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Extrinsic time in quantum cosmology
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Extrinsic time is identi6ed in most isotropic and homogeneous cosmological models by matching
it with the ideal clock—a parametrized system whose only "degree of freedom" is time. Once this
matching is established, the cosmological models are quantized in the same way as the ideal clock.
The space of solutions of the Wheeler-DeWitt equation is turned into a Hilbert space by inserting
a time-dependent operator in the inner product, yielding a unitary theory equivalent to the phase-
space-reduced theory.

PACS number(s): 98.80.Hw, 04.20.Cv

I. INTRODUCTION

Much e8'ort has been made in the last two decades to
construct a quantum theory of gravitation. The problems
arising when one intends to join, in the same theory, the
principles of quantum mechanics and general relativity
show that quantum gravity is a very complicated and
not completely understood discipline.

One of the most difBcult features is the problem of
time [1—3]. In quantum mechanics, time is an absolute
parameter, di8'erently treated &om the other coordinates,
which turn out to be operators and observables. Instead,
in general relativity "time" is merely an arbitrary label
of a spatial hypersurface, and physically significant quan-
tities are independent of those labels: they are invariant
under diKeomorfisms.

General relativity is an example of a parametrized sys-
tem, i.e. , a system whose action is invariant under change
of the integrating parameter ("reparametrization"). One
can obtain such a type of system by starting &om an ac-
tion which does not possess invariance (this means that
the integrating parameter t is time), and raising time to
the rank of a dynamic variable. So the original degrees of
&eedom and time are left as functions of some physically
irrelevant parameter 7. Time t can be varied indepen-
dently of the other degrees of &eedom when a constraint
with a Lagrange Inultiplier is added.

One of the proposals to understand quantum grav-
ity, the so-called internal Schrodinger interpretation"
[1], states that time is hidden among the dynamic vari-
ables, and must be picked up before quantization. Once
time is identi6ed, the system is quantized by means of a
Schrodinger equation. Thus, the space of wave functions
can be turned out into a Hilbert space by de6ning the
usual inner product, so providing a satisfactory statisti-
cal interpretation.

However, not all the actions which are invariant un-

der reparametrization, have the time hidden among the
dynamic variables: Jacobi's principle [4,5] allows one
to get the trajectory of a conservative system in the
phase space, without information about time evolution,
by varying a parametrized action that does not contain
time among the dynamic variables [6].

Therefore, a criterion is needed to establish whether
time is hidden in a parametrized system, joined with a
method to pick it up. The action for a parametrized
system has the general form

dq'
~[q' p' N] =

I p —N&(-q', p')
I

«
dw

where W is the constraint and N is the Lagrange multi-
plier.

This action is invariant under reparametrization,

6q = e(r) (r) ) Spy(r) = e(T) (r) )

@Pi

bN = —(Ne), e(ry) = 0 = e(72),
O'T

which is equivalent to changing r ~ w+ e(r) on the path
(q(r), p(r)), I ' N dr remaining invariant. In addition,
the action (1.1) is invariant under a gauge transforma-
tion:

bq' = e(7.)(q', 'R}, bp;(~) = e(~)(p;, 'R},

lE
bN = —, e(rg) = 0 = e(r2).

Both transformations are not independent but dier by
an "equation-of-motion symmetry" [7]. On the classical
path, the reparametrization is equal to a gauge transfor-
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mation with parameter ¹.
The solutions of the Hamilton equations associated

with (1.1) have the form

q'=q'I N«
l

p* = p* I

(
) & )

(1.4)

So f N d7, instead of r, plays the role of physically mean-
ingful time parameter.

It is always possible to solve (1.4) locally for f N «;
i.e. , there are locally well-defined functions t = t(q', p;) in
the phase space coinciding with f N «when evaluated
on the functions (1.4). However, a global solution may
not exist; if it does exist, one calls it a "global phase
time" [8—11]. To find a global phase time amounts to
getting a globally well-defined function t = t(q', p;) such
that

(t, 'R j l ~ o
—1.

In fact, dt/« = N(~)(t, 'R)l~ —o = N(7 ) on any tra-
jectory. Ihuthermore, let us suppose that we know a
globally well defined function t = t(q', p, ) such that

(t 'R) 1~=0 = I"(q p) ) o.

Then t is a global phase time associated with the con-
straint

'R —= E(q, p)'R.

But 'R and 'R are entirely equivalent; they de-
scribe the same parametrized system because their
respective Hamiltonian vectors, H = (II'i, H")
(O'R/Op, —O'R/Oq), whose Beld lines coincide with the
classical trajectories, are proportional on the constraint
surface (remember that the w evolution is physically irrel-
evant). Therefore, t should be also considered as a global
phase time for the system described. by &. This teaches
us that global phase time should be rather defined by
means of [8]

(t, 'R)l~ —o ) O. (1.8)

Equation (1.8) tells us that

where x+ = (q, p); i.e. , t(q, p) monotonically increases
along any dynamic trajectory; each surface t = const is
crossed by the dynamic trajectories only once (so the H
Beld lines are necessarily open).

A global phase time can play the role of time in an
internal Schrodinger interpretation. The quantization
should be performed by solving the constraint for pz, the
momentum associated with time, to obtain the Hamilto-
nian entering the Schrodinger equation for the "reduced"
system [1—4].

Unfortunately the solution of Eq. (1.8), whenever a
global one exists, is not unique. This lack of unique-
ness is called the "multiple choice problem" [1] because
it can lead to different quantum theories. Even if the
job of solving pq was successful for some chosen time, the

resulting Hamiltonian of the reduced system may be so
intricate as to desist &om quantizing the system.

Another proposal to understand quantum gravity con-
sists in solving the Wheeler-DeWitt equation, which
comes &om constraining the wave function according to
the Dirac method,

'Ry= 0,

where 'R is an operator associated with the constraint.
This is a second-order hyperbolic differential equation in
the usual variables of gravity, which resembles the Klein-
Gordon equation. As in the latter case the Wheeler-
DeWitt equation allows for a conserved inner product,
defined on a "spacelike" hypersurface in the "super-
space"; however this product fails to be positive definite,
leaving this approach without a clear interpretation [12].

In this paper we shall search for global phase time in
cosmological models. We are going to deal with "extrin-
sic time" [1,13], i.e. , one that is intended to be associ-
ated not only with the coordinates but also with the mo-
menta. Extrinsic times deserve special attention in quan-
tum gravity because it is known that there is no chance
of reducing the system by identifying a time among the
coordinates, as in the case of the relativistic particle, due
to the fact that the potential in the super-Hamiltonian
constraint is not definite positive [1,12].

A simple model of a parametrized system, the "ideal
clock, " will suggest how the space of solutions of the
Wheeler DeWitt equation can be turned out into a
Hilbert space, with an inner product matching the ex-
pectation values of the Schrodinger approach associated
with extrinsic time.

In Sec. II the ideal clock, a parametrized system hav-
ing no genuine degrees of &eedom, is introduced. It is
quantized by following the Dirac recipe, where a singular
operator must be inserted in the inner product, in order
to recover the physical expectation values of the corre-
sponding reduced system. In Sec. III the ideal clock is
suitably generalized, in order to allow a comparison with
the cosmological models. In Sec. IV isotropic and homo-
geneous cosmological models are studied. Extrinsic time
is picked up in most of these minisuperspaces. Finally, in
Sec. V the problem of quantizing a parametrized system
with genuine degrees of &eedom, namely, a homogeneous
scalar field in a Robertson-Walker metric, is glanced at
in light of the experience acquired with the ideal clock.

II. THE IDEAL CLOCK

Let us start by considering a system without degrees
of freedom. Then, its "action" is not a functional of
dynamic variables but merely an arbitrary function of
time t:

S= t dt.

In order to parametrize the system, one changes the in-
tegration variable t to w:
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dhS = h —dv. .
d7

'8 = pg —f(t) = 0, (2.I)

and the action is

dh
8]t, pa, N] = f d~ pa ——N R'

d7. (2 2)

Now (t, pq) is a pair of dynamic conjugated variables. We
remark that the constraint is linear in pz., this will play a
significant role in the quantization of the system.

By varying (2.2) with respect to t, pq, and N, one
obtains the dynamic equations and the constraint

—=N,d'
d7

dpi' df
dt'

'R = pg —f(t) = 0.

Prom the first equation

Thus, S could be regarded as a Hamiltonian functional
action by identifying f (t) with pq. However, in order that
the function S does not change, this identification should
reenter through a constraint,

This wave function is nothing but a phase, which can be
understood by remembering that the clock has no degrees
of &eedom.

Let us define the inner product as

b

(@ @) = «~ (t)@(t)
a

p& ———iB/Bt is a Hermitian operator on the space of phys-
ical states (2.4) whatever (a, b) is (in fact, @'@I = 0).
Since time is an unbounded variable, the interval should
be (—oo, oo) or (a, oo). So the inner product (g, @)
between physical states diverges, as is typical for con-
strained systems. In order to get a physically meaningful
result (g, @), a Hermitian singular operator must be in-
serted [7]:

(0 0) = (@ i~.4')

(2.5)

v~. = b(x~. (t))I4~. &)I,

where yq, is any function such that gq, (t) = 0 is a gauge
condition ((y, 'R] g 0) fixing t in to (for instance ye, ——

t —to), and
I jy, 'R)

I
is the Faddeev-Popov "determinant".

In this way, the physical state (2.4) becomes normalized:

dh—=N wh= Nd~,
d7

so N relates the variations of v with the variations of
t, and it is known as lapse function. Then the second
equation reads

d—b~ —f(t)] = o
d7

so pq —f(t) is a constant of motion. Finally, the third
equation fixes the conserved quantity. As the only gen-
eralized coordinate of this system is the time t, we call it
ideal clock.

We can proceed with the quantization of this system.
The wave function satisfies the Schrodinger equation

~ d A

i = NRg.
d7.

But, following the Dirac method, the constraint must be
imposed on the wave function,

In Eq. (2.5) to must be regarded as the time at which the
physical inner product is evaluated. Since (g, @) does not
depend on to, the time evolution is unitary. In particular,

t(fi. W) = top~. V

We remark on the ixnportance of having in 'R a term
linear in momentum, in order to reach the Schrodinger
equation (2.3) in time t However, . that is not the case
in parametrized systems of physical interest such as gen-
eral relativity, where the constraint is quadratic in the
momenta. In order to change the constraint of the ideal
clock to one that is quadratic in momentum, let us choose
the (arbitrary) function f(t) to be

f(t) = t

and perform the canonical transformation

Q=p„P= t. —

&@= lp~
—f (t)]@= o

to get the "physical states. " So the physical states do not
depend on r. Since pq —— i8/Bt, the con—straint equation
turns out to be

(2.3)

@]') = exp
l

i f &]')a
l

. (2.4)

which is the Schrodinger equation in the time t for the
reduced systexn described by the Hamiltonian lx = —f (t);
its only solution is

Thus, the constraint of the ideal clock results in

P+ Q, — (2.6)

—N( P'+ Q) dr, —

which divers &om the original action in a surface term.
The global phase time is

t(Q, P) = P, —

and the "dynamics" of the ideal clock can be gotten by
varying the action
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which, of course, satisfies Eq. (1.5). The constraint sur-
face 'R = 0 is a parabola in variables (Q, P), which in-
tersects once and only once each surface t = const. The
Hamiltonian vector

H = (—2P, —1)
'R(O, sruti) = —

~ ~

7r„'+ V(O),
fdvl ',
qdA)

(3.2)

where V(O) is a monotonic function unbounded from
above [14]. In these variables, the constraint turns out
to be

crosses the t = const surfaces in the direction of increas-
ing time.

The physical quantum states for the system with con-
straint (2.6) come from the solution of the equation

and the global phase time is

(dV)
t(0, 7rri) = —P(B, arri) = —

igdB)
(3.3)

d, +QV =o. (2 7)

Differently from (2.3), this is a second-order equation,
which has two linearly independent solutions: the Airy
functions Ai( —Q), Bi(—Q). However, there are bound-
ary conditions to be satisfied. If Q 6 (—oo, oo), Bi(—Q)
should be discarded because it diverges when Q ~ —oo
[14]. Then, 'R(0, 7rii) = g(O)7rri + v(O), (3.4)

Since the coordinate change (3.1) should not modify the
wave function (whenever the wave function is regarded
as a scalar), the kinetic term of the constraint operator
should be associated with the invariant D'Alembertian
operator.

In general, the constraints appearing in problems of
interest have the form

y(Q) = v'2vrAi( —Q), (2.8)

which goes to zero in both inanities. The physical state
(2.8) is the Fourier transform of the wave function (2.4).
One can guess what the singular operator ppp should be
in the Q representation by inserting the identity twice in
(2.5):

with g(O) ( 0. So we are faced with the issue of knowing
whether or not a constraint such as (3.4) hides an ideal
clock.

The constraint (3.4) describes an ideal clock if it has
the form (1.7), where 'R should be the one of Eq. (3.2).
Then

ii.v(Q) = —i~a(g —g') (2.9)

VV'
g

(3.5)

Then,

since

(V» W) = (V' ii.V') = 1

Since V(B) in Eq. (3.1) is a monotonic function, V(O) has
no more than one zero. Because of Eq. (3.5), the same
must be accomplished by the function v(Q) (in the other
case, 'R does not correspond with an ideal clock). Let Oo
be such that v(Oo) = 0; then the solution of Eq. (3.5) is

dQe "'~Ai(Q) = 1. V(B) = sgn(v) —
~ ~

dO
3 "r~.~~"
2 „.(—g)

(3.6)

In addition,

P(pi. v) —= to(u~. v)

'U (2E= —= —gV
V

(3.7)

in agreement with the fact that —P is the time.

III. CENERALIZATIQN QF THE QUADRATIC
CONSTRAINT

The constraint (2.6) is still too simple to fit those of
the cosmological models. One can get a more general
form for the constraint of the ideal clock, although keep-
ing it quadratic in the momentum, by performing an-
other canonical transformation, a coordinate change, to
the variables (0, 7rri) defined as

It might happen that E(A) is zero or ill defined in 00.
Since H~~ o

——FH, in such a case the system would stop
or its evolution would be ill defined, when Qo = V(00) =
0 is reached, i.e. , at t(Q )=oP(Qo) = 0. So,—in order
that t = —P can evolve to inanity, the time should be
regarded as a positive variable, and only values t~ ) 0
should be considered in the gauge condition.

Since the constraints & and & = E& are equivalent,
they should lead to the same quantization. In fact, the
relation between both Dirac quantizations is

(3.8)

dO f'dV l
Q=V(O), P= 7rri=

id i, dO)
(3 1)
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'Rg =0,
(v, v) = (v, v).

The transformation (3.8) can be regarded as induced by
a finite unitary transformation U = exp[(i/2) (1I ln E 'P-
'P lnE g)], in the Hilbert space of the Becchi-Rouet-
Stora-Tyutin (BRST) quantization where (g, 'P) are the
ghosts associated with the constraint (cf. Refs. [7,15]).
In the next sections we shall examine in what extent the
Hamiltonian constraint of the isotropic and homogeneous
cosmological models correspond with an ideal clock.

We are going to look for a global phase time in the min-
isuperspaces resulting from the combinations of A and K,
which make sense in the constraint equation. Thus, the
cases (A & 0; K = 0, 1) and (A = 0; K = 1) are excluded.

In the Minkowski case (K = 0 = A), the constraint
(4.1) is satisfied only if sruti = 0; the Hamiltonian vector
is null in m~ ——0: the system does not evolve. So this
case is not an ideal clock.

Almost all of the remaining cases will prove to be ideal
clocks. According to the method described in the former
section, the potential V(n) is

IV. COSMOLOGICAL MODELS V(O) = sge(e) 3j e'"
~

—Id'+ dese~dB

- 2/3

(4 4)

1S=-
16~G

dt d'xg g(7Z +—2A),

The action of general relativity with cosmological con-
stant A is

For the cases (A & 0; K = —1) and (A & 0; K = 0) it
is v(n) & 0, |/n; so the lower boundary in (4.4) should be
—oo [thus V + 0 when n -+ —oo as —v/g, in accordance
with Eq. (3.5)]. When sgn (A) = sgn(K), it is

where 'R is the curvature scalar. We shall restrict our-
selves to spatially isotropic and homogeneous geometries,
so we shall deal with Robertson-Walker metrics:

/Kl'
np ——

2 ln
qAy

ds = N (~)d~

, ( dr2
R(~)

~

— +r de +r sin Odp
q 1 —Kr2

with K = +1,0. In this way the original system is left
with a finite number of degrees of freedom (minisuper-
space models).

The Robertson-Walker metrics satisfy the requirement
for the consistency of the minisuperspace models, viz.
that the same dynamics must result either by replacing
the minisuperspace metric in the Einstein equations or by
varying the action with respect to the remaining degrees
of &eedom:

The Hamiltonian form of the action is

What follows is a summary of the results for each min-
isuperspace.

(1) A=O; K= —1:

Q=V(n) = (2) e /, QC (O, oo),

(3) / —B/3 g2/3q —1/4

The global phase time is

t(n, ~„) = -E = —
—,
' (-;) ' .—' ' "~~.

tp should be taken to be positive (P & 0) because E is
not well behaved at Q = 0.

(2) A & 0; K = 0, —1:
- 2/3

q = v(n) = A-'/' K+ (A""—K)'/'

Q C (O, oo),

where

S = d~ O~~ —N'R,

1 —30 2 ~ A+p 30
~O (4.1)

E = A' 'e" [1 + K(Ae'" —K) ']
A

—1/2q —1(AQ2/3 K)2/3
- 1/2

~ K+(Aq /

and and

So

1/2
n=ln

] ~
a, N=~

&4~) ' &4~)

(3+i '
A

q4G~ 3

g(n) = —4e, v(n) = —Ke + Aes

(4.2)

t(n ) E 1A— / [1 + K(A 20 K)—3/2]1/3

xe '" ~~.

to should be positive because E is not well behaved at
Q=0.

(3) (A&0; K=1), (A&0; K= —1):

q = v(n) = ~A~-'/'(A '" —K),

S = ~A~~*~'e" = (dq+ ~A~~'~')
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In the case (A & 0; K = —1) the potential V(A) is
bounded &om above; therefore this case is not an ideal
clock. In the case (A ) 0; K = 1),Q E (—A /3, oo),
and the global phase time is

t(A, ~B) = P—= —2A / e vrB, —oo & to ( oo.

As we can see, it is possible to match several cos-
mological models with the ideal clock by means of an
extrinsic time. We remark that an extrinsic time was
already introduced by York [13] in the context of su-

perspace for closed three-manifolds without cosmologi-
cal constant. The York time is tv, ~ = 2/3p
it is canonically conjugated to minus the volume scale:
pq „———p / . On a hypersurface t~,I, ——const, the
Hamiltonian constraint determines the scale factor p,
once the traceless part p g of momenta vr g satisfying
the supermomentum constraints, and the unimodular
metric 0. p

——p p p, conjugated to p p, are given
on the hypersurface. So t~,p and 0. p are good dy-
namic variables, and the Hamiltonian of the system is
6 = —p, „=p'/'(0 s, p s, tv, k) [13,1].

The homogeneous and isotropic minisuperspaces stud-
ied in this section have the scale factor as their only
dynamic variable; o g and p b are &ozen, and no such
geometry exists in the superspace considered by York
[A = 0, K = 1 does not make sense in the constraint
coming from (4.1)]. So no comparison is possible with
York's time.

V. GENUINE DEGREES OF FREEDOM

So far we have studied models that are too simple: they
have no degrees of &eedom; they are nothing but time.
The following step should be the inclusion of genuine
degrees of &eedom, such as a matter field. In order to
glance at how an extrinsic time should be managed in
such a case, let us consider a homogeneous scalar Geld
minimally coupled to a Robertson-Walker geometry with
K = 0, A ) 0. The action for a scalar field P is

For simplicity, let us choose m = 0. Using the variables

1 A
—1/3 —2B q Al/3 2B + 0

2

(5.2)

the constraint becomes

Al/2 3/2
(

3 t2 2+ 1 2) (5 3)

We want to check that t is still time:

So, in order that t remains time, it should be granted that
3pz & 2t on all the dynamic trajectories. By introducing
the variables

3pt 27~4,
y =— &0, b= &0,

2t~ ' 16t~

the constraint is written as

A / t—p, (2y —3y + b).

(y, n)~„-,= ,', A'/'t'p, —"(y,b~~„,= —,
'A'/-'t'b „ /'.

Thus the dynamics lies on the positive roots of a cubic
polynomial parametrized by b. This polynomial has a
maximum at y „=0, and a minimum at y;„= 1.
One of its roots is yi(b) & 0. If b ( 1, there are two
positive roots: y2(b) & 1 & y3(b) (b & 1), and y2(b) =
1 = y3(b) (b = 1). When zy = 0 (i.e. , b = 0) it is
y] —0 —yQ ) y3 —

g ~ Therefore the dynamics lies in
the root y3, because y3 ——

z means pz ——t, which is
the constraint equation of the former sections. So let us
concentrate on the trajectories satisfying y = y3(b). As
was said, t is time only if y & 1; since y = y3 & 1, we
shall only prove that y never reaches 1 along a dynamic
trajectory by showing that y increases when b is near to
1:

S~~gg„——~ dtd x —g g" „„—m

which turns out to be

S~~gg„—— %dtvr B —m
I ¹

in the minisuperspace under consideration.
The Hamiltonian form of this action is

As in the case without matter, t should be intended to be
positive. In fact, when t goes to zero, then pq also goes
to zero (because 1 ( y = y3 & —); so we would be faced
with a singular point of the Hamiltonian vector, where
the dynamics is ill defined. Then y increases when b g 0,
and stops when b = 0 at the value y = y3(b = 0) = 3/2
[16]. Thus y remains bigger than 1, so proving that t is
time if the constraint is satisfied through the root y3(b).
The constraint y = y3 (b) means

S~~gg~, —— d7. ~p+0 sr~ —N —e vr@+m, e 8 —= p, —-', t'y3(b) = o. (5.4)

where The function h(t, sr~)—:——t2y3(b) is the Hamiltonian
for the reduced system (associated with the chosen time
t), so one could quantize the matter field by means of a
Schrodinger equation,

The constraint for the entire system Sg, + S &q, is

le —3B( 2 2) + 2 3By2+A 3B

'R@(p, t) = 0,

achieving a unitary theory with the usual inner product:
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(d', , d'~) = J dddi(d, t )0A(d&o),

dtd ib t —to 2, tp) 0.

Unfortunately the root y3 is such a complicated function
of b as to desist &om solving the Schrodinger equation.

As was shown, the internal Schrodinger interpretation
can be connected with the solutions of the Wheeler-
DeWitt equation

where W is an operator associated with the constraint
(5.1). This equation is much more tractable than the
Schrodinger equation for the reduced system. The prob-
lem here is how the space of solutions obeying suitable
boundary conditions is turned into a Hilbert space. In
Secs. II and III we solved this issue in light of the triv-
ial ideal clock: the physical inner product requires the
insertion of a singular operator p~, :

In order to know the singular operator, we should factor-
ize out the physical root in the constraint (5.3), in such
a way that

'R = E(t, P„P,z.4,)'R,

where R is the one of Eq. (5.4). Then

~1/2 ~1/2
Pg, — Pto

where pt, is the one of Eq. (2.9), which results
f'rom applying the canonical transformation (t, pt)
(Q(O), P(O, zn)) to the insertion b(t —to).

This completes the scheme of quantization based on
the solutions of the Wheeler-DeWitt equation and an ex-
trinsic time. In spite of appearances, difFiculties are still
present. In fact, the operator E is complicated enough
to prevent one &om computing the probabilities.
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