ) = —16vrGe'bII("),
C('}- + 3.C(')- -"~C(')- = 16 GbII(')

p s p
—e p 7i p e

(G1o)

(G11)

(G12)

In perturbation analysis we need a ratio between the scale
and the horizon scale, k/(ai) = H /(a/k) tJI/l~. It
is convenient to introduce

1. Correspondence with FLRVf notation

2 2(1+Sw)
b. (kl (t) s(x+)

(ai)' (as) (t~)
~

1+3m

(a~) (G17)

In the following we show the relation between our per-
turbation variables in the FLRW limit and the ones used
in [12,7]. For metric variables we have

A = Q, B = —p, B(") = —B(")Y("),
C=2y,
C = 2p,

1 = —.
as

SH

1+3M)
rIH'. (G1s)

3. Scalar perturbations in the comoving gauge

where we de6ne L = —1 at t = tH, this relation deter-
mines t~. Using g we have

C(~) ~(~)Y(&)

Cp ——2H~ Yp,(~) (~) (~)

bK = r., y = a(P+aj).

For Huid variables we have

a=be, vr =bp,

q — y — pf(8)~() q(~) pf( )y( )
a ak a

14 1 ()
3 a 3

bII = ——p T Y, bII p
——p ~ Y p.( ) 1 (v) („) (~) (~) (~}

2k

(G13)

In the comoving gauge we let Q:—0. We consider an
ideal fluid system; thus, bII = 0. From Eqs. (G3—G6) we
can derive

b + (2 —3u))ib — 4z.Gp(1 —m)(1+ 3m) + me 2'A b

b —~x+s d~j ~ (~) +. d2n ~ (~)1+Sw 1+Sw

where [using Eqs. [G16) and (G18)]

(G20)

= 0, (G19)

where b—:b'p/p, . This equation can be transformed into
a spherical Bessel equation. The solution is

Y's are the harmonic functions introduced in Secs. 2.1.1,
5.1, and 5.2 of [7]. From Eq. (14) we have Abil = —3bll.
Since we take the normal kame (u = n ) where n = 0,
we have v + kP = 0 and v(") —B(") = 0 (see above Eq.
(8) of [7]). Thus, @ = 4 and v, = 0 (see Eq. (8) and
below Eq. (98) of [7]).

The C gauge condition corresponds to taking p = 0 =
H&" . In this case we have P = y/a, thus B = —y/a. Us-(~}

ing the above FLRW notation, Eqs. (G2)—(G12) reduce
to the FLRW ones in Eqs. (22)—(28), (98), and (102) of
[71.

3 2(1+Sw)
CX a +3~ a 2( ~} (X g 3(~+w), g 1+w

In the radiation dominated era (m = s) we have

(G22)

2 1+Sw
x = ~mkrI = ~iv (s —a~)

1+ 3tU'gH 1+ 3tU

(G21)

dq(k) and d2(k) are the integration constants. In the
large scale limit (x « 1), we have
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(sin x
1 +2

cosx t ( cosx+ d21— sinx&
X J

(G23)

where [using Eqs. (G16) and (G18)j

2 g 2 1+s s —ex =—kg= (s —eH)
1+ 3Q) AH 1+3' (G26)

4. Gravitational wave gq (k) and gq (k) are the integration constants. In the
large scale limit we have

The evolution of the gravitational wave is described by
Eq. (G12). In an ideal Quid case, using G oc C

&
we

have
1—'wG oc const, a (G27)

G+ 3sG —e 'LG = 0. (G24) In the radiation-dominated era (tv = s) we have

This equation can be transformed into a spherical Bessel
equation. The solution is

1 —Sm
G = X ~+s- gpss. s (2:)+g n2. s(X)-

1+Sup 1+ST (G25)
sin xG=gi cos x

g2 x (G28)
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