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+CD radiative corrections to the leptonic decay rate of the H, meson
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The +CD radiative corrections to the leptonic decay rate of the B, meson are calculated using
the formalism of nonrelativistic +CD (NRQCD) to separate short-distance and long-distance ef-
fects. The B, decay constant is factored into a sum of NRQCD matrix elements each multiplied by a
short-distance coeKcient. The short-distance coefBcient for the leading matrix element is calculated
to order n, by matching a perturbative calculation in full @CD with the corresponding pertur-
bative calculation in NRQCD. This short-distance correction decreases the leptonic decay rate by
approximately 15%.
PACS number(s): 13.20.He, 12.38.Bx

The study of heavy quarkonium systems has played
an important role in the development of quantum chro-
modynamics (QCD). Soine of the earliest applications of
perturbative QCD were calculations of the decay rates of
charmonium [1]. These calculations were based on the
assumption that, in the nonrelativistic limit, the decay
rate factors into a short-distance perturbative part as-
sociated with the annihilation of the heavy quark and
antiquark and a long-distance part associated with the
quarkonium wave function. This simple factorization as-
sumption fails for P-wave states [2], which satisfy a more
general factorization formula containing two nonpertur-
bative factors [3]. Calculations of the annihilation decay
rates of heavy quarkonium have recently been placed on
a solid theoretical foundation by Bodwin, Braaten, and
Lepage [4]. Their approach is based on nonrelativistic
QCD (NRQCD), an efFective field theory that is equiv-
alent to QCD to any given order in the relative velocity
v of the heavy quark and antiquark [5]. Using NRQCD
to separate the short;-distance and long-distance efFects,
Bodwin, Braaten, and Lepage derived a general factor-
ization formula for the inclusive annihilation decay rates
of heavy quarkonium. The short-distance factors in the
factorization formula can be calculated using perturba-
tive QCD, and the long-distance factors are defined rigor-
ously in terms of matrix elements of NRQCD that can be
evaluated using lattice calculations. The general factor-
ization formula applies equally well to S waves, P waves,
and higher orbital-angular-momentum states, and it can
be used to systematically incorporate relativistic correc-
tions to the decay rates.

Since the top quark decays too quickly to produce nar-
row resonances, the only heavy-quark —antiquark bound
states that remain to be discovered are the bc mesons and
their antiparticles. The possibility that bc mesons may be
discovered at existing accelerators has stimulated much
recent work on the properties of these mesons [6] and
on their production cross sections at high energy collid-
ers [7]. Once produced, a bc meson will cascade down
through lower energy bc states via hadronic or electro-
magnetic transitions to the pseudoscalar ground state B,
which decays weakly. The discovery of the B meson will

where IB,(P)) is the state consisting of a B, with four-
momentum P. It has the standard covariant normaliza-
tion (B,(P') IB,(P)) = (2m) 2P 8 (P' —P), and its phase
has been chosen so that f~ is real and positive. In terms
of the decay constant f~, the leptonic decay rate is
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FIG. 1. Diagram for the annihilation of B' into lepton
pairs via a virtual TV+. The shaded oval represents the wave

function of the B,.

require a detailed understanding of its decay modes. In
this paper, we compute the short-distance QCD radia-
tive correction to the leptonic decay rate of the B . We
use the formalism of NRQCD to factor the amplitude for
the decay into short-distance coefficients multiplied by
NRQCD matrix elements. The short-distance coefiicient
for the leading matrix element is calculated to next-to-
leading order in o., by matching a perturbative calcu-
lation in full QCD with the corresponding perturbative
calculation in NRQCD.

The leptonic decay of the B,proceeds through a virtual
W+ as in Fig. 1. The R'+ couples to the B through
the axial-vector part of the charged weak current. All

QCD effects, both perturbative and nonperturbative, en-
ter into the decay rate through the decay constant fz, ,

defined by the matrix element

(olh~ ~. IB.(P)) = 'f .P",
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where Vp is the appropriate Kobayashi-Maskawa matrix
element;, G~ is the Fermi constant, M~ is the mass of
the B, meson, and mg is the mass of the charged lepton.

The formula (1) provides a nonperturbative definition
of the decay constant f~, so that it can be calculated us-
ing lattice QCD simulations. One of the difficulties with
such a calculation is that it requires a lattice with large
volume and Gne lattice spacing, since the strong interac-
tions must be accurately simulated over many distance
scales. The long-distance scales range from 1/AclcD, the
scale of nonperturbative effects associated with gluons
and light quarks, to the scale 1/(m, v) of the meson struc-
ture, where v is the typical relative velocity of t;he charm
quark. The short-distance scales include the Compton
wavelengths 1/m, and 1/mb of the heavy quark and anti-
quark. A more eff'ective strategy for calculating f~. is to
separate short-distance effects &om long-distance effects,
to calculate the short-distance effects analytically using
perturbation theory in o.„and to use lattice simulations
only for calculating the long-distance effects. Having al-
ready taken into account the short-distance effects, one
can use a much coarser lattice which provides enormous
savings in computer resources.

An elegant way to separate short-distance and long-
distance effects is to use NRQCD, an eff'ective field theory
in which heavy quarks are described by a nonrelativistic
Schrodinger field theory of two-component Pauli spinors.
The Lagrangian is

&NRqcD = &iisht + 4t &Dp + D /(2m )

+yb tDp —D /(2mb) gb +t 2

where C~;ght is the usual relativistic Lagrangian for gluons
and light quarks. The two-component field @, annihi-
lates charm quarks, while yg creates bottom antiquarks.
The typical velocity v of the charm quark in the meson
provides a small parameter that can be used as a non-
perturbative expansion parameter. Lattice simulations
using the terms given explicitly in (3) can be used to cal-
culate matrix elements for the B with errors of order v .
To obtain higher accuracy, additional terms, represented
by the ellipsis in (3), must be included. There are eight
terms that must be added to decrease the errors to order
v4.

To express the decay constant f& in terms of NRQCD
matrix elements, we must express the axial-vector cur-
rent bp"abc in terms of NRQCD fields. Only the p = 0
component contributes to the matrix element (1) in the
rest frame of the B . This component of the current has
an operator expansion in terms of NRQCD fields:

bp psc = Cp(mb m, )pbbs~ + C2(mb, m, ) (Dyb) t . Dg,
+ ~ 4 ~ (4)

where Co and C2 are short-distance coefficients that de-
pend on the quark masses mg and m . By dimensional
analysis, the coefficient C2 is proportional to I/m&. The
contribution to the matrix element (Olbp psclB, ) from
the operator (Dyb)t D@, is suppressed by v relative to
the operator ytbg, where v is the typical velocity of the
charm quark in the B,. The ellipsis in (4) represent other
operators whose contributions are suppressed by higher

powers of v
The short-distance coefBcient Co and C2 can be de-

termined by matching perturbative calculations of the
matrix elements in full QCD and NRQCD. A convenient
choice for matching is the matrix element between the
vacuum and the state lcb) consisting of a c and a b on
their perturbative mass shells with nonrelativistic four-
momenta p and p' in the center of momentum frame:
p + p' = 0. The matching condition is

(Olbp p clcb)
PQCD

= Co (Ol~b&-lcb)
PNRQCD

+C2 (Ol(»b)' D@.lcb)

+ 0 ~ ~

PNRQCD

where PQCD and PNRQCD represent perturbative QCD
and perturbative NRQCD, respectively. At leading or-
der in n„ the matrix element on the left side of (5) is
eb( —p)p psu, (p). The Dirac spinors are

u. (p) =

v(-p) =

E.+m. ( (
«.+-.~) '

Eb+mb t'( p)'~gb
Zg, +my,

2Eb ( rI

+ ~ ~ ~

At leading order in o.„the matrix elements on the right

(a) (b)

(c)

FIG. 2. Diagrams for the matrix elements (Olby psclcb) in
perturbative QCD and (Olytbg lcb) in perturbative NRQCD.

where ( and rI are two-component spinors and Eg
m + p . Making a nonrelativistic expansion of the
spinors to second order in p/m~, we find

2

vb( —p)~ ~.u. (p) =nb(. 1 ——
l

1 (mb+m, )
8 ( mbm, )
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side of (5) are gb(, and p gb(, . The short-distance coef-
ficients are therefore Co ——1 and

1
C2

8 mre

where m„d = mbm, /(mb + m, ) is the reduced mass.
To determine the short distance coefEcients to order

o.„we must calculate the matrix elements on both sides
of (5) to order n, . We will calculate the order-n, cor-
rection only for the coefBcient Co, since the contribu-
tion proportional to C2 is suppressed by V2. The coef-
ficient Co can be isolated by taking the limit p -+ 0, in

which case the matrix element of (Dyb)t DvP, vanishes.
We first calculate the matrix element on the left side of
(5) to order n, . The relevant diagrams are shown in
Fig. 2. The tree diagram in Fig. 2(a) gives a product of
Dirac spinors Ngpop5u, . We calculate the loop diagrams
in Figs. 2(b)—2(d) in Feynman gauge, using dimensional
regularization to regularize both in&ared and ultraviolet
divergences. Momentum integrals are analytically con-
tinued to D = 4 —2e spacetime dimensions, requiring
the introduction of a regularization scale p. The efFects
of the quark self-energy diagrams in Figs. 2(b) and 2(c)
is to multiply the matrix element by the renormalization
constants QZb and QZ„where

2n, t' 1 1 1 1 3 3 mg
1 + '

~

—— —— ——(ln4n —p) + —ln —1
37I ( 4 eUv 2 e&R 4 2 p )

The subscript UV or IR on the e's indicates whether the divergence is of ultraviolet or in&ared origin. Combining the
propagators using the Feynman parameter trick and using the fact that the external quarks 6 and c are on shell, the
vertex correction from Fig. 2(d) can be reduced to the tree-level diagram in Fig. 2(a) multiplied by the factor

x 2(1 —x —y)p . p + 2:m + ymb + (x + y)mbm.

+2 (1 —e) (xm, —ymb) —(1 —e) (xp —yp) — k2 (1 —e)'
(2 —e)

After integrating over k, it is convenient to change variables &om the Feynman parameters to s = z+ y and t = x/s.
The s integrals are trivial, but the t integrals must be evaluated with care using the ie prescription in the denominator.
Setting p p = mbm, (1+v /2), where v is the relative velocity of the b and c, and taking the limit v ~ 0, the integral
reduces to

2CR8 1 1 1 3 c mc mQ
A = ' — +. + —(In 4~ —p) + ——3 ln —3 ln —1

37r 2 tUv cjR 2 v mg+m p mb+mc p

l2mregv—21n " + ln47r —p I

4 era. p

where m„g = mbm, /(mb + m, ). Multiplying the tree-level matrix element by the vertex factor 1+ A and by the
renormalization constants QZb and QZ„we obtain the final answer for the matrix element to order a, :

(Olb

PQCD

0 5 2cjg 7l 3 mQ mc mQ2

ebp p u 1+ —+ — ln —3
37l. v 2 my+ mc mc

i~ f 1 2mredv—21n " + In4vr —p ~

(eiR J

(13)

Note that the ultraviolet divergences have canceled. The imaginary part of (13) arises because it is possible for the
quark and antiquark created by the current to scatter on shell.

We next compute the NRQCD matrix element on the right side of (5) to order n, . The relevant Feynman diagrams

are again shown in Fig. 2. The tree diagram in Fig. 2(a) gives a product of Pauli spinors qb(, . It is convenient to
calculate the loop diagrams in Coulomb gauge. In this gauge, the coupling of transverse gluons to heavy quarks is

proportional to the heavy quark velocity, and therefore does not contribute in the limit v ~ 0. We therefore need only
calculate the contribution from Coulomb exchange. The wave function renormalization factors associated with the
diagrams in Fig. 2(b) and Fig. 2(c) are trivial: v Zb = v Z, = 1. The diagram in Fig. 2(d) reduces to a multiplicative
correction to the tree-level matrix element from Fig. 2(a):
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16~an. „d~q 1 1
A

3 (2vr)~ q2 Eb+qp —(p+q)2/2mb+is E, —qo —(p+ q)2/2m, +is ' (14)

where Eg = p /2m'. The infrared-divergent integral has been dimensionally regularized. After using contour
integration to integrate over the energy qo of the exchanged gluon, we find that (14) reduces to an integral over the
gluon's three-momentum:

327l 0!8m1eg 2 d g 1 1

3 (2~)'—"q2 q2+2p q —iep

Evaluating the regularized integral in (15), we obtain

(15)

(Ol&b@.I
c~)

2n, z.2 i7r r' 1= q, (. 37r 'v v 1 eiR
PNRQCD

l2mreg5—21' " +1n4w —p ~ ),P ) (16)

where v is the relative velocity of the b and c: !p!
m„gv. Note that the infl. ared divergences and the factors
of 1/v are identical to those in the matrix element (13)
for full QCD.

Comparing the matrix elements (13) and (16), we can
read oIII' the short-distance coeKcient Co from the match-
ing condition (5):

0 —1 + O'8 mred ~b mc
Jn —2 . 17

+ 7TlC mC

VA have chosen m«g as the scale of the running coupling
constant. To the accuracy of this calculation, any scale of
order m@ or I, would be equally correct. Setting mp ——

4.5 GeV and m, = 1.5 GeV, we find that n, (m„g) =
0.34, and Co 0.85.

Our final result for the decay constant of the B is

i f~, M~, = Co (0!pbbs, ]B,) + C2 (0[(Dyb) Dg, ]B,).
(18)

The short-distance coeKcient Co is given to next-to-
leadiiig order in n, in (17), while Cz is given to leading
order in (9). The uncertainties consist of the perturba-
tive errors in the short distance coeFicients and an error
of relative order v Rom the neglect of matrix elements
that are higher order in v . To achieve an error of or-
der v, the matrix element (0!(Dyb)t D@,!B) can be
calculated by lattice simulations using those terms in the
NRQCD Lagrangian that are given explicitly in (3), but

(0[ybg, ]B,) must be calculated using an improved action.
If an error of order v is sufBcient accuracy, than the ma-
trix element (Ol(Dyb)" D& lB ) can be dr pp d and

(0[ybg, [B,) can be calculated using only those terms in
the NRQCD Lagrangian that are given explicitly in (3).
The parameters in this Lagrangian are o., and the quark
masses mg and m, all of which can be tuned so as to re-

I

produce the spectroscopy of charmonium and bottomo-
nium. These simulations should be very accurate for the
intermediate case of the bc system. In the absence of any
lattice calculations of the bc system, the matrix element

(0]ybtvP, ]B,) can be estimated using wave functions at the
origin from nonrelativistic potential models:

l«l~b4"IB.)l' = 2M~.
2

I&(0)l'. (19)

The factor of 2M~. takes into account the relativistic
normalization of the state!B,).

Although it may not be relevant to the B meson, it
is interesting to consider the limit mg )) m, . In this
limit, the perturbative correction in (17) contains a large
logarithm of mb/m, . Heavy quark effective theory can
be used to sum up the leading logarithms of mb [8]:

C(n. )
( (A) ) svr/(ss 2ny)—

!
n( bm) )

n, (m, ) A
x 1+ ' ln

mc
-2), (2o)

where ny is the number of light flavors, including the
charm quark, and where A is an arbitrary factorization
scale.

We have calculated the short-distance QCD radiative
correction to the leptonic decay rate of the B meson.
This calculation provides an illustration of the factoriza-
tion methods based on NRQCD that were developed in
Ref. [4]. The decay constant f~ of the B, was factored
into short-distance coefficients multiplied by NRQCD
matrix elements. The radiative correction to the coeK-
cient of the leading matrix element decreases the leptonic
decay rate of the B, meson by about 15%.
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