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We calculate the next-to-leading /CD corrections to the effective Hamiltonian for B —+ X,e e
in the NDR and tHV schemes. We give for the 6rst time analytic expressions for the Wilson
coefficient of the operator Qs ——(sb) v ~ (ee) v in the NDR and HV schemes. Calculating the relevant
matrix elements of local operators in the spectator model we demonstrate the scheme independence
of the resulting short-distance contribution to the physical amplitude. Keeping consistently only
leading and next-to-leading terms, we find an analytic formula for the di8'erential dilepton invariant
mass distribution in the spectator model. A numerical analysis of the m~, AMs and p = O(mb)
dependences of this formula is presented. We compare our results with those given in the literature.

PACS number(s): 13.20.He, 12.38.Bx

I. INTRODUCTION

The rare decay B ~ X,e+e has been the subject
of many theoretical studies in the &amework of the stan-
dard model and its extensions such as the two Higgs dou-
blet models and models involving supersymmetry [1—8].
In particular the strong dependence of B ~ X,e+e on
m& has been stressed by Hou, Willey, and Soni [1]. It is
clear that once B ~ X,e+e has been observed it will
oKer a useful test of the standard model and of its exten-
sions. To this end the relevant branching ratio, the dilep-
ton invariant mass d.istribution, and other distributions
of interest should be calculated with sufBcient precision.
In particular the QCD effects should be properly taken
into account.

The central element in any analysis of B ~ X,e+e
is the eKective Hamiltonian for LB = 1 decays rele-
vant for scales p, = O(mb) in which the short distance
QCD efFects are taken into account in the framework
of a renormalization-group-improved perturbation the-
ory. These short-distance QCD efFects have been calcu-
lated over recent years with increasing precision by sev-
eral groups [2,9,10] culminating in a complete next-to-
leading QCD calculation presented by Misiak in Ref. [11]
and very recently in a corrected version in [12].

The actual calculation of B ~ X,e+e involves not
only the evatuatic n of Wilson coeKcients of ten local op-
erators [see (2.1)] which mix under renormalization, but
also the calculation of the corresponding matrix elements
relevant for B ~ X,e+e . The latter part of the analy-
sis can be done in the spectator model, which, according
to heavy quark eKective theory, for B decays should of-
fer a good approximation to QCD. One can also include
the nonperturbative O(1/m&) corrections to the specta-
tor model which enhance the rate for B + X,e+e by

roughly 10%%uo [13]. A realistic phenomenological analysis
should also include the long-distance contributions which
are mainly due to the J/g and @' resonances [14—16].
Since in this paper we are mainly interested in the next-
to-leading short-distance QCD corrections to the specta-
tor model we will not include these complications in what
follows.

It is well known that the Wilson coeKcients of lo-
cal operators depend beyond the leading logarithmic ap-
proximation on the renormalization scheme for opera-
tors, in particular on the treatment of ps in D g 4
dimensions. This dependence must be canceled by the
scheme dependence present in the matrix elements of op-
erators so that the Anal decay amplitude does not de-
pend on the renormalization scheme. In the context of
B ~ X,e e this point has been emphasized in par-
ticular by Grinstein et al. [2]. Other examples such as
K ~ vnr, KL, ,g ~ 7t e+e, and B + X,p can be found
in Refs. [17—19]. The interesting feature of B -+ X,e+e
as compared to decays such as K ~ urer is the fact that
due to the ability of calculating reliably the matrix el-
ements of all operators contributing to this decay, the
cancellation of scheme dependence can be demonstrated
in the actual calculation of the short-distance part of the
physical amplitude.

Now all the existing calculations of B —+ X,e+e use
the naive dimensional regularization (NDR) renormaliza-
tion scheme (anticommuting ps in D g 4 dimensions).
Even if arguments have been given, in particular in [2]
and [11],as to how the cancellation of the scheme depen-
dence in B + X,e+e would take place, it is of interest
to see this explicitly by calculating this decay in two dif-
ferent renormalization schemes. In addition, in view of
the complexity of next-to-leading order (NLO) calcula-
tions and the fact that the only complete NLO analysis
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of B ~ X,e+e has been done by a single person, it is
important to check the results of Refs. [11,12].

Here we will present the calculations of the Wilson co-
efBcients and matrix elements relevant for B ~ X,e+e
in two renormalization schemes [NDR and the 't Hooft-
Veltman (HV) scheme [20]] demonstrating the scheme
independence of the resulting amplitude. In addition to
this, the main results of our paper are as follows.

(i) We give for the first time analytic NLO expres-
sions for the Wilson coefficient of the operator Qs
(ib) v A (ee) v in the NDR and HV schemes.

(ii) Calculating the matrix elements of local operators
in the spectator model we fully agree with Misiak's result
for the dilepton invariant mass distribution very recently
given in [12].

(iii) We Find that in the HV scheme the scheme-
dependent term in the matrix elements (the so-called
( term) receives in addition to current-current contri-
butions also contributions from QCD penguin operators
which are necessary for the cancellation of the scheme
dependence in the Anal amplitude. This should be com-
pared with the discussion of the scheme dependence given
in Refs. [2] and [11] where the ( term received only con-
tributions &om current-current operators.

(iv) We stress that in a consistent NLO analysis of the
decay B ~ X,e+e, one should on one hand calculate
the Wilson coefficient of the operator Qg ——(sb)v A(ee) v
including leading and next-to-leading logarithms, but on
the other hand only leading logarithms should be kept
in the remaining Wilson coefBcients. Only then can a
scheme-independent amplitude be obtained. This spe-
cial treatment of Qs is related to the fact that strictly
speaking in the leading logarithmic approximation only
this operator contributes to B —+ X,e+e . The con-
tributions of the usual current-current operators, QCD
penguin operators, magnetic penguin operators, and of
Qio ——(ub) v A(ee)A enter only at the NLO level and to
be consistent only the leading contributions to the corre-
sponding Wilson coe%cients should be included. In this
respect we difFer &om the original analysis of Misiak [11]
who in his numerical evaluation of B + X,e+e also
included partially known NLO corrections to Wilson co-
efficients of operators Q; (i g 9). These additional cor-
rections are, however, scheme dependent and are really
a part of still higher order in the renormalization-group-
improved perturbation theory. The most recent analysis
of Misiak [12] does not include these contributions and
can be directly compared with the present paper.

(v) Keeping consistently only the leading and next-
to-leading contributions to B ~ X,e+e we are able to
give analytic expressions for all Wilson coefBcients which
should be useful for phenomenological applications.

Our paper is organized as follows. In Sec. II we col-
lect the master formulas for B ~ X,e+e in the specta-
tor model which include consistently leading and next-to-
leading logrithms. In Sec. III we describe some details of
the NLO calculation of the Wilson coefFicient Cs(p) and
of the relevant one-loop matrix elements in NDR and HV
schemes. In Sec. IV we present a numerical analysis. We
end our paper with a brief summary of the main results.

lI. MASTER FORMULAS

A. Operators

Our basis of operators is given as

Qi = (s cp)v-A(cpb )v —A,

Q2 = (s )v A( b—)v A, —

Q. = (sb)v Ag, (qq)v A,

Q4 = (s bp)v AQ,—(qpq )v A, —

Q5 —— (sb) v Ap, -(qq) v+A,

Qs = (s bp)v —A p, (qpq )v+A,

Q7 = s', mi, s a""(1+ps)b F„„,
Qs = mi, s ""(1+ps)T pbpG„

Q9 — (ub)v „(ee)v,
Qio — (Sb) v —A(ee) A. )

(2.1)

where n and P denote color indices. We omit the color
indices for the color-singlet currents. Labels (V + A) re-
fer to p„(l + p5). Qi 2 are the current-current operators,
Qs s the QCD penguin operators, Q7 s "magnetic pen-
guin" operators, and Q9 io semileptonic electroweak pen-
guin operators. Our normalizations are as in Refs. [18]
and [19].

B. Wilson coefBcients

The Wilson coefficients for the operators Qi —Q7
are given in the leading logarithmic approximation by
[18,21—23]

8

cI'(&) =) a &" (2.2)

C (p) = q" C (Mw) + — q*' —q") C~ (Mw)3

8

+) hg', (2.3)

with

n, (Miv)
~ (~)

' (2.4)

C7 (Miv) = ——X(x,),(o)
2

(2 5)

|."s (Miv) = ——S'(x, ),(o)
2

(2 6)

where xq ——mt/Miv and A(x) and I" (x) are defined in
(2.14) and (2.19). The numbers a, , ki;, and h; are given
by
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Gi

k1i ——

k3; ——

k4i ——

k5i ——

k„=
6, =

(2s, 2s, 2s, —2s, 0.4086, —0.4230, —0.8994, 0.1456),

(0, 0, —,—,0, 0, 0, 0),
(0, 0, ——

,
—

, 0.0510, —0.1403, —0.0113,0.0054),

(0, 0, —i4, —0, 0.0984, 0.1214, 0.0156, 0.0026),
(0, 0, 0, 0, —0.0397, 0.0117,—0.0025, 0.0304),
(0, 0, 0, 0, 0.0335, 0.0239, —0.0462, —0.0112),
(2.2996, —1.0880, —7, —i4, —0.6494, —0.0380, —0.0186, —0.0057).

(2 7)

The erst correct calculation of the two-loop anomalous
dimensions relevant for (2.3) has been presented in [21,22]
and confirmed subsequently in [24,25,12].

The coefficient Cs
'

(p) does not enter the formula
for B ~ X,e+e at this level of accuracy. An analytic
formula is given in Ref. [18].

The coeKcient of Qip is given by

Y(x, )Cip(M~) = —Cip(M~), Cip(MH ) =-
27r slIl O~

(2.s)

with Y(x) given in (2.13). Since Qip does not renor-
malize under @CD, its coeKcient does not depend on
p = O(mt, ). The only renormalization scale dependence
in (2.8) enters through the definition of the top quark
mass. We will return to this issue in Sec. IV.

Finally, including leading as well as next-to-leading
logarithms, we 6nd

8

P@ = 0.1405 + ) q;q *+' (2.12)

Here

*(S*'+ 5x —7) *'(2 —3*),

lnx,
4(1 —x) 4(x —1)2

*(x —O) *(3*+ 2),Cx = lnx,s(* —i) s(x —i)2
—19x + 25x

3O(x —1)'

B(x) =

D(*) =

(2.14)

(2.15)

(2.io)

*'(5*'—2x —O) 4+ 4 lnx ——lnx
is(x —i)4 9

(2.17)

1
Y'(x) = C(x) —B(x), Z(x) = C(x) + D(x).— (2.13)

CNDR( ) CNDR( )2~

CNDR( ) PNDR + ( t)
sin O~

with

(2 9)

—4Z(xt) + P~Z(xt)

(2.io)

x(18 —llx —x )E(x) =
i2(i —x)'

x (15 —16x+4x ) 2+ lnx ——lnx,
o(i -*)4 3

(2.18)

~NDR
0

na(M)4 ) (

8
—0.1875+ ) p, g

*+ x(x' —5* —2) 3x'
I'(x) = — + lnx.

4(x —1)s 2(x —1)4
(2.i9)

8

+1.2468+ ) g *'[r, + s;g] (2.11)
The coeKcients p, , r;, s;, and qi are found to be

p; = (0, 0, —20s, ss, 0.0433, 0.1384, 0.1648 —0.0073),
rNDR = (0, 0, 0.8966, —0.1960, —0.2011,0.1328, —0.0292, —0 1858),

s; = (0, 0, —0.2009, —0.3579, 0.0490, —0.3616, —0.3554, 0.0072),
q; = (0, 0, 0, 0, 0.0318,0.0918, —0.2700, 0.0059).

(2.2o)

P@ is 10 and consequently the last term in (2.10) can be neglected. We keep it, however, in our numerical
analysis.

In the HV scheme only the coeSRcients ri are changed. They are given by

r Hv = (0, 0, —0.1193,0.1003, —0.0473, 0.2323, —0.0133,—0.1799). (2.21)

Let us now introduce the symbol ( for a compact distinc-
tion of the NOR and HV schemes. In our notation

gNDR 0 = —1. (2.22)

Then we can write (2.11) for the HV scheme equivalently

PHV PNDR + (HV 3C(0) + C(0) C(0) 3C(0)
0 0 9 1 2 3 4

(2.23)



52 EFFECTIVE HAMII. TONIAN FOR B~X,e+e BEYOND. . .

We note that

8

) q, = —0.1405,
8

) p, = 0.1875,
i=1 i=1

8

) (r;+ s;) = —1.2468+ —(1+(),
i=1

16) p;(a, +1) = ——.
69

(2.24)

(2.25)

C. The differential decay rate

Introducing

(p. +p.-)'
(2.26)

in (3.3). Moreover, the second relation in (2.25) assures
the correct large logarithm in Po, i.e. , 8/9 ln(Mm/p) .
The derivation of (2.9)—(2.23) is given in Sec. III.

In this way for rI = 1 we find P@ = 0, P9NDn = 4/9,
and Po ——0 in accordance with the initial conditions

and calculating the one-loop matrix elements of Q, using
the spectator model in the NDR scheme we find

—"I (b m se+e )Bs)=
F(b -+ cev)

('+ ') (Ice~I'+ lcml')

+4
~

1+ —„~ ~C~
'

~
+ 12C~

' ReC9 (2.27)

where

(2.28)

v cNDR-(
) ~ ) ( ") (3c(D) ~ c(o) ~ 3c(o) p c(o) ~ gc(o) ~ c(o)) h(( y) (4c(o) p &c(") p 3c(o) y c(0))

2

—-'h(o ') (c"+ 3c")+ -' (3c"+ c"'+sc"'+ c") .

Here

8 mb
b(z, s) = ——ln

9 p

8 8 4 2 ln &,'- +',——lnz+ + x ——(2+ 2:)(1 —xJ')
9 27 9 9 2 arctan

2forz= (1,
forx= )1, (2.29)

h, (0, s)

f(z)

lr, (z)

n(s)

8 8 mb 4 4.———ln ——ln 8 + —ver,
27 9 p 9 9
1 —8z + 8z —z —24z lnz,2 6 8 4

2c(. ()M) ( 31' 31— vr' —
l (1 —z)'+-

3vr
~

4
~

2

1+"'"' (-)

(2.30)

(2.31)

(2.32)

(2.33)

with

2 2 4 . „2 „„5+4s „2s(1+s)(1 —2s) „5+9s —6s2
(u(i) = ——7r ——li2(i) ——lnsln(1 —i)— ln(1 —s)— ln8+ (2.34)9 3 3 3(1 + 2s) 3(1 —s) (1 + 2s) 6(1 —i)(1 + 2s)

pv 3c(0) + c(0) c(D) &c(o))
9 1 2 3 4 (2.35)

However, C9 has to be replaced by C9H given in (2.10)
and (2.23) and consequently C9 is the same in both

Here f(z) and K(z) are the phase-space factor and the
single gluon @CD correction to the b + cev decay [26,27],
respectively. g, on the other hand, represents single gluon
corrections to the matrix element of Q9 with m, = 0
[28,12]. For consistency reasons this correction should
only multiply the leading logarithmic term in Po

In the HV scheme the one-loop matrix elements are
difFerent and one finds an additional explicit contribution
to (2.28) given by

I

schemes.
The Erst term in the function h(z, s) in (2.29) repre-

sents the leading p dependence in the matrix elements.
It is canceled by the p dependence present in the leading
logarithm in C9. The p dependence present in the co-
eKcients of the other operators can only be canceled by
going to still higher order in the renormalization-group-
improved perturbation theory. To this end the matrix. el-
ements of four-quark operators should be evaluated at the
two-loop level. Also certain unknown three-loop anoma-
lous dimensions should be included in the evaluation of
C'r and C9 [18,19]. Certainly this is beyond the scope
of the present paper and we will only investigate the left-
over p dependence in Sec. IV.

The fact that the coefBcient C9 should include next-
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to-leading logarithms and the other coeKcients should
be calculated in the leading logarithmic approximation
is easy to understand. There is a large logarithm in
Cg represented by 1/n, in Pg in (2.11). Consequently
the renormalization-group-improved perturbation theory
for Cg has the structure O(1/n, ) + O(1) + O(n, ) +
whereas the corresponding series for the remaining co-
efficients is O(1) + O(o.,) + .. Therefore in order to
find the next-to-leading order O(l) term, the full two-
loop renormalization-group analysis for the operators in
(2.1) has to be performed in order to find Cg, but the
coefBcients of the remaining operators should be taken
in the leading logarithmic approximation. This is grati-
fying because the coefficient of the magnetic operator Q7
is known only in the leading logarithmic approximation.
Q7 does not mix with Qg and has no impact on the co-
efFicients Cz —C6. Consequently the necessary two-loop
renormalization-group analysis of C9 can be performed
independently of the presence of the magnetic operators,
which was also the case of the decay KL, —+ vr e+e pre-
sented in Ref. [19].

Let us finally compare our main formulas (2.27)—(2.35)
with the ones given in the literature.

(i) The general expression (2.27) with K(z) = 1 is due
to Grinstein et al. [2], who in their approximate leading-
order renormalization-group analysis kept only the oper-
ators Qi, Q2, Q7 Qg Qig.

(ii) Inserting C, and CgND in (2.2) and (2.8) into

(2.28) we find an analytic expression for Cg which agrees
with a recent independent calculation of Misiak [12].

(iii) The sign of i7r in (2.29) differs from the one given
in [2] and [11]but agrees with [12] and also with the work
of Fleischer [29].

(iv) The "( term" given in (2.35) contains in the HV
scheme also contributions from the operators Qs and Q4,

I

which are, however, negligible. The discussion of the "(
term" in Refs. [2] and [ll] does not apply then to the HV
scheme.

III. TECHNICAL DETAILS

A. Wilson coefBcients

In order to calculate the coeKcient C9 including next-
to-leading order corrections we have to perform in prin-
ciple a two-loop renormalization-group analysis for the
full set of operators given in (2.1). However, Qig is not
renormalized and the dimension five operators Q7 and Qs
have no impact on C9. Consequently only a set of seven
operators, Qi s and Qg, has to be considered. This is

precisely the case of the decay Kl, —+ m e+e considered
in [19] except for an appropriate change of quark fiavors
and the fact that now p = O(mb) instead of p —1 GeV
should be considered. Because our detailed NI 0 anal-
ysis of KL, ~ vr e+e has already been published we
will only discuss very brieHy an analogous calculation of
B -+ X,e+e, referring the interested reader to [19]. We
should stress that Misiak [11,12] used different conven-
tions for the evanescent operators than used in [19] and

here. The agreement on C9 is therefore particularly sat-
isfying.

Integrating out simultaneously W, Z, and t we con-
struct 6.rst the effective Hamiltonian for LB = 1 transi-
tions relevant for 6 ~ 8e+e with the operators normal-
ized at p = M~. Dropping the operators Q7, Qs, and

Qig for the reasons stated above and using the unitarity
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix we

find

6

'R,~(AB = 1) = — V,*,Vtg ) C, (M~)q, + Cg(M~)qg
i=1

V„*.V„, C, (M )(ql"' —q, )+C, (M )(q',"' —q, ) .2"'" (3.1)

Here Qi"2 are obtained from Qi 2 through the replace-
ment c ~ u. In order to make all the elements of the
anomalous dimension matrix of the same order in o;„we
have appropriately rescaled Cg and Qg.

Cg(Mi4 ) = ~, (Mw) Y (~,)
sin O~

4—4Z(~q) + —(1 + ()9

(3.3)

0,'
Qg= Qg,~.(~)

Cg(~) = '
Cg(s ). (3.2)

Note that because of Glashow-Iliopoulos-Maiani (GIM)
cancellation there are no penguin contributions in the
term proportional to V„*,V„p. They would appear only at
scales p ( m as was the case in KL, ~ vr e+e . Since
~V*,V~g/V~*, V&~~ ( 0.02 we will drop the second term in
what follows.

The initial conditions at p = M~ for the coefBcients
Cq —C6 in NDR and HV schemes have been given in
Sec. 2.4 and in Appendix A of Ref. [19], respectively.
Here it suKces to give only the initial condition for the
coefficient Cg (denoted by C7& in [19]) which reads

where ( has been defined in (2.22). The xz dependence
originates in box diagrams and in the p- and Z-penguin
diagrams [30].

With

C = (Ci, . . . , Cs, Cg) (3.4)

one can calculate the coefficients C;(p) by using the evo-
lution operator U5(p, Mgr) relevant for an efFective the-
ory with f = 5 fiavors:

(3.5)

An explicit expression for U5 is given in Sec. 2 of [19]
where also the relevant expressions for one- and two-loop
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n „„1„2 4
(Q3) = —

l
3h(z, i) —2h(1, s) ——h(0, s) + —+

270 2
' 3 9 )

x (Qg)p, (3.8)
( . 3

(Q4) = —
l

h(z, s) —2h(1, i) ——h(0, s) + —+ —( l

2vr 2
' 9 3 )

x (Qg)p,

e e

a)

e

b)

anomalous dimensions can be found. One only has to set
f = 5, u = 2, and d = 3 in the formulas given in [19].

Using (3.5) and rescaling back the operator Qg we find,
at p = O(mb),

FIG. 1. The .two possibilities for insertion of a four-quark
operator into a penguin diagram.

Here

2 4 8 mg
h(z, s) = —G(z, i) ————ln

3 ' 9 9 p
(3.9)

n 6 3 2l
(Qs) = —

l 3h(z, s) ——h(1, s) + —
l (Qg)p,

27l' ( 2 3$
n f . 1 2)

(Qs) = —
l h(z, s) ——h(l, s) + — (Qg)p,

2m ( 2 9p

with ( defined in {2.22), (Qg)p denoting the tree level
matrix element of Qg and

'R,s (AB = 1) =—
6

V,*,Vgs ) C, {p)Q, + Cg(p)Qg2"
i=1

1

G(z, i) = —4 dxx(1 —x) ln z —ix(1 —x) (3.10)
0

(3 6)

with the coefficient Cg(p) given in (2.10) and (2.23) for
NDR and HV schemes, respectively. The result for HV
can either be found directly using (3.5) or by using the
relation

CHv( ) l
j n&(P) g T

I CNDR( )4 )
(3.7)

with the matrix Az' given in Appendix A of Ref. [19].

B. One-loop matrix elements

n
(Ql) = —

I
3h(z s) —-&

l (Qg)o3 )
n ( 4 )
2~( ' 9)l h(z, s) ——( l (Qg) p,

The operators Q7 and Qip contribute at this level of
accuracy only through tree level matrix elements. Qs
contributes only through the renormalization of Qy and
its impact is only felt in C7

' . The four-quark oper-
ators Qi s contribute at the one-loop level through the
diagrams in Fig. 1, where "(3" denotes the operator
insertion. Finally at next-to-leading level O(n, ) correc-
tions to the matrix element (Qg) have to be calculated.

I et us begin with (Qi s). As usual two types of inser-
tions of the operators into the penguin diagrams have
to be considered. As already discussed in Ref. [31],
the appearance of a closed ferrnion loop in Fig. 1(a)
does not pose any problems in the NDR scheme because
nowhere in the calculation does one have to evaluate
Tr[p„p„p~p~ps]. The diagrams in Fig. 1 have been evalu-
ated for the operators Qi and Q2 by Grinstein et al. [2]
and by Misiak [11] for the full set Qi —Qs. These calcu-
lations have been done in the NDR scheme. Calculating
these diagrams in the NDR and HV schemes we Find

1

~(i) = „dx I', (x, s)
1 —s 2 1+2s (3.11)

with I'i(x, s) defined explicitly in Eq. (3.9) of [28]. Calcu-
lating the integral we arrive at the result given in (2.34)
which furthermore agrees with Misiak [32].

IV. NUMERICAL ANALYSIS

In our numerical analysis we will use

with z and s defined in (2.26).
A few remarks should be made.
(i) h(z, s), h(1, s), and h(0, s) correspond to internal c,

b, and massless (u, d, s) quarks in Fig. 1, respectively.
(ii) The contributions of (u, d, s) to Fig. 1(a) cancel

each other and consequently h(0, s) represents the con-
tribution of the internal strange quark in Fig. 1(b).

(iii) We note that (Qs) and (Qs) inatrix eleinents do
not contain the ( term. We should, however, stress that
generally it is certainly possible to 6nd schemes in which

(Qs) and (Qs) matrix elements can differ Rom the ones
given in (3.8). Similarly we have no argument that in
schemes difFerent from NDR and tHV the matrix ele-
ments are found simply by changing the value of ( in
the formulas given above. It could be that the changes
are more involved. Consequently the discussions of the (
term presented in [2] and [ll] are not generally valid.

The one-gluon correction to the matrix element of Qg,
g(s), can be inferred from [28] as has been noticed by
Misiak in [12]. In [28] a left-handed current has been con-
sidered. Thus we rewrite the vector current as a sum of
left- and right-handed currents. Neglecting the electron
masses these two contributions do not interfere. Charge
conjugation transforms the right-handed current into a
left-handed one. Since 8 is invariant under this trans-
formation both currents lead to the same invariant mass
spectrum. Therefore we can write
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TABLE I. The coefBcient Po of C9 for various values of AMs and p.

p( GeV)
2.5
5.0
7.5

10.0

LO
2.052
1.851
1.673
1.524

AMs = 0 140GeV
NDR
2.927
2.623
2.389
2.202

HV
2.796
2.402
2.125
1.910

LO
1.932
1.787
1.630
1.493

NDR
2.845
2.589
2.371
2.192

AMs ——0.225 GeV
HV

2.758
2.394
2.126
1.915

LO
1.834
1.735
1.596
1.468

AMs ——0.310 GeV
NDR
2.774
2.560
2.356
2.183

HV
2.726
2.387
2.126
1.919

p, ln 1n(p2/A2 )

Pp 1n(y2/A~ ) Pp2 ln(p2/A2 )
(4.1)

with Pp
——23/3 and Pi ——116/3 as appropriate for five

flavors We .also take AMs
——(225 + 85) MeV correspond-

ing to n, (M~) = 0.117+ 0.007, where MS denotes the
modified. minimal subtraction scheme. For the remaining
parameters we take

n = 1/129,
sin 0~ ——0.23,

[Vg, /Vgi = 1,

m = 14GeV,
mg ——4.8 GeV,

M~ ——80.0 GeV.
(4.2)

In Table I we show the constant Pp in (2.11) for difer-
ent p and AMS, in the leading ord.er corresponding to the
first term in (2.11) and for the NDR and HV schemes as
given by (2.11) and (2.23), respectively. In Table II we
show the corresponding values for Cs(p). To this end we
set mq ——170 GeV.

We observe the following.
(i) The NLO corrections to Pp enhance this constant

relatively to the LO result by roughly 45'%%up and 35%
in the NDR and tHV schemes, respectively. This en-
hancement is analogous to the one found in the case of
KL, -+ ~ e+e

(ii) In calculating Pp in the LO we have used n, (p, )
at the one-loop level. Had we used the tw'o-loop ex-
pression for n, (p) we would find for p, = 5GeV and
AMs ——225 MeV the value Po = 1.98. Consequently
the NLO corrections would have smaller impact. Ref-
erence [2] including the next-to-leading term 4/9 would
find Pp values roughly 20'%%up smaller than Pp given in
Table I.

(iii) It is tempting to compare Pp in Table I with
that found in the absence of QCD corrections. In the
limit n, m 0 we find Pp = 8/9 ln(M~/p) ~ 4/9
and Pp ——8/9 ln(M~/p) which for p, = 5GeV give
Po ——2.91 and Po ——2.46. Comparing these values
with Table I we conclude that the QCD suppression of
Po present in the leading-ord. er approximation is consid-
erably weakened in the NDR treatment of p5 after the
inclusion of NLO corrections. It is essentially removed

for p & 5GeV in the HV scheme.
(iv) The NLO corrections to Cs, which include

also the mq-dependent contributions, are large as
seen in Table II. The results in HV and NDR schemes are
larger by more than a factor of 2 than the leading-order
result C9 ——Po which consistently should not include
mz contributions. This demonstrates very clearly the ne-
cessity of NLO calculation which allow a consistent in-
clusion of the important mq contributions. For the same
set of parameters the authors of Ref. [2] would find Cp
to be smaller than Cz by 10—15 %.

(v) The p, and AMs dependences of Cp are quite weak.
We also find that the mq dependence of C9 is rather weak.
Varying mz between 150 GeV and 190 GeV changes C9 by
at most 10%. This weak mi dependence of Cs originates
in the partial cancellation of mq dependences between
Y(xi) and Z(xq) in (2.10) as already seen in the case of
KL, ~ vr e+e . Finally, the difFerence between Cz
and CsHv is small and amounts to roughly 5%.

In Fig. 2 we show Cp+ of (2.28) as a function of s for
m~ ——170 GeV, AMS ——225 MeV, and 2.5 & p & 10 GeV.
In order to see the importance of the term resulting from
the one-loop matrix elements one should compare these
results with the 8-independent values of C9. We should
also remember that the NLO corrections to Po calculated
here shift C9+ for p = 5.0GeV by AC9NDR = 0.8 and

LC9 0.6 with similar results for other p. In order to
show this efFect more explicitly we also plot in Fig. 2 a
"leading-order" result obtained by using only the leading
term in (2.11) with n, at the one-loop level but keeping
otherwise all explicit NLO terms in (2.10) and the con-
tributions &om one-loop matrix elements given in (2.28).
It should be stressed that roughly 50%%up of the difference
between the "thick" and "thin" lines in Fig. 2 is due to
the term 4/9 in (3.3) which in the NDR scheme enters
the NLO terms in Po but in the HV scheme is present in
the one-loop matrix elements. We have left it out in the
"thin" lines in Fig. 2 in order to show its importance. The
calculation of NLO corrections to Po allows a consistent
inclusion of this term which contributes positively to C9
Additional enhancement comes &om using the two-loop

TABLE II. Wilson coefBcient C9 for mg ——170 GeV and various values of AMs and p.

p( GeV)
2.5
5.0
7.5

10.0

LO
2.052
1.851
1.673
1.524

AMs = 0.140GeV
NDR
4.495
4.193
3.960
3.774

HV
4.364
3.972
3.696
3.482

NDR
4.413
4.159
3.942
3.763

LO
1.932
1.787
1.630
1.493

AMs ——0.225 GeV
HV

4.326
3.963
3.696
3.486

LO
1.834
1.735
1.596
1.468

AMs ——0.310GeV
NDR
4.341
4.130
3.926
3.754

HV
4.293
3.956
3.697
3.490
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efFFIG. 2. Comparison of the Wilson coefficient C9 as a func-
tion of s for m~ ——170GeV, AM& ——0.225GeV, and different
values of p in leading-order (thin lines) and next-to-leading
order (thick lines) accuracy. Note the different scales for the
real and imaginary parts.

renormalization-group analysis for C9 and o., at the two-
loop level. In Fig. 2 we also note that ReC9 )& ImC9
The pronounced peak for s = 4m, /m& ——0.34 is related
to the behavior of h(z, s) in (2.29). This peak essen-
tially disappears for p = 2.5GeV because of the acci-
dential cancellation 3Ci + C2 = 0 in the dominant(o) (o)

term multiplying h(z, s). The authors of Ref. [2] would
find ReCs+ by about 15% below our values. In the ab-
sence of @CD corrections, h(z, s) in (2.28) is multiplied

by C = 1 and consequently there is no accidental sup-2
pressionression of this term as in the @CD case. Since in ad-
d'tion for o., ~ 0 P is slightly enhanced over the
values given in Table I, we And C9 in the absence of
@CD corrections to be substantially larger than the re-
sult given in Fig. 2. For instance, Re C9+ varies between
5.2 and 6.3 for 0.1 & 8 & 0.9. The complete result for
R(s) in this case is shown in Fig. 5 at the end of this
section.

We next present a numerical analysis of (2.27). In
doing this we keep in mind that for 8 = m& ~'m&,

s = m@, /m&, etc. , the spectator model cannot be the
full story and additional long distance contributions dis-

cussed in Refs. [14—16] have to be taken into account in a
p enhenomenological analysis. Similarly we do not include
1/m& corrections calculated in [13] which typically en-
hance the differential rate by about 10%.

In Fig. 3(a) we show R(s) for mq ——170GeV, AMs ——

225MeV, and different values of p, . In Fig. 3(b) we set
p = 5 GeV and vary mz &om 150 GeV to 190 GeV. The
remaining p dependence is rather weak and amounts to
at most +8% in the full range of parameters consid-
ered. The m& dependence of R(s) is sizable. Varying
mq between 150 GeV and 190 GeV changes R(s) by typ-
ically 60—65 %, which in this range of mq corresponds
to R(s) m, . It is easy to verify that this strong
mq dependence originates in the coeKcient Cio given in
(2.8) as already stressed by several authors in the past
[1—3,6,8,7,4,5].

We do not show the AMS dependence as it is very weak.
Typically, changing AMs from 140MeV to 310MeV de-
creases R(s) by about 5%.

0

aIldR(s) is governed by three coeKcients, Cs, qo, an
C( . It is of interest to investigate the importance7

Aof various contributions. To this end we set
225 GeV, mq ——170 GeV, and p, = 5 GeV. In Fig. 4 we

show R(s) keeping only Cs I CqoI C&, and the C&

C9 interference term, respectively. Denoting these con-
tributions by B9, Bio, B7, and B7y9 we observe that the
term R7 plays only a minor role in R(s). On the other
hand, the presence of C7

' cannot be ignored because
the interference term B7/9 is significant. In fact the pres-
ence of this large interference term could be used to mea-

( ) & e efFsure experimentally the relative sign of C7 an e 9
[2,4,5,8,7], which as seen in Fig. 4 is negative in the stan-
dard model. However, the most important contributions
are B9 and Bio in the full range of 8 considered. For
m& 170 GeV these two contributions are roughly of the
saIne size. Because of a strong mq dependence of Bio,
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FIG. 3. (a) R(s) for m~ ——170 GeV, AMs = 225 MeV, and
different values of p, . (b) R(s) for p = 5 GeV, AMs = 225
MeV, and various values of m~.

FIG. 4. Comparison of the four different contributions to
B(s) according to Eq. (2.27).
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12

10

No QCD
———— Grinstein et al.

Full NLO

weaker and the uncertainty due to the choice of p in
mq(p) is small. On the basis of these arguments and the
result of Refs. [33,34] we believe that if mq ——mq(mt) is
chosen, additional short-distance QCD corrections to the
branching ratio for B ~ X,e+e should be small.

O

0 I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S

FIG. 5. B(s) for m, q ——170 GeV, AMs = 225 MeV, and

p = 5GeV.

this contribution dominates for higher values of mq and
is less important than B9 for mq ( 170 GeV.

Next, in Fig. 5 we show R(s) for p = 5 GeV, mq

170GeV, and AMs
——225MeV compared to the case of

no QCD corrections and to the results Grinstein et at. [2]
would obtain for our set of parameters using their ap-
proximate leading-order formulas.

Finally, we would like to address the question of the
definition of mq used here. In order to be able to analyze
this question, one would have to calculate perturbative
QCD corrections to the functions Y(xq) and Z(xt) and
include also an additional order in the renormalization-
group improved perturbative calculation of Po. The lat-
ter would require evaluation of three-loop anomalous di-
mension matrices, which in the near future nobody will
attempt. In any case, we expect only a small correction to
Po. The uncertainty due to the choice of p in mq(p) can
be substantial, as stressed in Refs. [33,34], and may result
in 20—30% uncertainties in the branching ratios. It can
only be reduced if O(n, ) corrections to Y(xq) and Z(xq)
are included. For K+ ~ vr+vv, KI, —+ vr vv, B —+ @+p
and B -+ A, vv this has been done in Refs. [33,34]. The
inclusion of these corrections reduces the uncertainty in
the corresponding branching ratios to a few percent. For-
tunately, the result for the corrected function Y(xt) given
in Refs. [33,34 can be directly used here. The message
of Refs. [33,34] is the following: For mq ——mt(mq), the
QCD corrections to Y(x&) and consequently to Cqo are
below 2%. Corresponding corrections to Z(xq) are not
known. Fortunately, the mz dependence of Cg is much

V. SUMMAB.Y

1.0 x 10 ( R(s) ( 9.8 x 10 (5 1)

This result can be modified by nonperturbative limb cor-
rections and long-distance contributions [14—16], which
are, however, beyond the scope of this paper.
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We have calculated the effective Hamiltonian relevant
for the rare decay B ~ X,e+e beyond the leading log-
arithmic approximation. The main result of this paper
is the calculation of the Wilson coeKcient of the oper-
ator Qs ——(sb)v ~(e e) v including next-to-leading log-
arithms in the NDR and HV renormalization schemes.
A separate analytic expression for C9 given in Sec. II
as opposed to Cs+ given in [12] should be useful not
only in B + X,e+e but also in B ~ K*e+e and
other rare B decays to which Qs contributes. Calcu-
lating B —+ X,e+e in the spectator model we confirm
the very recent result for C9 presented by Misiak in
[12]. The cancellation of the scheme dependence in C9+
is shown explicitly in our paper.

The effect of the NLO corrections is to enhance 8(B ~
A, e+e ) so that its suppression found in the leading-
order analysis of Ref. [2] is considerably weakened. This
is seen in particular in Fig. 5.

We have investigated the mq, AM» and p = O(rnb)
dependence of the "reduced" branching ratio B(s). The
dependences on AMs and p are rather small, at most
+8% in the full range of parameters considered. The
dependence on mq is sizeable. In the range 150GeV (
rnid ( 190GeV it is roughly parametrized by B(s) mt .
For mq ——170GeV, AMs

——225MeV, p = 5GeV, and
0.1 ( 8 ( 0.8 we find
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