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Scattering ofI' an SO(10) cosmic string

Anne-Christine Davis* and Rachel Jeannerot
Department of Applied Mathematics and Theoretica/ Physics, Cambridge University,

Silver Street, Cambridge, CBS 9ElV, United Kingdom
and Isaac Newton Institute for Mathematical Sciences, Cambridge University,

20 Clarkson Road, Cambridge, CB8 OEH, United Kingdom
(Received 27 March 1995)

The scattering of fermions from the Abelian string arising during the phase transition SQ(10) ~
SU(5) x Z2 induced by the Higgs field in. the 126 representation is studied. Elastic cross sections and
baryon-number-violating cross sections due to the coupling to gauge fields in the core of the string
are computed by both a first-quantized method and a perturbative second-quantized method. The
elastic cross sections are found to be Aharonov-Bohm-type. However, there is a marked asymmetry
between the scattering cross sections for left- and right-handed fields. The catalysis cross sections
are small, depending on the grand unified scale. If cosmic strings were observed our results could
help tie down the underlying gauge group.
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I. INTRODUCTION

Modern particle physics and the hot big-bang model
suggest that the Universe underwent a series of phase
transitions at early times at which the underlying sym-
metry changed. At such phase transitions topological
defects [1] could be formed. Such topological defects, in
particular cosmic strings, would still be around today and
provide a window into the physics of the early Universe.
In particular, cosmic strings arising &om a grand unified
phase transition are good candidates for the generation
of density perturbations in the early Universe, which lead
to the formation of large scale structure [2]. They could
also give rise to the observed anisotropy in the microwave
background radiation [3].

Cosmic strings also have interesting microphysical
properties. Like monopoles [4], they can catalyze baryon-
violating processes [5,6]. This is because the full grand
unified symmetry is restored in the core of the string,
and hence grand unified, baryon-violating processes are
unsuppressed. In [6] it was shown that the cosmic
string catalysis cross section could be a strong interac-
tion cross section, independent of the grand unified scale,
depending on the flux on the string. Unlike the case of
monopoles, where there is a Dirac quantization condi-
tion, the string cross section is highly sensitive to the
flux, and is a purely quantum phenomena. Defect catal-
ysis is potentially important. It has already been used
to bound the monopole Aux [9], and could erase a pri-
mordial baryon asymmetry [10]. It is, thus, important to
calculate the string catalysis cross section in a realistic
grand unified theory. In [6] a toy model based on a U(1)
theory was used. In a grand unified theory the string flux
is given by the gauge group, and cannot be tuned.
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A cosmic string is essentially a flux tube. Hence the
elastic cross section [ll] is just an Aharonov-Bohm cross
section [12], depending on the string flux. This gives
the dominant energy loss in a &iction-dominated uni-
verse [13]. Since the string flux is fixed for any given par-
ticle species it is important to check that the Aharonov-
Bohm cross section persists in a realistic grand unified
theory.

In this paper we calculate the elastic and inelastic cross
sections for cosmic strings arising from an SO(10) grand
unified theory [14]. Cosmic strings arise in the break-
ing scheme [15] SO(10) ~ SU(5) x Z2 where the break-
ing is due to the 126 representation of the Higgs field,
the self-dual antisymmetric 5-index tensor of SO(10).
These stable strings survive the subsequent transitions
to SU(3) x SU(2) x U(1) x Z2 [15]. They have been
studied elsewhere [17].

Now the SO(10) symmetry is restored inside the string
core, and therefore there are baryon-number-violation
processes mediated by the gauge fields X, Y, X', Y', and
A, of SO(10). We therefore expect a nonzero inelastic
cross section which we will determine. This cross section
should be running from a small cross section O(rl ),
where g is the grand unified scale 10 GeV, to a much
larger cross section of the order of the strong interaction.

The plan of this paper is as follows: In Sec. II we de-
fine an SO(10) string model. We give "top-hat" forms
for the Higgs and gauge fields forming the string, since
the "top-hat" core model does not afFect the cross sec-
tions of interest [6]. Looking at the microscopic struc-
ture of the string core, we introduce the baryon-number-
violating gauge fields of SO(10) present in the core of the
string.

In Sec. IIIA we review the method used to calculate
the scattering cross sections. There are two difFerent ap-
proaches. A fundamental quantum-mechanical one and a
perturbative second-quantized method [5,6]. The latter
consists in calculating the geometrical cross section, i.e.,
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the scattering cross section for &ee fermionic fields. The
catalysis cross section is then enhanced by an amplifica-
tion factor to the power of four.

In Sec. IIIB we derive the equations of motion. In or-
der to simplify the calculations and to get a fuller result,
we also consider a "top-hat" core model for the gauge
fields mediating quark to lepton transitions.

In Secs. III C and III D we calculate the solutions to the
equations of motion outside and inside the string core, re-
spectively, and in Sec. III E we match our solutions at the
string radius. In Sec. III F we calculate the scattering am-
plitude for incoming plane waves of linear combinations
of the quark and electron fields.

We use these results in Secs. IV and V in order to
calculate the scattering cross sections of incoming beams
of pure single fermion fields. In Sec. IV we calculate the
elastic cross sections. And in Sec. VII we calculate the
baryon-number-violation cross sections.

In Sec. VI we derive the catalysis cross section using
the second-quantized inethod of Refs. [5,6]. The second-
quantized cross sections are found to agree with the first-
quantized cross section of Sec. V.

There are four Appendixes. Appendix A gives a brief
review on SO(10) theory, and gives an explicit notation
used everywhere in this paper. Appendixes B and 0 con-
tain the technical details of the external and internal so-
lutions calculations. Finally, Appendix D is a discussion
of the matching conditions at the core radius.

II. AN SO(10) ST&INC

In Appendix A we give a brief review of SO(10) theory.
With that notation, the Lagrangian is

is Z2, and therefore Z2 strings are formed. In terms of
SU(5), the 45 generators of SO(10) can be decomposed
as

45 = 24+ 1+10+ 10 .

From the 45 generators of SO(10), 24 belong to SU(5), 1
generator corresponds to the U(l)' symmetry in SO(10)
not embedded in SU(5), and there are 20 remaining ones.
Therefore, the breaking of SO(10) to SU(5) x Z2 induces
the creation of two types of strings. An Abelian one,
corresponding to the U(1)' symmetry, and a non-Abeliaii
one made with linear combinations of the 20 remaining
generators. In this paper we are interested in the Abelian
strings since the non-Abelian version are Alice strings,
and would result in global quantum number being ill de-
fined, and hence unobservable [7]. We note that there is a
wide range of parameters where the non-Abelian strings
have lower energy [17]. However, since the Abelian string
is topologically stable, there is a final probability that i'
could be formed by the Kibble mechanism [8].

If we call v,q, the generator of the Abelian string, v;t,,
will be given by the diagonal generators of SO(10) not
lying in SU(5), that is,

1r t = (Mi2 + M34 + Mss + M78 + M9 10)
5

where M;z . i,, j = 1, ..., 10 are the 45 SO(10) genera-
tors defined in Appendix A in terms of the generalized p
matrices. Numerically, this gives

(1 1 1 1 1 1 1 —3 1 1

2
' 10 ' 10 ' 10 10 10 10 ' 10 ' 10 ' 10

—3 —3 —3&

10 ' 10 ' 10 ' 10 ' 10 ' 10 (5)

where F„=—i E„„~,w a = 1, ..., 45 are the 45 gen-
erators of SO(10). 4i2s is the Higgs 126, the self-
dual antisymmetric 5-index tensor of SO(10). Iz is the
fermionic part of the Lagrangian. In the covariant deriva-
tive D„=0~ +ieA~, A~ = A v, where A„a = 1,...,45
are 45 gauge fields of SO(10).

We assume that the universe undergoes the breaking
scheme

SO(10) m SU(5) x Z2 m SU(3) x SU(2) x U(l) x Z2

SU(3) x U(1)~ x Z2,

giving vacuum expectation values to the components of
the 10 which correspond to the usual Higgs doublet. The
decomposition of the 126 representation under SU(5) x
U(1) is given by

The results of Perkins et at. [6] find that the greatest
enhancement of the cross section is for fermionic charges
close to integer values. Thus, Rom Eq. (5), we expect
no great enhancement; the most being due to the right-
handed neutrino.

We are going to model our string as is usually done
for an Abelian U(1) string. That is, we take the string
along the z axis, resulting in the Higgs field 4i26 and
the gauge field A~ of the string to be independent of the
z coordinate, depending only on the polar coordinates
(r, o). Here A„ is the gauge field of the string, obtained
from the product A„= A„,t,v, t, . The solution for the
Abelian string can be written as

(6)

126 = lio+' (2)
where 40 is the vacuum expectation value of the Higgs
field 126 in the lio direction. The functions f(r) and

g(r) describing the behavior the Higgs and gauge fields
forming the string are given by

The erst transition is achieved by giving vacuum expec-
tation value to the component of the 126 in the lqo direc-
tion. The first homotopy group vri[SO(10)/SU(5) x Z2]
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(
g, r&R,

rI(R), r ( R,

where B is the radius of the string. B ~ g, where g
is the grand unified scale, assumed to be g 10 GeV.
In order to simplify the calculations and to get a fuller
result we use the top-hat core model, since it has been
shown not to afI'ect the cross sections of interest. The
top-hat core model assumes that the Higgs and gauge
fields forming the string are zero inside the string core.
Hence, f (r) and g(r) are now given by

( )
9'I — t

0, r&B,

The full SO(10) symmetry is restored in the core of
the string. SO(10) contains five gauge bosons leading to

I

L = @ps [iep"(X„7+X.„'r + Y„r + Y„'r

+X,„rx')]4gs, (1o)

Y I

where ~,7,w, and w and w ' are the nondiagonal
generators of SO(10) associated with the X, X', Y, Y',
and X, gauge bosons, respectively.

Expanding Eq. (10) gives [19]

baryon decay. These are the bosons X and Y of SU(5)
plus three other gauge bosons usually called X', Y', and
X, . Therefore inside the striag core, there are quark-
to-lepton transitions mediated by the gauge bosons X,
X', Y, Y', and X„and. we expect the string to catalyze
baryon-number-violating processes in the early Universe.

The X, X', Y, Y', and X, gauge bosons are associated
with nondiagonal generators of SO(10). For the electron
family, the relevant part of the Lagrangian is given by

PX„[ ep~—u~ p"u~+ dl, p"e~ + d~ p"e~]+ Y„[ ep~—u~ p"d~ —d~ p"v,' —ul, p"e~]
I I

+ X [
—e~p~dl p dl —u~~Q v~ —uL~Q vl ] + Y [e~ppdl p ul —u~~Q e~ —dL~Q EJI ]P

+ X &[21, f el, +d~ p e++ul "f vl, +u~ p vR)
2

where o. , P, and p are color indices. The X, does not
contribute to nucleon decay except by mixing with the
X' because there is no vertex @AX,. We consider baryon-
violating processes mediated by the gauge fields X, X',
Y, and Y' of SO(10). In previous papers [6,11],baryon-
number-violating processes resulting from the coupling
to scalar condensates in the string core have been con-
sidered. In our SO(10) model we do not have such a
coupling.

I

where the amplification factor A is defined by

g(R)
@free (R)

where R is the radius of the string, B ~ g . This
method has been applied in Refs. [6,18].

B. The equations ef motion

III. SCATTER, INC OF FEHMIONS FB.OM THE
ABELIAN STB.ING

A. The scattering cress section

Here, we will briefly review the two methods used
to calculate the scattering cross section. The first is a
quantum-mechanical treatment. From the fermionic La-
grangian L~, we derive the equations of motion inside
and outside the string core. We then find solutions to the
equations of motion inside and outside the string core and
we match our solutions at the string core. Considering in-
coming plane waves of pure quarks, we then calculate the
scattering amplitude. The matching conditions together
with the scattering amplitude enable us to calculate the
elastic and inelastic scattering cross sections. The second
method is a quantized one, where one calculates the ge-
ometrical cross section ( && )s, , i.e. , using free fermions
spinors @f, , The catalysis cross section is enhanced by
a factor A over the geometrical cross section,

( do
o'inc]

geom

The fermionic part of the Lagrangian L~ is given in
terms of 16-dimensional spinors as defined in Appendix
A. We shall consider only one family in this work, and in
particular the electron family. The fermionic Lagrangian
for only one family,

I~ ——L~ ~ ——416P"D„@16+ LM + L (14)

Ly = QL~+L

where L~ ——ig~p"D„QJ + i@~"p"D '@~"+ L', and i

where L M is the mass term and L is the Lagrangian de-
scribing quark-to-lepton transitions through the X, X',
Y', Y', and X, gauge bosons in SO(10) and given by
Eq. (11). The covariant derivative is given by D„
B~ —ieA~, ser&str~ where Ap, ,str is the gauge field forming
the string and v;t, is the string generator given by Eq.
(5). Therefore, since r,t, is diagonal, there will be no mix-
ing of fermions around the string. The Lagrangian L~
will split in a sum of eight terms, one for each fermion of
the family. In terms of four-spinors, this is
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Gl
i,p"D„" el, + "p"ql = 0,

2 2

qW" D„" ea + "W"qR = o
2 2

i.p"Dq ' ql + "p"e~ ——0,
2 2

Rip"Dq ' q~+ "p"e~ = 0,
2 2

(17)

which are valid everywhere. The covariant derivatives
L R

q)(L,R)

Y„', depending on the chosen quark.
Since these equations involve quarks and lepton mix-

ing, we do not find an independent solution for the quark
and lepton fields. However, we can solve these equations

runs over all fermions of the given family. One can show

nally, L is given by Eq. (11). It is easy to generalize to
more families.

From Eqs. (15) and (11) we derive the equations of
motions for the fermionic fields. We take the fermions to
be massless inside and outside the string core. This is a
relevant assumption since our methods apply for energies
above the confinement scale. We consider the case of
&ee quarks scattering from the string and coupling with
electrons inside the string core. Outside the string core,
the fermions feel the presence of the string only by the
presence of the gauge field. We are interested in the elas-
tic cross sections for all fermions and in the cross section
for these quark decaying into electron. The fermionic
Lagrangian given by Eqs. (15) and (ll) becomes

LF(e, q) = gael p"D„" el, +ieRp"D„" e~ +iql p"Dq' qL,
I

+ &G"- ++i qRp D~' qR qL+p, eL qR+p eR
2 2 2 2

+H.c. ,

giving the equations of motion

C. The external solution

Outside the string core, the gauge Beld of the string
A„,t, has only, from Eqs. (7) and (9), a nonvanishing
component Ag ———7;t„and the efFective gauge fields G
and G' are set to zero. Therefore the equations of motion
(17) for r ) B become

ip"D„' eL ——0, ip"D" eR ——0,P

where the covariant derivatives D~' ' = 6„+e, (L„R)

e, {L,R) q, (I„R) . q (L,R)
ieAp, ,str&str and D&

' ' ——t9& + ieAp, ,strTstr
We take the usual Dirac representation eg = (0, (,),

e)q = (y„O), qL
——(0, (q. ), and qR = (yq. , O) and the

mode decomposition for the spinors (q. , (, yq. , and y„

( X",(., )(r)
(i y2( .)(r) e*s )

From Appendix 8 we see that the fields (P (
and y2, .)

satisfy Bessel equations of order1,{e,qc) ~ 2, (e)qc
R (e,q') R (e,q') L (e,q') ~ R (e,q )

respectively. The external solution becomes

taking linear combinations of the quark and lepton fields,
qL + eL and qR + eR. In this case, the efFective gauge
fields are

e (A„,q, 7;~„k G„)
and

e (A„qt, q;fq", + G'„),
respectively.

In order to make the calculations easier, we use a top-
hat 0 component for G and G' within the string core,
since Perkins et al [6] h. ave shown that the physical re-
sults are insensitive to the core model used for the gauge
fields mediating baryon-violating processes.

~& ((, q. ) (r, 0)
&~ ).

( X(e,q ) (rI 0) j

[VqI, J R (e,qe) ((I)F)
(eq )

n —Tstr

[V„' J R (., q. ) ((ur)
(e,q')

[ZUqI J L (e,qe) ((LIT)
(e,q }

n T

[tUqI J L (e,qe) ((I)r)(eq )

VqI J R (,qe) ((I)r)]
(e q')'

q)qI J
(

R (e,qe)
)

(Cl)P)]
(eq )'

WqI J
(

L (e,qe)
)
((I)P)]

(e,q )'

qeqI J
(

L (e, qe)
)
((I)r)]

(e q")'

einO

i(n+ j.)0

cine

e(n+). )()
~

(22)

Therefore, outside the string core, we have independent
solutions for the quark and electron fields.

D. The internal solution

Inside the string core, the gauge field of the string,
A~, is set to zero whereas Go and G& take the values

2v 2A and 2v 2A', respectively. Therefore, the equations
of motion (17) become

Gl
qp"B„el. + "p"qL, = 0,

2 2

ip"O„eR + "p"q„= 0,
2 2

G1
ip&a„qL+ "p&eL = 0,

2 2

zp B)Iq~+ p e~ = 0
2 2
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= Xq. +X (24)

Since these equations of motions involve quark-lepton
mixings, there are no independent solutions for the
quarks and electron fields. However, we get solutions
for the fields p and o+ which are linear combinations
of the quarks and electron fields:

n g n )out + in

n y n )out + in

(»)
(30)

must take the same linear combinations of the quark and
lepton fields outside and inside the core, and must have
continuity of the solutions at r = B. The continuity of
the solutions at r = B implies

and

(25)

Nevertheless, we will have discontinuity of the first
derivatives:

Using the mode decomposition (21) for the fields p+
and 0.+, the internal solution becomes

B(eq ))+ in ~ str
(

n g n )out
&2,q &2,e

ei(n+1) 0z p 2 e
ei n8

n1
i(n+1)8 )

(26)
+ iu str n ~ n out

R (e,q ) )
! d

+e&
I p.i'" =

d
+ ''& hi, , +&7,.)" .

(32)

where p+i (p+2) and 0+~ (a+2) are the upper (lower) com-
ponents of the fields p and o+, respectively. They are
given in terms of hypergeometric functions. Prom Ap-
pendix C we get

These equations lead to a relation between the coefIi-
cients of the Bessel functions for the external solution, as
derived in Appendix D:

j=O 2l
(27)

V + V

v~ +v~
l„+J„+, .„(mR) + J„.„(mR)

ml„+J („+, „)(mR) + J („„)(mR) '

(33)

where

a+ =
2 +!n!+ '

(z,". &+ ) and 6 = 1+2!n!. p„+2 can be ob-
tained using the coupled equation (Clb) of Appendix C.
We find

ln

n=+~ ~ (2iI ~)~
g=0 g j!

~n=+~ ~(2iir)' (InI —n k+ g + A)O
0!.

p ' r
(34)

(k )
InI —ikr

(2'k )&X) n,+
j=O

|'!n! —n
!

—ik+ —+ eA!
'P )

The relations (33) and (34) are the matching conditions
atr =B.

F. The scattering amplitude

We get similar hypergeometric functions for the fields o.+1

and o

E. Matching at the string core

Prom now on we will do calculations for the right-
handed fields, the calculations for the left-handed ones
being straightforward. Once we have our internal and
external solutions, we match them at the string core. We

I

In order to calculate the scattering amplitude, we
match our solutions to an incoming plane wave plus an
outgoing scattered wave at infinity. However, since the
internal solution, and. therefore the matching conditions
at r = A, are given in terms of linear combinations of
quarks and leptons, we consider incoming waves of such
linear combinations. Let f denote the scattering ampli-
tude for the mode n, f+ if we consider the scattering of
(quarks + electrons) and f if we consider the scattering
of (quarks —electrons). Then the matching conditions
at infinity are

(- )-!
~r ( i e' ) (i [(v„+v„')J„+i „+ (v„+v„')J („~, „)] e* )

Using then the large r forms for the Bessel functions,

J„(~r) = cos cdr—
2 4 (36)

and matching the coefFicients of e' ", we find
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e i—nn( i zn 1) + (vq + ve')ei(n —r ) s (1 e
—2i(n 7—n)n)

n einn( i(n —r n)vr e
—inn) + (vq y elle i—(n r—R) s (1 2i(n r~—)vrl

n n
(37)

Matching the coeKcients e ' ", we get relations between
the Bessel functions coeKcients:

(v +v') =[1—(vq +v')e ' ~ sje
(38)

The relations (37), (38), (33), and (34) determine the
scattered wave.

IV. THE ELASTIC CROSS SECTION

When there are no baryon-number-violating processes
inside the string core, when the gauge fields mediating
quark-to-lepton transitions are set to zero, we have elastic
scattering. In this case, the scattering amplitude reduces
to

[

violating cross section. If we consider identical beams of
incoming pure p+ and p, recalling that p+ = yq. + y,
this will ensure that we will have an incoming beam of
pure quark. Therefore, the scattering amplitude for the
quark field is given by half the difference of f+ and f
and the scattering amplitude for the electron field is given
by half the sum of f+ and f . From Eq. (37) we get

—/2vrw(f+ —f )e'' =v'e '( ")s (1 —e n
) .

(43)

The inelastic cross section for the quark field is given by

(44)

fclast e inn (e—ir&n 1) & & P
sn1T

(
srR7I' ] ) ( 1 ( )

The elastic cross section per unit length is given by

Hence, from Eq. (43),

+OO

) e —in( ——8) (45)

+OO 2

4. clast in'
Oelast g Jn (4p) Using Eqs. (33), (34), and (38), we find

Using the relations P+ e'" = i', . and P„e'"
ibm

... we find the elastic cross section to be

ei(n —~R) — /2 1 1

(4+ '( — R )

1 sin 7.Rvr
Oelast =

2' u cos2—
2

(41)
where

b„—+e'(n —~Rvr))
' (46)

This is an Aharonov-Bohm cross section, and 7.R is the
flux in the core of the string.

Lc,u L,u Lc,e L,d
NOW, remember that 7str = 7str = 7str = 7str

10 ' str str 10 ' and %st r Vstr' and Vstr

clast clast clast clast clast clast ' ( )

We therefore have a marked asymmetry between
fermions. We have a marked asymmetry between left-
and right-handed electrons, left- and right-handed down

&Le &Aquarks or, since o.,l,t —— o l,t and o. &"',t —— o.,l,t,
between left-handed particles and antiparticles, respec-
tively, right-handed, for the electron and the down quark.
But we have equal cross sections for right-handed parti-
cles and left-handed antiparticles for the electrons and
the down quark, and equal cross sections for both left-
handed and right-handed up quarks and antiquarks. This
is a marked feature of grand unified theories. If cosmic
strings are found, it may be possible to use this asymme-
try to identify the underlying gauge symmetry.

V. THE INELASTIC CROSS SECTION

iv l„+J„+i (n)R) + J„„(ivR)
tvl„+ J („+i „)(tUR) + J („„)(u)R) (47)

1 ~ 2
O inel Up (48)

Using small argument expansions for Bessel functions, we
find this yields

and A+ are given by Eqs. (34). Equations (45), (46), and
(47) determine the inelastic cross section. This is given
in terms of a power series. However, using small argu-
ment expansions for Bessel functions, we conclude that
this power series involves always one dominant term, the
other terms being suppressed by a factor (cuR), where
n is an integer such that n & 1. Therefore the inelas-
tic cross section involves one dominant mode, the other
modes being exponentially suppressed. If d denotes the
dominant mode we get o;„ l

—
~v&~ . The value of the

dominant mode depends on the sign of the fractional flux
7-,t, . Our results can be summarized as follows.

For 0 ( 7R ( 1, the mode n = 0 is enhanced, and the
other modes are exponentially suppressed. Hence,

The gauge fields X, X', Y, and Y' are now "switched
on." In this case we are calculating the baryon-number-

1o.;„ l ——(eAR) (cuR) (' (49)
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where A is the value of the gauge field inside the string
core, e is the gauge coupling constant, and B g,
g being the the grand unified scale 10 GeV. The
greater amplification occurs for eAB 1, giving 0;„,j
1 (&R)4(1—7R)

For —1 ( w~ ( 0, the mode n = —1 is enhanced, and
the other modes are exponentially suppressed. Hence,

1 2
~inc(

(d

Using small argument expansions for Bessel functions,
this yields

handed electron ( io ) by a fractional value diferent &om
a half.

VI. THE SECOND QUANTIZED
CROSS SECTION

We now derive the baryon-number-violating cross
sections using the perturbative method introduced in
Sec. III A.

Firstly, we calculate the geometrical cross section. This
is the cross section for free fields @g„„where gr„, is a
two-spinor. In the case of gauge fields mediating catalysis
it is given by

0.;„.i - —(eAR) (~R) ('+ ")1

(dn&... (54)

The greater amplification occurs for eAB 1, giv-
ing o;„,i —(tuR) ( + R). Thus, the baryon-number-
violating cross section is not a strong interaction cross
section, but is suppressed by a factor depending on the
grand unified scale g B 10 GeV. The baryon-
number-violation cross sections are very small. For uL,
and dl. we obtain

0 inei (~R)
1 3.6

whereas for dR we get

0 inc 1 (~t'R) 2.8
(d

Here again we have a marked asymmetry between left-
and right-handed fields. We find an indeterminate so-
lution for the left-conjugate up quark because its phase
around the string (io) differs from the phase of the left-

I

where u1 is the energy of the massless field @r„„Ais
the value of the gauge field mediating quark-to-lepton
transitions, e is the gauge coupling constant, and B is
the radius of the string with B g with g 10
GeV.

The second step is to calculate the amplification fac-
tor A = &, g and g~„, being two two-spinors. The

&free
catalysis cross section is enhanced by a factor A over
the geometrical cross section:

O'inc i ) geom

We now use the results of Secs. III C, IIID, and IIIE,
where we have solved the equations of motion for the
fields @ and calculated the matching conditions. Using
Eq. (22), we get the wave function g at the string core,
and, for the mode n,

I( [(v~ + v„') J„,(~R) + (v~ + v„') J („,)(uR)] e'"s

[(vg + v„') J„+i „,(~R) + (v„k v„') J ( +i „)(wR)] e'( + )s )

Using Eqs. (33) and (34) and using small argument ex-
pansions for Bessel functions, we conclude that for n & 0,
(vi 6 v') )) (v~ + v' ), and for n ( 0, (v~ + v')
(vi + v' ). Now, from Eq. (38), we see there is one co-
eKcient dominates that will be of order 1. Hence, for
n ) 0, (v„+ v„') 1, and for n & 0, (v + v„') 1.
Therefore, using small argument expansions for Bessel
functions we get, for n & 0,

f (~R)tt —7 str
&" -

I( ( R)-+i--... I)
which is to be compared with @z"' 1 for free spinors.
The upper component of the spinor is amplified while the
other one is suppressed by a factor (uR). For n ( 0
we have

o;„,i —(eAR) (wR) ( + "') .1
(60)

In the case w, q,
——zz, the amplification occurs for the

upper component and for the mode n = 0. The amplifi-
cation factor is

A- (~R) (61)

I

is amplified while the upper one is suppressed by a factor
~ (dB.

Therefore, for w, t ]p the amplification occurs for
the lower component and for the mode n = —1. The
amplification factor is

(~R) str

leading to the baryon-number-violating cross section

r' ((uR)
—("-" ")

(~R)—(tt+i —s str R) (58) leading to the baryon-number-violating cross section

Hence we conclude that for n ( 0 the lower component
cr; i ~ (eAR) 2 (~R)4 (i—7.t, )1

(62)
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This method shows explicitly which component of the
spinor and which mode are enhanced. The results agree
with scattering cross sections derived using the first-
quantized method.

VII. CONCLUSION

We have investigated elastic and inelastic scattering ofF
Abelian cosmic strings arising during the phase transition

SO(10) ~' SU(5) x Z2 induced by the Higgs field in
the 126 representation in the early Universe. The cross
sections were calculated using both first-quantized and
second-quantized methods. The results of the two meth-
ods are in good agreement.

During the phase transition SO(10) -+ SU(5) x Z2,
only the right-handed neutrino gets a mass. This to-
gether with the fact that we are interested in energies
above the confinement scales allows us to consider mass-
less particles.

The elastic cross sections are found to be Aharonov-
Bohm-type cross sections. This is as expected, since we
are dealing with &actional fluxes. We found a marked
asymmetry between left-handed and right-handed fields
for the electron and the down quark fields. But there is
no asymmetry for the up quark field. This is a general
feature of grand unified theories. If cosmic strings were
observed, it might be possible to use Aharonov-Bohm
scattering to determine the underlying gauge group.

The inelastic cross sections result from quark-to-lepton
transitions via gauge int, eractions in the core of the string.
The catalysis cross sections are found to be quite small,
and here again we have a marked asymmetry between
left- and right-handed fields. They are suppressed kom
a factor q for the left-handed up and down quark
fields to a factor g for the right-handed down quark
field.

Previous calculations have used a toy model to cal-
culate the catalysis cross section. Here the string flux
could be "tuned" to give a strong interaction cross sec-
tion. In our case the flux is given by the gauge group,
and is fixed for each particle species. Hence, we find a
strong sensitivity to the grand unified scale. Our small
cross sections make it less likely that grand unified cos-
mic strings could erase a primordial baryon asymmetry,
though they could help generate it [16]. If cosmic strings
are observed our scattering results, with the distinctive
features for the di8'erent particle species, could help tie
down the underlying gauge group.
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APPENDIX A: BRIEF REVIEW OF SO(10)

The fundamental representation of SO(10) consists of
10 generalized p matrices. They can be written in an

explicit notation, in terms of cross products;

Iy = ~y x o3 x o3 x o3 X 03
I 2 —o2 X op X 03 X o3 x (7Q

13 ——I x oi x og x o3 x o3 )

I 4 = I X o2 X o3 X o3 X os
j. s ——I x

r, =Ix
I'7 ——I x

I8 ——I x
I'g ——I x

Iio=Ix

Ixoi xo3xo3,
I x o-2 x o-3 x H3

I x I x oi x og,
IXIxo2 xo3,
IxIxIxo&,
IxIxIxo2, (A1)

where the o.; are the Pauli matrices and I denotes the
two-dimensional identity matrix. They generate a Clif-
ford algebra defined by the anticommutation rules

(I';, I'~) = 2b,~ i = 1, ..., 10. (A2)

x=(—i)' (A3)

In terms of the cross product notation, y has the form

g = 03 x 03 x K3 x 03 x 03 (A4)

The 45 generators of SO(10) are also given in terms of
the generalized p matrices:

1
M s ———[I';, I'~] i, j = 1, ..., 10 .

2i " 2 (A5)

They are antisymmetric, purely imaginary 32 x 32 ma-
trices. One can write the diagonal M:

1
M&2 ———m3 x I xI x I x I,

2
1

M34 ——I x o3 x I x I x I
2
1

M56 ———I x I x o-3 x I x I,
2
1

Mqs ——I x I x I x cr3 x I,
2
1

Mg&0 ——I x I x I x I x o-3 .
2

(A6)

In SO(N) gauge theories fermions are conventionally as-
signed to the spinor representation. For N even, the
spinor representation is 2 ~ dimensional and decomposes
into two equivalent spinors of dimension 2 2 by means
of the projection operator P =

2 (1 + y), where 1 is the
2f x 2 ~ identity matrix. Thus SO(10) has two irre-
ducible representations:

1+X
2

(A7)

of dimension 16. Therefore SO(10) enables us to put
all the fermions of a given family in the same spinor.
Indeed, since each family contains eight fermions, we can

One can define the chirality operator y, which is the gen-
eralized p5 of the standard model by

10
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OWE&"0 = 41 Wp&"WL, + 0IIV~&"0R . (A8)

Therefore v(1, and QR cannot be put in the same irre-
ducible representation. Hence, instead of choosing @I,
and 1))Ii, we chose QL, and QI. The fields QL, and gl
annihilate left-handed particles and antiparticles, respec-
tively, or create right-hand. ed antiparticles and particles.
The fields QL, and $1 are related to the fields @Ii and @II
by the relations

put all left- and right-handed particles of a given family
in the same 16-dimensional spinor. This is the smallest
grand unified group which can do so. However, gauge
interactions conserve chirality. Indeed,

APPENDIX B: THE EXTERNAL SOLUTION

n=+ oo

X(.q)(r, o) = ).
n=+oo

r
('(,')(r 0) = ). l;

(e,q )( ) ~l qne

X2 ( q. ) (r) e' )
~1 (e,qc) ("

*
~l e

(2 ( .) (r) e*o ) (Bl)

We want to solve Eqs. (20). We set Bq
———iw, where

cu is the energy of the electron and take the usual Dirac
representation el, = (0, (,), eII = (y„o), ql ——(0, (q),
and q& ——(yq, o). We use the usual mode decomposition
for the spinors (q, („yq, and y, :

@I, = PI,@' = PL, CQ = C(/PI. ) = C'(bii = Cpo /II,
(A9)

V g ——@I,'vo = VII'&o 'C'wo = O'II. C —' = @RC (Alo)

Then, using the basis

ro -io&l
() I (B2)

where the projection operators Pl, II = 2(1+ ps) and C
is the usual charge conjugation matrix. For the electron
family we get

(e) c c c c
(v( } ) ur ) uy ) us ) ds ) dy ) dr

n d + n+1
1,(e,q ) d) r

&( q') l
Tstr

the equations of motion (20) become

(e qc) )

e, u(, , u„, u„, v(,), e+, d„', d„, dz) i, , (A 11) ~n +
(.,"))n Tstr+dr Xi (e qc)

where the upper index c means conjugate, and the
subindices refer to quark color. We find similar spinor
4 (~) and 4 { ) associated with the p and the 7 family,
respectively:

r
d + n+1

dr r
rr (»,q') )

'4, (e,qc)

(B3)

iTr (P)
{ ) & r, Cy, C6, 8g, S»8r &P ~ 6& y& '4, (e,qc)

(-. ') In ~ Tstr gn
r ' r , (e,q-) 0.

v(„),p+, s'„, s'„, s(,) I, (A12)

= (v('r) ) t„' ) ty ) t(', ) b) ) by ) b„)r ) tb, ty, t). )

v( ), r+, b„', b'„, b(,)I, . (A13)
I

It is easy to show that the fields (1 (,
Rand yz, , )

satisfy Bessel equations of order n —r,t, "2, (e,q
A +1 Tsg& y

A %st& &
and n —

%st& &
respectively.R (e,q ) I (e,q )

Hence the external solution is

[v„' Z „(...) ((ur)r
(eq )

n Tstr

r ((' (r 0) ) I [vn Z R (», qc) (Mr)

(~(.,, )( ()) y
-

[
„"'z' „,( )

str

( z [u)n Z L, (» qc) ((c)r){eq )

c I

+ vn Z R(. ,-) ((dr)]
Tstrc I

+ Vn Z ~ (» qc) (()Jr)]
c I

+ u)„" Z, (...) ((ur)]n —Tstrc I

+ u)n Z I, (. c) ((L)r)]n+i

~i(n+i)e

~in8

ei(n+1)8
)

(B4)

The order of the Bessel functions will always be frac-
tional. We therefore take Z„=J and Z„= J

(r 1 = (1 .+(1, and o 2
——(2 .+(2„respectively. The

equations of motions (23) become

APPENDIX C: THE INTERNAL SOLUTION

We get solutions for fields which are linear combina-
tions of the quark and electron fields. Indeed, we get so-
lutions for the fields (r+ = (q+$, and p+ = yq+y, . Using
the mode decomposition (21), the upper components of
the fields p+ and. 0+ are, respectively, p+i = yz .+ yz,
and p+2 ——y2 . + yz while the lower components are

(d n+1+ we&'
l
p„2=o,

r(dr

rd n
(up +

l

———+eA' p =0,n2 (d nl

(u(r 1+ l

—+ ~ eA
l

(r 2
——0,rd n+1

(dr r )

(Cla)

(Clb)

(Clc)
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(d n~o.„2 —
i

———+eA io„i=0.(dr r )
(Cld)

using the coupled equation (Cld) we get

Combining (Cla) and (Clb), one can see that p+i satisfy
a hypergeometric equation giving

n=+oo
y!n~ ikr—X + ( t r)

j=O 2.
(C2)

(k )!n! ikr—1

where k = m —(eA) e = . ct+ = +~)n+. with~+~ —
(~+~)

a+ =
2 + ~n[ 6 '

(2,.k+ ) and b = 1+ 2~n~. p„+2 can be
obtained using the coupled equation (Clb). We find

(k )!n! —ikr ) p+ t t rj
j=O 2l

(k )~n! ik—r1

"). ~ (2ikr) (in' —n

j=O

where k = m —(eA ), P +i =
&

P.

z + ~n~ + '
2.k+ . And the internal solution is

(C4)

(C5)

+ (2ikr) (in~ —n
X 0,'- j'j=O

—ik+ —+ eA
)r )

(C3)

i(n+1)8
P 28

eins
nl

ei(n+1)8 )
(C6)

o+2 are also solutions of hypergeometric equations, and
Therefore the internal solution is giving by a linear com-
bination of the quark and electron fields.

APPENDIX D: THE MATCHING CONDITIONS

The continuity of the solutions at r = R leads to

n=+oo
(kR)~n! ik—R ) + ( )

j=O 2!
(vq + v„')J„„(~R)+ (vq + v„' )J („„)(~R),

1
( )) !;kR ) ~ (2ikr

m . ~ j! ( R
j=O

—i k + —+ eA
i

= (v„' + v„')J„+i „(urR)

+ (vq + v„')J („+i „)((uR) . (D2)

Nevertheless, we will have discontinuity of the first
derivatives. Indeed, inside we have

giving us the relations for the erst derivatives:

I d
+eA

I s.2'"=
d

— ''R (x2,;+x2,.) ",
)

whereas outside we have

d n+1
~(Xi,q. + Xi,e) ' +

(d

R (e,q ) )+str

( R (e,q') )
d

+
(dr " (dr R )

(Ds)

~(x2,, + x2,.) +
(dr

Now,

x(X2,q' + X2, ) = O

( ))
+ str

r

x(x" .+ x",) = 0 . (D4)

Dividing Eq. (Dl) by Eq. (D2) or either replacing Eq.
(Dl) in Eq. (D7), we get the relations

vq + v m l J +i „(mR) + J „(mR)
v„+ v„' m l„J („+i „)(mR) + J („„)(mR)

(D9)

where

(
n y n )out +in

(
n y n )out +in

(D5)

(D6)

gn=+oo j (2ikr)~

. (DlO)~n=+oo + (2ikv )j InI —n .
I j ~+—
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