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Scattering of massless scalar waves by a Schwarzschild black hole:
A phase-integral study
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Plane scalar waves scattered o8' a Schwarzschild black hole are studied in the partial-wave pic-
ture. A new approximate formula for the relevant phase shifts is derived using the phase-integral
method. This formula is, in principle, uniformly valid for all frequencies and agrees with well-known
approximations for frequencies well above and below the top of the curvature potential barrier. The
reliability of the phase-integral formula is assessed in two diferent ways. First we use the fact that
higher orders of approximation are easily implemented in the phase-integral method. The accuracy
of each phase shift can be estimated by the contribution to it by the following order of approxima-
tion. Second, we use the approximate phase shifts to construct physically meaningful quantities,
such as the de8ection function and cross section, for several scattering frequencies. The features of
these quantities, especially those associated with the prominent black-hole glory in the backward
direction, are in excellent agreement with results of previous studies of the problem. The new
phase-shift formula is thus shown to be reliable and provides a useful and efBcient tool, especially
for intermediate and high frequencies.

PACS number(s): 9?.60.Lf, 02.70.—c, 04.20.—q, 03.80.+r

I. INTRODUCTION

In standard quantum scattering plane waves are used
to probe the details of a physical system such as, for ex-
ample, an atom or a molecule. Such investigations have
proved extremely &uitful, experimentally as well as theo-
retically, and have led to a better understanding of some
of the most beautiful phenomena in nature. In fact, the
theoretical framework that is used to explain the features
of a rainbow can be brought to bear also on the descrip-
tion of the interatomic forces. One may wonder whether
the scattering approach could not prove illuminating also
for larger bodies such as black holes (or neutron stars).
Indeed it can, basically because these systems are very
clean and "easily" modeled, and important work in this
respect has been carried out since the late 1960s (see [1]
for an exhaustive description).

The present investigation addresses the simplest scat-
tering problem that involves black holes, i.e. , the
case when massless scalar waves are scattered off a
Schwarzschild hole. We reexamine this "old" problem
(for previous work see [2—6]) in order to find out whether
various descriptions of scattering developed for quantum
problems can prove useful in general relativity. In this pa-
per we discuss the scattering of a monochromatic scalar
wave in terms of phase shifts and derive a new approxi-
mate phase-integral formula for those that are valid for
a wide range of frequencies. We assess the reliability and
usefulness of the new formula in two different ways. The
first of these is based on the fact that higher orders of ap-
proximation are easily implemented in a phase-integral
study. The arbitrary-order phase-integral scheme [7,8]
is inherently asymptotic and it makes sense to consider
each phase shift as an asymptotic expansion when higher

orders are included. Then one would expect the accu-
racy of the approximate phase shifts to Grst improve and
eventually diverge as the order of approximation is in-
creased. The best possible result would be achieved by
truncating the expansion at the order of approximation
that contributes the least, i.e., immediately before di-
vergence. However, it seems unlikely that phase shifts
of extreme accuracy are actually needed to explore the
underlying physics of the black-hole scattering problem.
We will therefore perform calculations only for the low-
est two orders of approximation here. The higher order
will be used to provide an estimate of the accuracy of
the lowest order of approximation. However, it should
be mentioned that our final formula for the phase shifts
is valid in any order of approximation. The reliability
of the new approximate formula can also be inferred in
a more indirect way. We can use the resultant phase
shifts to construct physically relevant scattering quanti-
ties (such as the deflection function and the differential
cross section) for a range of frequencies. The detailed
features of these quantities should be compared to the
results of previous, analytical as well as numerical, work
in this Geld.

As already stated, we want to see whether various de-
scriptions of scattering can be used in the context of black
holes. That the standard partial-wave paradigm is useful
is already well established [1], but some alternatives to
this picture do not seem to have been discussed previ-
ously. One such alternative is based on the use of com-
plex angular momenta. We have recently approached the
black-hole problem within that framework [9,10]. The
present study is complementary to that one and the re-
sults discussed here were, in fact, used to establish the
reliability of the complex angular momentum approach.

It may be argued that black-hole scattering problems
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have been exhaustively studied before, and that there is
no need for them to be considered further. This may,
indeed, be true for the relatively simple problem stud-
ied here: Our understanding of scattering of scalar, elec-
tromagnetic, and gravitational waves from Schwarzschild
black holes is satisfactory [1]. However, the situation is
difFerent for Kerr black holes. Although numerical calcu-
lations have been performed also for such problems, the
physical "observables, " e.g. , the cross sections, are not
as transparent as for nonrotating holes. In fact, the fea-
tures that occur for rapidly rotating black holes are not
at all well understood. In order to improve on the sit-
uation alternative descriptions and new approaches are
needed. Although the problem can immediately be ap-
proached numerically [1], it seems likely that an approxi-
mate study will enable a better understanding of the ac-
tual physics involved. It seems natural to approach the
Kerr black-hole problem via the phase-integral method,
which has proved useful and reliable in atomic and molec-
ular scattering. However, before any "new" tool, such as
the approximate phase-shift formula of this paper or the
complex angular momentum description [9,10], is used
in a more challenging situation it must be tested under
somewhat controlled circumstances. This is the main rea-
son why the present study is restricted to massless scalar
waves scattered by a nonrotating black hole. Most of
the formulas discussed below should generalize to Kerr
black holes, and they are certainly applicable to scat-
tering of electromagnetic and gravitational waves &om
Schwarzschild black holes.

II. SCATTERING FROM BLACK HGLES

rr, = r+ 2Mln —1 + const.
2M (4)

4 = ) (2E+ 1)
' Pg(cosg) .Pg(r, t)

e=o

B. Scattering amplitude and phase shifts

Let us now assume that we study monochromatic
waves with a certain frequency w. Then Pg will have
a time dependence exp( —iut) and (for each value of /) a
general solution to (1) that satisfies the causal boundary
condition of purely ingoing waves crossing the horizon is

( A; e * " + A „,e* ", r. -+ oo .

(In the following the appropriate dependence on time will
not be written out explicitly. ) The scattering problem
involves finding such a solution to (1), i.e. , identifying
A;„and A „q. Then we can extract the scattered wave
by discarding the part of the solution that corresponds to
the original plane wave. The physical information we are
interested in is contained within the scattering amplitude

The integration constant will be left unspecified for the
moment, but it should be mentioned that we will later
choose it to be nonzero (see Sec. IV C).

Once a solution Pg to (1) is known for all non-negative
integers E, the scalar field 4' can be calculated through
the partial-wave sum

A. Equations describing a massless scalar Geld

It is well known that the Klein-Gordon equation in the
Schwarzschild geometry can be written

8 —V(r) Qg =0.

Here it is assumed that the contribution of the scalar field
to the curvature of spacetime can be neglected and we
use geometrized units (in which c = G = 1). The effec-
tive potential V(r) is partly due to the centrifugal barrier
that is familiar kom other problems with spherical sym-
metry, but a part of it arises because of the curvature of
spacetime in the vicinity of the hole:

Z(e + 1)Vr = 1— +r' r

M is the black-hole mass and E is the integer index of the
standard spherical harmonics (E & 0).

The tortoise coordinate r, in (1) is related to the
Schwarzschild radius r by

d ( 2M' d
1 ——

dr, ( r ) dr

or

4 @pi „,+ f (8)e' "*—as r, -+ +oo .

This program seems straightforward. , but it involves at
least one far from trivial question: What exactly do we
mean by a plane wave in a curved spacetime7

This problem has been discussed in several papers by
other authors (see Matzner [2] and Chrzanowski et al.
[11]). They conclude that, in the case of a scalar field,
the desired expression for a plane wave at infinity is

1 Err
@~i „, ) z (2E+ 1)Pg(cos0) sin err, ——

(or 2e=o

as r, -+ +oo . (8)

This is, at first sight, a remarkable result. We retain the
standard Bat spacetime description by replacing r, in
(8) by r. In retrospect it becomes more obvious. When
described in terms of the Schwarzschild coordinate r the
wave equation (1) is a Schrodinger-like equation with a
long-range efFective potential (that falls ofF as 1/r for
large r) The probler. n is therefore analogous to that of
Goulomb scattering. In such problems the efFect of the
long-range potential is accounted for by a modification
of the scattering amplitude similar to that above [12].
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The remaining road is clear and we can extract the
scattered wave by subtracting the plane-wave contribu-
tion (8) &om our total solution (6). In doing so we need
only make sure that no incoming wave remains at infinity.
I etting

The difFerential equation (12) then becomes

@plane e' ) (28+1) e * ' —1 Pg(cose)
2Z(d f'

e=o
where

+R(r) gg =0, (14)

define the (complex-valued) phase shifts 6'g it is straight-
forward to show that

2ibg
( 1)

8+1
A;„

(10)

Prom the above it follows that the scattering amplitude,
which contains all the physical information, is given by

f(0) = ) (2E+ 1) e ' ' —1 Pg(cose) .
2'LEO

e=o

The next step in our investigation is to develop a tech-
nique for calculating the phase shifts. That is, we want
to find a solution to the ordinary difFerential equation

+~' —V(r) Pg = 0

that satisfies the physical condition that no waves come
out of the horizon (at r, = —oo). Then we can extract
A;„and A „& from the asymptotic behavior of this solu-
tion as r, ~ +co and the phase shifts follow from (10).
Since (12) is similar to the one-dimensional Schrodinger
equation with an effective potential corresponding to a
single barrier, we can use any standard method of quan-
tum mechanics to approach it. Approximate formulas
valid for low and high &equencies (well below and above
the top of the potential barrier) can be found in the lit-
erature [13—15]. The purpose of the following section
is to derive an approximate phase-shift formula that is
formally valid for all &equencies ~ (to a certain extent
including complex ones).

In the analysis that follows a global solution to (12) is
obtained by means of the phase-integral method devised
by Froman and Froman (see [7] or [8] for an introduction
and many of the original references). This method has al-
ready, with some success, been applied to the calculation
of the complex quasinormal-mode frequencies of black
holes [16—18]. An introductory review of the method and
its use in the context of complex &equencies with a rela-
tively large imaginary part (rapidly damped modes) has
recently been written [17].

R=
I

1 —
/

~' —
l

1—
~ )

2M' E(E+ 1) M2
+

) r2 ~4

(i5)
In the phase-integral method (see [7,8,17] for alternative
introductions) two linearly independent solutions to (14)
are given by

fi 2(r, t~) = q ~ (r) exp ki q(()d(
C2

(i6)

Inserting these functions in (14) it is easy to show that
the function q(r) should be a solution to the nonlinear
equation

R —q' 1 d'q 3 &dq)
'

+
q2 2qs drz 4q4 (dr)

q(r) = Q(r) ) .&2- (i8)

where Yo ——1 and the second term is

Although it is hardly ever possible to find an exact solu-
tion to this equation, one can usually find an approximate
one; let us call it Q. For example, if R is "slowly varying"
in the sense that the derivatives in (17) can be neglected,
the standard WKB approximation Q = R follows (see,
for example, [19]). Although this approximation may be
useful, there are situations (such as in regions of the r
plane where R has a second order pole) where a more
Hexible approximation is preferable. The phase-integral
method, developed by Froman and Froman [7,8], pro-
vides such a scheme. The fundamental idea is that the
desired function Q may be equal to R ~ but that is not at
all necessary. By choosing a slightly different functional
form for Q the approximation can often be improved, es-
pecially in cases where it would otherwise break down
[20], as will be shown below. The arbitrary-order phase-
integral approximation can be viewed as an expansion
in terms of the nonzero, but small quantity (e) that oc-
curs on the right-hand side of (17) for a certain choice
of the first approximation Q. In the (2K + 1)th order of
approximation we get the local (asymptotic) expansion

III. PHASE-INTEGRAL METHOD

A. Local approximations in any order with

Y2 ———~,
2

(i9)

In order to approach the black-hole problem we define
a new dependent variable (as in, for example, [17]):

1 d2Q 3 1'dQ I
2Qs dr2 4Q4 ( dr )

+ (20)
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Although the phase-integral scheme can formally be ex-
tended to any order, we will only use the lowest two or-
ders of approximation in this paper. Should a higher
numerical accuracy than that obtained here be desired,
our Anal formulas can be directly extended to any order
since the fundamental analysis below is independent of
the order of approxiination used (cf. [7,8,17]). One will
generally find that the use of higher orders leads to very
accurate numerical results as long as the lowest order of
approximation is reasonably good.

In the lowest order of approximation the lower limit
t~ of integration for the phase in (16) is usually taken
as one of the (possibly complex) zeros of Q2. These are
generalizations of the classical turning points of a stan-
dard WEB analysis and will be refered to as "transition
points" below. These points play an important role in a
global analysis of (14). It is easy to see from (16) that

fi 2(r, t~) = e+' '"fi 2(r, ti, ),
where p~y is a line integral between t~ and ty. A cut
must be introduced from each transition point in order
to keep Q single valued, but in most cases these cuts can
be placed in such a way that they do not obscure the
actual analysis. In higher orders of approximation the
function q becomes singular at the transition points; cf.
(20). Consequently, the integral in (16) must in higher
orders be replaced by a contour integral encircling the
transition point t~.

The &eedom to choose the function Q, which generates
the approximation, &eely is one of the great advantages
of the phase-integral technique (see Sec. IV in [8] and
[20]). This &eedom is, in fact, essential for a study of the
black-hole problem. Hence, it is worthwhile to discuss it
in some detail here. It is important to clarify why the
standard WEB approximation Q2 = R is unsuitable.

It is easy to see that a choice Q g R will certainly
be preferred for E = 0 in the black-hole problem. When
E = 0 and Q = R, Eq. (14) corresponds to superbarrier
scattering for all &equencies u. There are no transition
points on the real r axis in the interval [2M, +oo]. This
is, however, not the case for the original equation (12): It
corresponds to sub-barrier scattering for low &equencies.
These two cases could clearly lead to quite different phys-
ical results. Thus it would seem that a different choice
of Q, one that gives rise to two transition points on the
real r axis for low &equencies, should be used.

The above argument is, however, not the main reason
why one should choose Q2 different &om R in this prob-
lem. The usual motivation is the qualitative behavior of
the approximate solutions fi and f2 As is clea.r from
(19) the two functions fi and f2 (with p = Q) will be
exact solutions to (14) if one can find a function Q such
that e = 0. Although it is impossible to And a func-
tion that makes e vanish globally, it is always possible to
choose Q such that e vanishes at a certain point. That is,
the two phase-integral solutions can be used to construct
the exact solution to (14) at any specific point, at least
as long as that point is not a zero of Q . For example, we
see &om (15) that R ~ u2 as r ~ +oo. It immediately
follows &om (20) that, if we choose Q2 in such a way

that it approaches u for large r, the phase-integral solu-
tions fi and f2 tend to exactness at infinity (e vanishes).
This is clearly advantageous since the scattering prob-
lem consists of 6nding the asymptotic amplitudes of the
outgoing and ingoing waves. The situation is slightly dif-
ferent close to the horizon of the black hole (at r = 2M).
Using Q = R one can show that

1
2

aspM2M.16~2M2 + 1
(22)

For high &equencies e will be small and the fact that it
does not really vanish inay not be a problem. But ~e~ -+ 1
as uM ~ 0 and it is clear that our approximation will
not be reliable at all in the vicinity of the horizon for
low &equencies. This is potentially disastrous since we
need to impose a condition of purely ingoing waves at
r = 2M. It would clearly be preferable to generate the
approximation &om a function that makes sure that e
vanishes as one approaches the horizon. Such a choice is

1

4(r —2M)2 ' (23)

B. Global solution for a general (complex) potential
barrier

As already mentioned, the exact solution to (14) can
always be represented by a linear combination of the
two functions (16) at a point r (away from all transition
points). That is, in matrix notation it can be written

(24)

where summation over repeated indices is assumed. It is
quite obvious that the coefBcients o; cannot be global
constants. Different linear combinations of the approxi-
mate solutions (16) must be used in different parts of the
r plane. This is a manifestation of the so-called Stokes
phenomenon. In a sense it is the price we are paying for
expressing the exact solution to (14), which should be
single valued, in terms of the multivalued functions fi
and f2 [21]. On the other hand, the exponential form is
convenient because we want to draw conclusions about
the asymptotic behavior of the approximate solutions,

or any other function that has the same behavior close
to r = 2M. This choice was used in, for example, [17],
where it was shown that it leads to functions fi and f2
that behave as the power-series solutions to (14) close to
the second order pole at 2M. In Fig. 1 we compare ~e~

for the choice Q = R to that obtained using (23). It
is clear that the choice (23) is advantageous close to the
horizon. This kind of graph indicates for which values of
r the phase-integral solution will be useful. One would
generally expect the expansion (18) to provide a high
accuracy if the lowest order is reasonably good, i.e., if
~e~ is considerably smaller than 1. It is evident &om the
graph that the phase-integral solutions cannot be used to
construct a local solution to (14) close to the transition
points.
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and we are discussing wave phenomena.
Without yet specifying in detail how the approximate

solution to (14) changes as it is extended from r to an-
other point ro we note the formal relation (see [13,7])

n (rp) = I' „(rp, r) n„(r) . (25)
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FIG. 1. The local "accuracy" of the lowest order
phase-integral approximation (as indicated by ~e~) is compared
for two choices of generating function: Q = B is indicated by
dashed lines and Q = B —1/4(r —2M) corresponds to the
solid lines. The three cases shown correspond to X = 2 and
(a) uM = 0.25, i.e., sub-barrier scattering, (b) wM = 0.5,
i.e., close to the barrier top, (c) cuM = 2.0, i.e. , superbarrier
scattering. It is clear [from cases (b) and (c)] that it is ad-
vantageous to choose Q different from R close to the horizon
(at r = 2M), and also [from case (a)] that the phase-integral
solutions are not accurate at all close to the transition points.
In fact, e should diverge as one approaches a zero of Q

The diagonal elements of the 2 x 2 matrix E are often
equal to unity. Because of their origin in the Stokes phe-
nomenon, the elements of the F matrix are often referred
to as Stokes constants. It is worth noticing that the de-
terminant of E is 1, which means that it is a trivial task
to invert (25).

The scattering situation we are interested in here is
that of a single potential barrier. This problem involves
only two transition points t~ and tq. Below we describe
this situation in general terms. The given formulas can be
used for any situation that is qualitatively similar. What
we need to do is clear: We are looking for a detailed
description of the Stokes phenomenon. A knowledge of
the Stokes constants would enable us to continue a given
solution from one part of the complex r plane to any
other by means of (25), and thus handle more or less any

bp ——e '~"6

Q = C Q1 — —1

a, bo = —I'1+ e'*~"
]

(26)
(27)
(28)

These relations are obtained by comparing the product

problem that involves a global solution to (14). Specifi-
cally, we will be able to extend a solution that satisfies
the boundary condition of purely ingoing waves falling
across the horizon to spatial inanity and thus infer the
asymptotic behavior. Finally, the corresponding phase
shift follows from (10).

In order to extract the desired information we study
what happens when the approximate solution (24) is con-
tinued around the region of the r plane that contains the
two transition points. In doing this we consider the re-
gion close to t-i and tq as a "black box, " the details of
which we need not know. The analysis consists basically
of constructing the pattern of Stokes and anti-Stokes lines
that is associated with the generating function Q. From
this pattern and general principles we can infer much of
the information that we need.

The anti-Stokes lines are contours along which the
quantity Qdr is purely real (on the real r axis they cor-
respond to the classically allowed regions of a standard
WKB analysis). It is straightforward to show that three
such lines emerge from each zero of Q . The approximate
solutions fq and fz are of the same order of magnitude
on these lines, and both functions are oscillatory without
exponential growth or decay. At a general point of the
complex r plane, on the other hand, one of the functions
fq and fz is dominant (exponentially large) while the
other is subdominant. This property changes as an anti-
Stokes line is crossed: If fq is dominant in one region
of the coordinate plane, it becomes subdominant after
crossing an anti-Stokes line. The dominance is maxi-
mal on curves where Qdr is imaginary. These are the
so-called Stokes lines. It is when a solution to (14) is
continued across one of these curves that the Stokes phe-
nomenon occurs. That is, the three Stokes lines that
emanate &om each transition point divide the complex
r plane into sectors where di8'erent linear combinations
of fq and fz should be used to represent the exact so-
lution to (14). As Berry has shown [22,23], the Stokes
phenomenon corresponds to a smooth change in the co-
eKcient n of the solution f that is subdominant on
the Stokes line. At the same time the coefFicient of the
dominant solution remains unchanged. Far away &om all
transition points the change is con6.ned to an infinitesi-
mal interval including the Stokes line.

In the case of two transition points anti-Stokes lines
emerge in four asymptotic directions. Similarly, there
are four asymptotic Stokes lines. This situation is shown
in Fig. 2 (which contains the same information as Fig. 5
in [7]). Assuming that there is a cut between tq and tz, Q
is single valued far away &om the transition points. Then
we need not cross any cuts when continuing a solution to
(14) one full turn around tq and tz. Let us denote the
four unknown Stokes constants by a q, 60, aq, and bq as
in Fig. 2(a). It turns out that these are related, and
Froman, Froman, and Lundborg [7] have shown that
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of all four I" matrices in Fig. 2(a) with the proper matrix
that takes the solution one turn around the region con-
taining the transition points (this should lead to a single-
valued solution in the initial point) [13]. The quantity p2i
1S

Q(()d(
t2

(29)

in the lowest order of approximation. In higher orders
this must be replaced by

1
~(()~(,

2
(3O)

where I' is a contour encircling the two transition points.
Anyway, it is clear that only one of the four Stokes con-
stants remains unspecified.

An expression for the remaining Stokes constant can
be obtained by the comparison equation technique [24].
Equation (14) can be uniformly mapped onto an equa-
tion that has a similar local structure and for which ex-
act solutions are known. In the present case a suitable
comparison equation is that for a parabolic barrier (since
it involves two transition points), the solutions of which

can be expressed in terms of Weber functions. By ex-
pressing the asymptotic behavior of these functions in
phase-integral quantities one can infer the form of the
desired Stokes constant. This is a fairly technical pro-
cedure, but the resulting formulas are uniformly valid

(in this case they can be used not only for frequencies
above and below the barrier top, but also for frequencies
close to the top of the barrier when the two transition
points coalesce) which makes the labor worthwhile. We
get [25,26]

a = i 1+e '~21 e
- X/2

where, in the (2%+1)th order of phase-integral approxi-
mation,

(O) N

o. = ——.ln1 I (1/2 —+21/K) iy2i
l

i'7 (2 )ln +
4i I (1/2 + p„/ir) 2~

(32)

Here p2z represents the lowest-order contributj. on to p2~
(0) ~ ~

and

. (o)
(0)CJ )2'

()
48p2q

(o) (34)

Higher-order terms are listed in, for example, [26]. Given

(31) and (32) it can be verified that a i approaches the
expected value (= i) as the two transition points move
away from each other. Specifically, we will have

—ZOO

o m0,
(35)
(36)

far below the barrier top, and

P2] M +ZOO )

0 M ——p2] )
2

(37)

(38)

FIG. 2. The pattern of Stokes (dashed) and anti-Stokes
lines (solid) for a typical barrier problem. The two transition
points are denoted by ti and tz. (a) adheres to frequencies
below the barrier top whereas (b) corresponds to frequencies
above the barrier. The relevant I' matrices that are used to
continue an approximate phase-integral solution around the
transition points are indicated in (a). In the analysis of the
black-hole problem, the point z represents the event horizon
and zo is spatial infinity. It is assumed that the phase of Q is
such that fi represents an outgoing wave at zo.

high above the barrier.
It should be mentioned that formulas similar to those

discussed in this section have been used by several other
authors. The studies of Froman and Froman [27] and of
Amaha and Thylwe [28] are closely related to the present
one. For other examples of applications involving the
uniform barrier approximation see [15,29,30]. A study of
special interest is that by Lundborg [31] where the above
approximation is tested for an exactly solvable model.

IV. BLACK-HOLE PHASE SHIFTS

A. Approximate formula

After the general considerations of the previous section
we are equipped to construct a solution to (14). Choosing
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the phase of Q such that fi describes an outgoing wave
at +oo, we have

qdr ur + 2M~In —1 ~r, as r ~ +oo .
2M

(39)

It is natural to use the upper sign for &equencies above
the barrier and the lower sign below the barrier [because
of (35) and (37)]. As already mentioned, this formula
provides a uniform approximation in the sense that it is
equally valid above and below the top of the potential
barrier [see the discussion preceding (31)].

P(+oo, 2M) =
i(bp 1+ a ibp) (40)

Since the solution that corresponds to purely ingoing
waves crossing the event horizon is proportional to fi
[according to (39)], we can infer [by means of (24) and
(25)] that an approximate solution is

4e = fi + bpf2, (41)

Moreover, it turns out that this is the behavior also as
r + 2M (as long as the two relevant transition points lie
on opposite sides of the real r axis or on the axis itself).
Comparing this situation with that in Fig. 2(a), we can
identify r = 2M with the point z and r = +oo with
zp in that figure. It follows immediately that a solution
given at the horizon of the black hole can be extended to
spatial in6nity by means of the matrix

B. High- and low-frequency limits

ln order to check whether our phase-shift formula (45)
makes sense we can compare its predictions for the re-
Qection coefficient

2A.„t
A;„

(47)

to standard WKB formulas. For &equencies far below
the top of the barrier we can use (35) and (36). That
is, we need only 6gure out what the imaginary part of q
is in order to get an expression for 'R. This is, however,
trivial since we are dealing with a real potential barrier.
The imaginary part of g must be equal to p2i [cf. (42)
and Fig. 2(a)]. Then it follows immediately from (44)
that

+oo
7l =

l

�f2
2M

when r is considerably larger than tq and t2.
In order to get an expression for the phase shifts we

need to study the behavior of this solution as r -+ +oo
and extract A;„and A „q by comparing to (6). Let, in
the lowest order of approximation,

2l»1IR=
] + p2I»1I

when (~M) && V (48)

This is exactly Eq. (9.12a) in [13].
For high frequencies the appropriate limits are (37) and

(38), but the imaginary part of rI is now equal to p2i/2
[due to symmetry that is apparent in Fig. 2(b)]. Then
we have

t2+ 2Mln
~

—1
~(2M 7Z = when ((uM) )) V

y + g2!»1l

1f ~ +i(~),+p)
1)2 (43)

Now it is easy to identify

A „t e2'"

A;„bp (44)

(in higher orders this must be replaced by a contour in-
tegral encircling t2 in the appropriate way) represent the
constant "asymptotic phase. " Then we get, from (16)
and (41),

which is Eq. (9.27a) in [13].
Finally, if formula (45) is to be uniformly valid, it

should also agree with the well-known one-turning-point
WKB formula for phase shifts (used by Sanchez in the
context of black-hole scattering [3]) in the low-frequency
limit. In that limit one can safely neglect transmission,
since the barrier becomes very thick, and consider a wave
as totally reHected at the outer transition point tz. Prom
(35), (36), and (45) it then follows that

From this and (10) follows the final formula for the phase
shift:

1 7r
be = i1 ——.ln b, + (E + 1)—

2i 2
(45)

t' titi + 2M ln
~

—1
~

+ (2E+ 1)—,
q2M 4

(3 ~ 1) 1
bg ——g— —.111 [1 + e

4 4i

+( E2+1)—.
4 (46)

This formula can be written in a more explicit way using
(28) and (31): when u is small. It is easy to verify that this is indeed

the formula used by Sanchez [Eq. (9) in [3]]. This is of
some computational importance. It means that we need
not evaluate the integral p2q in the low-frequency limit
(i.e., when I )& uM) and can thus save a considerable
amount of computing time.
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C. Digression: Quasinormal modes

A problem that is closely related to the scattering
one concerns the so-called quasinormal modes of black
holes. These modes have attracted a lot of interest in
recent years (see [17] for a discussion of the literature).
They are expected to be excited in all dynamical pro-
cesses that involve a black hole and will dominate the
emerging radiation at relatively late times. Each black
hole has a spectrum of complex-&equency modes that de-
pends only on the black-hole parameters: mass, angular
momentum, and electric charge. In view of the ongoing
attempts to detect gravitational radiation [32] the quasi-
normal modes are of special importance. They may offer
a more or less direct way of identifying black holes. The
quasinormal modes correspond to solutions to (12) that
satisfy a condition of no waves coming in &om infinity,
i.e., A;„= 0. They can be viewed as waves that are
temporarily trapped in the region of the peak of the cur-
vature potential (r 3M), i.e. , as scattering resonances.
As already indicated, our analysis of the scattering prob-
lem should remain valid also for complex frequencies, at
least as long as only two transition points need be con-
sidered. Hence, we can infer a phase-integral condition
that determines quasinormal modes from (41) and (43).
We get

cording to (23)] has two zeros and approaches a con-
stant as wM ~ oo. In order to get agreement with the
"Newtonian analogue, " which is discussed in detail in
Sec. 6.1.1 of [1], we should add an "integration con-
stant" —2uMln4wM + wM to our phase shifts. That
we are allowed to do so is clear Irom (4) which defines
the tortoise coordinate r, . The function of u that is to
be added is also indicated in Fig. 3(a). When this "con-
stant" is added to our results they are in good qualitative
agreement with those of Sanchez (see Fig. 1 of [6]). It
is important to remember that the introduction of this
"constant" is purely conventional. As long as an addition
to the phase shifts is independent of E it will not affect
the physical results at all [33].

The imaginary part of bp vanishes as ~M ~ 0; see Fig.
3(b). This is in accordance with the results of Starobin-
skii [34] (see also [35]) in the low-Irequency limit. More-
over, from Fig. 3(b) we can see that the imaginary part
of bp increases monotonically with ~M. This means that

bpA;„= e (51)

That is, the only way that we can achieve A;„= 0 is by
bo vanishing. According to (28) this means that we must
have

-- "integration constant"

] + 2+ Y2& ~ 0 ) (52)

i.e. ,

p2i ——
~

n+ —
~

vr, (53)

where n is an integer. This is the so called Bohr-
Sommerfeld formula that was discussed in detail in [17].
It has been shown to generate the slowest damped
quasinormal-mode frequencies with high accuracy. It
eventually fails when Im ~ = Re ~ [26]. One should
not be very surprised that we can derive it in this way.
It was first derived (within the phase-integral method)
by Froman et al. [16], and they used an approach for-
mally similar to the present one. However, this clearly
demonstrates the extent to which the present analysis
of the scattering problem remains valid also for complex
&equencies.

D. Numerical results

Typical results of numerical calculations for E = 0 —3
using our approximate phase-shift formula are given in
Fig. 3. Figure 3(a) shows that the real part of the
phase shift [as computed directly Irom (45) with Q2 ac-

4

FIC. 3. Phase shifts for E = 0 —3, as computed from the
approximate phase-integral formula, are drawn as functions
of uM. (a) It is clear that the real parts approach zero
as the frequency vanishes and that they pass through an-
other zero when the frequency increases. For high frequen-
cies the real part approaches a constant value. This value
increases with E. In order to compare the approximate re-
sults with the exactly solvable Newtonian analogue we must
add —2cuM ln4coM+ uM to our results. This function is also
shown (as a dashed curve). (b) The imaginary parts of bg

also vanish when the frequency becomes small, but as the fre-
quency increases they increase linearly with uM. The onset
of increase occurs for higher frequencies for larger E.
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FIG. 4. Estimating the accuracy of the approximate phase
shifts. The error in the lowest order is assumed to be sim-
ilar in magnitude to the contribution from the next order
of approximation. We plot the absolute difference between
the first and the third order phase shifts here. Q = R is
indicated by a dashed line and Q = R —1/4(r —2M) corre-
sponds to the solid line. We also show results obtained from
the one-transition point formula that can be used for large E.
These are only calculated for the second choice of Q and are
indicated by a short-dashed line.

the present results agree well with those shown in Fig. 1
of [5].

We have tested the two choices for Q discussed in Sec.
IIIA numerically. They both lead to phase shifts that
depend on the frequency in a qualitatively similar way
(cf. Fig. 3). The agreement between the two improves
for higher values of E and as the frequency increases. But
we need a more quantitative assessment of how accurate
these phase shifts are. Interestingly such an estimate
is readily achievable within the phase-integral method.
The higher-order phase integral approximation is based
on the local asyinptotic expansion (18). Hence, it makes
some sense to assume that any formula obtained within
this method, such as the present one for phase shifts,
consists of an asymptotic expansion (in some sense) as
well. Then one would expect the accuracy of the approx-
imate phase shifts, for a certain value of E and a given
frequency, to first improve and eventually diverge as the
order of approximation is increased. The best possible
result would be obtained if the expansion were truncated
at the order of approximation that gives the smallest con-
tribution, i.e. , the one that precedes the divergence of the
series. Up to that point the contribution by a certain or-
der of approximation provides a useful estimate of the
error in the preceding order. A similar idea to this has
previously been used by Andersson et al. [18]. Hence, it
makes sense to extend the present study to at least the
first two orders of approximation. It seems likely that all
relevant physical efFects in the scattering problem can be
recovered using the lowest order, but the following one
provides an estimate of the actual error of each phase
shift. The result of such an error analysis is shown in
Fig. 4. Generally, one 6nds that the phase shifts are

less accurate for low &equencies, but that the accuracy
improves with increasing frequency for a fixed E (or for
a fixed frequency and increasing I). The choice (23) is
also typically at least one order of magnitude more accu-
rate than that prescribed by the standard WKB approx-
imation (Q = R). Given this information we will only
discuss the choice (23) in the following.

It should be pointed out that we cannot expect our
formulas to be reliable when uM ~ 0. The reason for
this is the following: When uM ~ 0 the innermost of
the two transition points (t2) that we are considering
will move closer to r = 2M. Then the assumption that t ~

and t2 are far away from all other transition points (zeros
and poles of Q ) is clearly no longer valid. This situation
can only be studied by means of uniform phase-integral
approximations including also the pole at r = 2M in the
analysis; see [26]. This deficiency may not be crucial,
however. We have already seen that we can replace (45)
with (50) when / )) aM. In effect, we need only worry
about our analysis failing for low frequencies when E =
0. This is, in fact, a typical deficiency of WKB-type
formulas in problems with long-'range potentials. One
would generally 6nd that the approximation improves
as f. increases (for a fixed frequency) in such situations.
That this is true also in the black-hole case is clear from
the present results (see also [36]).

V. PHYSICAL IMPLICATIONS

From the previous section it would seem as if our ap-
proximate phase-shift formula is reliable in most situa-
tions. Hence, it is reasonable to assess whether it can be
of any practical use in black-hole physics. For that to
be the case we must establish two things: that it can re-
produce accepted. physical results and that it can help us
proceed beyond what has been achieved previously. The
first of these tasks is, in fact, the reason why we chose
the scalar-wave problem in the first place. Being the sim-
plest scattering problem that involves black holes it is
relatively well understood and therefore an ideal testing
ground for a study of this kind.

It is worth pointing out that in the context of scatter-
ing the possible breakdown of our approximate analysis
as iiiM ~ 0 for the lowest value(s) of E is of hardly any
consequence. One would be mainly interested in difFrac-
tion efI'ects and for low &equencies the wavelength is such
that the infalling plane wave will hardly be afFected at all
by the presence of a black hole. Furthermore, the low 8
partial waves are essentially absorbed, and so any defi-
ciency in the corresponding phase shifts would not be
detectable in the difFerential cross section. Rather, one
would expect such efFects to show up in the absorption
cross section.

A. De8ection function

When discussing the physical quantities that follow
from a set of phase shifts it is natural to use Ford and
Wheeler's excellent description of semiclassical scatter-
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ing from the late 1950s [37,38]. It can be brought to
bear also on the black-hole problem (see the discussion by
Handler and Matzner [39]). In the semiclassical paradigm
one introduces an impact parameter b that is related to
E (the angular momentum) via

t'=
I

&+ - I— (54)

That is, each partial wave is considered as impinging on
the black hole &om an initial distance b away from the
a,xls.

In the semiclassical picture, much physical information
can be extracted from the so-called deflection function.
It corresponds to the angle by which a certain partial
wave is scattered by the black hole, and is related to the
real part of our approximate phase shifts: b(H) = 3v3M+ 3.48Me (56)

nomenon called a "glory" arises. This phenomenon is
well known in optics, but it also arises in quantum scat-
tering [37,38]. Moreover, glories arise in the black-hole
case [1,40]. In general, backward glories can occur if
0 & —m for some values of b. Whenever the deflection
function passes through zero or a multiple of vr we have
a glory. In the black-hole case one would expect glory
scattering to be associated with the unstable photon or-
bit at r = 3M [41]. This essentially means that we would
expect a logarithmic singularity (in other words, a res-
onance) in the deflection function to be associated with
the critical impact parameter 6, = 3~3M. This feature
is obvious in Fig. 5. Darwin [42] has deduced an ap-
proximate relation between the impact parameter and
the deflection function close to this singularity:

O(E) = 2 —Re be .d

dE
(55)

100

Here 8 is allowed to assume continuous real values. It is
certainly possible to derive a phase-integral formula to
determine 0 for any real value of E, especially since our
phase-shift formula remains valid for noninteger E, but it
is probably not a worthwhile exercise. As it turns out,
the simple difFerence formula O(E) Red~+i —Re hr
enables us to understand the features of the differential
cross sections.

First of all, we can use the deflection function as yet
another check that our phase-shift formula gives reason-
able results. For large values of the impact parameter b,
one would expect the value of the deflection function to
agree with Einstein's classic result O~ = 4M/b. As c—an
be seen in Fig. 5 this is, indeed, the case. The phase-
integral phase shifts lead to a d.eflection function that
rapidly approaches O~ as E increases.

Whenever the classical cross section diverges in either
the forward. or the backward direction a diffraction phe-

If we invert this formula and use (54) we get 8 as a func-
tion of Z. As can be seen in Fig. 5 this approximation
is in excellent agreement with the deflection function ob-
tained from the approximate phase shifts.

B. Elastic scattering and differential cross sections

Although (11) suggests that we can readily calculate
the scattering amplitude as a partial-wave sum once we
know the phase shifts bg, this is not the case. Because
we are dealing with a long-range potential, the sum will
diverge. This problem is well known since it also arises
in Coulomb scattering [43]. (An interesting historical
account of misunderstandings in the Coulomb case can
be found in [44].) Some ways of avoiding this difficulty,
basically by introducing a cutofF where the remainder of
the true partial-wave sum is replaced by analytic results
for a limiting case (in the black-hole case the Newtonian
analogue discussed in Sec. 6.1.1 of [1]), were discussed
by Connor and Thylwe [45]. We approach this difficulty
by expressing the scattering amplitude as a sum of two
parts. In essence, we extract the contribution from large
impact parameters from (ll), i.e. , replace it by

-100

-200

f(0) = tv(0) + f~(0) .

The lang-range (Newtonian) contribution is [1,12]

I'(1 —2iM~) 0

(57)

(58)

-300 -,'

0 20 40 60 80 100 120 140 160 180 200
I

1
f~(0) = . ) (2E+ 1) e ' ' —e '

& Pg(case) (59)
22M

FIG. 5. The deflection function 0 (solid line) is shown as a
function of E for wM = 10. For large impact parameters (large
8) the approximate results approach the Einstein deflection
angle 4M/b (das—hed line). A logarithmic singularity in 0
is apparent at the critical impact parameter (E, 51.5 here).
This feature is associated with the unstable photon orbit at
r = 3M. Also shown (as a dashed curve) is an approximation
obtained by inverting Darwin's formula (56).

is the part of the scattering amplitude that is expected
to give rise to diffraction efFects. The Newtonian phase
shifts b~ follow from

I'(E+ 1 —2iM~)
I'(E+ 1+ 2iM(u)

Now one would certainly expect the sum in (59) to can-
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verge. However, in reality we still have to truncate the
sum at a (be it very large) value l „. Consequently,
one would expect some oscillations due to interference
(roughly with a wavelength 2m/E „[37])to remain in
f(0). Although this is a minor efFect that does not de-
grade the actual results, it is not aesthetically pleasing.
Hence, we follow Handler and Matzner [39] and, for a
given E, add a constant p to all the approximate phase
shifts in (59). The constant should be such that the
last term in the sum does not give a contribution, i.e.,
b +p = b . It is important to note that this means&max &max

'

that the partial waves Z & E „have no eKect whatsoever
on the cross section.

It should be stressed that, although convenient &om
the computational point of view, the split of the scat-
tering amplitude is unphysical [45]. Hence, one should
avoid drawing conclusions from the two terms in (57) sep-
arately. The quantity of physical importance in elastic
scattering is the difFerential cross section, the "intensity"
that is scattered into a certain solid angle. It follows &om
the well-known relation

d~
= l&(~)l'. (61)

We have constructed cross sections for several &equen-
cies. A representative case is shown in Fig. 6. This
figure can be compared to Sanchez's results (Fig. 4 in [6]
or Fig. 8.12b in [1]).

In general, one would expect the long-range attraction
of the gravitational interaction to give rise to a divergent
focusing (- 9 ) in the forward direction. That is, the
first term in (57) should dominate the second for small
deHection angles. Similarly, large deHection should only

3

0 20 40 60 80 100 120 140 160 180

FIG. 6. (a) The differential cross section for uM = 2.0
(solid line). Shown is logio

~ f(8)~ . For comparison we also
show the glory approximation (62) (dashed line). It should
be noted that this approximation agrees remarkably well with
our results. (b) The relation between the two terms fo(8)
and f~(0) in (57). One hundred approximate phase shifts
were used to generate the figure.

arise for waves that probe the region close to the black
hole, and so the second term in (57) should be dominant
for large angles. That this is, indeed, the case can be seen
in Fig. 6(b) where we show the relation between the two
terms in (57).

Our cross sections are generally somewhat diferent
from those of Sanchez [6]. This is perhaps surprising since
our approximate phase shifts depend on the &equency in
a way similar to that of the phase shifts that Sanchez
generated by repeated analytic continuation. However,
the diRraction oscillations that are apparent in our Gg-
ures agree, as we will see, perfectly with what one would
expect. The scattering of scalar waves is the simplest pos-
sible problem involving black holes and one would not be
too surprised to And that the results are perfectly regular
(as in Fig. 6). Furthermore, Anninos et al. have recently
studied the scalar-wave problem in the context of orbit-
ing [46]. We have used phase shifts generated from (45)
to reproduce their Fig. 9 (for wM = 2.5). The result is
a perfect inatch (and therefore not shown here). Hence,
it would certainly seem as if our phase-shift formula can
be trusted.

C. Black-hole glory

do. 2 db= 27r~b —J (wbsin8) .
d0dO

(62)

When combined with the Darwin formula (56) this
should provide a good approximation whenever uM )) 1

As already mentioned above, we expect to find that
interference between partial waves associated with the
unstable photon orbit, i.e. , with impact parameters b =
b, = 3~3M, gives rise to a glory efFect in the backward
direction [41]. One can argue that this effect should only
be seen for frequencies considerably larger than I/6~3M
since no partial waves get close to the critical impact pa-
rameter for lower frequencies (the wavelength is so large
that the wave cannot "see" the black hole). We have
verified that this is, indeed, the case. For example, for
uM = 0.25 no diR'raction oscillations could be seen in
the backward direction. As we increase the frequency
the cross section changes and Fig. 6 provides a beautiful
example of a backward glory.

How can we be sure that we actually do see a glory?
First of all, it has been known for a long time that the
eKect of glory scattering on the cross section can be de-
scribed in terms of Bessel functions [37] (for a discus-
sion of uniforin glory approximations see [47]). It is rel-
atively easy to convince oneself that the oscillations in
Fig. 6 agree well with the expected position of the zeros
of Jo(x). Naturally, this is only an ad hoc argument and
it would be nice to compare our results to an approxi-
mation of the glory expected &om interference of partial
waves close to b . Such an approximation has been de-
rived (for scattering of waves with arbitrary helicity) by
means of functional integration [48,49]. In the case of
scalar-wave scattering the resultant formula, which can
also be derived by partial-wave decomposition [37], is
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and ~8 —vr~ (( 1 (see [40]). As can be seen from Fig.
6 this approximation agrees nicely with our

'
h our results. We

have cons ruch t cted cross sections for a variety of &equen-
een the10M . We find that the agreement between e

n ets
better as the &equency increases. That is, the glory ap-
proxima ion ecot' becomes accurate for a wider range of angles
in the backward direction. There is thus no doub a
our cross sections are om't dominated by a focusing divergence
in the forward direction and glory diffraction in the bac-

According to the predictions of geometrical optics
~ 1&

one might expect to find glory oscillations not only in
the backward direction, but also in the forward direction.
Partial waves associated with the critical impact param-
eter may be deflected by any multiple of m and so give

in Fig. we see a5 that the deflection function genera y
passes t oughr h 0 = 0 for a value of E lower than that
associated with the unstable photon orbit. This means

However this fea-
ture drowns in the divergence of the cross section tha is
due to the large E partial waves. Moreover, partial waves
correspon ing od' to l & E are to a large extent absor e

~ 0 ~The forward glory is therefore exceptionally aint in e
black-hole case.

D. Absorption cross section

120
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40
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00

FIG. 7. The contribution o'&
' for E = 0—3 to the absorptj. on

f t f uM. Each contribution attainscross section as a unc ion o
a maximum value for a frequency s ig y 'gsli htl hi her than that
associated with the critical impact parameter.

for the first few values of E. We have already mentioned
above that the phase-integral analysis will break own
for E = 0 and low frequencies. That this is the case is

w'hen Fi . 7 is compared to Fig. 2 in [5]. Instead of
approaching the expected value 16m
the approxima e o.

o got ' goes to infinity in that limit. c-
cording to Fig. 7 our phase-shift formula is not re ia e
when uM ( 0.1 or so.

An obvious and important feature of black-hole scat-
tering is a sorp ion.b t The contribution that each partia
wave makes to absorption is related to the amplitude Ce
of the waves that cross the event horizon:

0. ' = 47r(2E+ 1) ~Cg~ (63)

( 1) —irur, out iver,
/+1

as pg M +oo

(64)

Noting that a linearly independent solution to ~ ~to ~1~ is the
complex conjugate of Pg, and usingd usin the fact that the
Wronskian of these two solutions must be constant we
get

]Calf

= 1—

Hence, the contribution of each partial wave to absorp-
tion is

= —,(2~+1) [1 —."-"];- (66)

see also j5]. In ig. we sj ~. I F' 7 how o. ' as a function of ~Me

An expression or e inf C in terms of the phase shifts can be
obtained by employing the solution (6), from whic ( )
was subtrac e, o geb t d t t an expression for the scattering
amplitude:

VI. CONCLUDING DISCUSSION

We have seen that physical results obtained from the
approximate phase-shift formula (45) agree very well
with the established predictions of geometrical optics [41]
and previous studies of the black-hole scattering problem
[1,5,6,40]. The only drawback is that our formula cannot
be trusted when E = 0 and the frequency is lower than
uM = 0.1 or so. But, as already mentioned above, this is
a typical deficiency of WKB-type formulas in Cou om-

It seems safe to conclude that our phase-shift formula is
reliable, but is it a useful tool for black-hole physics? One
would be inclined to give that question an afBrmative an-
swer The reason for this becomes clear when one consid-
ers alternative approaches to the problem. In their study
of electromagnetic and gravitational waves, Matzner an
Ryan [51] integrated the Teukolsky equation [the ana-
logue of (1)] numerically. Since the desired solution is an
osci ating unc ion'u. ' f t' this calculation becomes increasingly
diKcult (and time consuming) as the frequency increases.
C tl Matzner and Ryan restricted their stu yonsequen y, a z
to uM & 0.75 and E & 10. In order to avoid di%culties,
H dl nd Matzner [39] combined a numerical so utionan er an a

the re ion where the potential varies rapi y wi ap-
proximate WKB solutions for relatively large va uues of
r. Wit;h this technique they performed calculations or
E & 20 and uM up to 2.5. While it is not likely that our
approxima e p aset hase shifts are more accurate than ones



1820 NILS ANDERSSON 52

generated by numerical integration, the present approach
is computationally much more effective than any purely
numerical approach. This is basically because (45) does
not directly involve the (rapidly oscillating) solution to
(1). We can easily compute the first 100 phase shifts
for a given frequency in a few minutes on a standard
workstation. For the same reason, the present approach
should. remain reliable also for much higher frequencies
than those studied before (we have done calculations for
frequencies up to and including wM = 10). Hence, we
conclude that the phase-shift formula discussed in the
present paper provides a valuable complement to the pre-
vious techniques used to study black-hole scattering. It

could certainly prove useful also in the more challenging
case of Kerr black holes.
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