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Neutrino decoupling in the early Universe
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A calculation of neutrino decoupling in the early Universe, including full Fermi-Dirac statistics
and electron mass dependence in the weak reaction rates, is presented. We 6nd that after decou-
pling the electron neutrinos contribute 0.83+& more to the relativistic energy density than in the
standard scenario, where neutrinos are assumed not to share the heating from e+ annihilation. The
corresponding number for p and r neutrinos is 0.41'FD. This has the consequence of modifying the
primordial He abundance by AY = +1.0 x 10, and the cosmological mass limit on light neutrinos
by 0.2—0.5 eV.

PACS number(s): 95.30.Cq, 13.15.+g, 14.60.Pq, 98.80.Ft

I. INTRODUCTION

The phenomenon of nonequilibrium thermodynamics
is of fundamental interest to the understanding of the
early evolution of the Universe. One example of this
nonequilibrium behavior is the decoupling of neutrinos
&om the electromagnetic plasma, at a temperature of a
few MeV. Usually, it is assumed that the neutrinos decou-
ple before the temperature gets below the mass of elec-
trons and positrons. Thus they do not share the entropy
transfer from e+ to photons. This means that, although
the neutrino distribution is still described by an equilib-
rium distribution after decoupling [1], the temperature is
only (4/11) ~ 0.714 tiines the photon temperature.

However, the fact that the decoupling temperature is
of the same order as the electron mass means that neutri-
nos must, to a small degree, share the entropy transfer,
leading to what is known as neutrino heating. This ob-
servation has led to several reinvestigations of neutrino
decoupling [2—6]. All of these find a change in the fi-
nal energy density of neutrinos relative to the standard
case of total decoupling of around l%%u&j. One problem is,
however, that they all assume that Boltzmann statistics
is adequate for treating this problem. Furthermore they
assume, that the electron mass is negligible in the weak
interaction matrix elements. An approximation that is
de6nitely valid whenever the temperature is very large,
but possibly not when it is comparable to m . It is there-
fore of relevance to investigate whether the results ob-
tained by using these approximations are correct.

Since the neutrino distributions are important both
in big bang nucleosynthesis calculations and structure
formation models, it is of considerable interest to see if
neutrino heating has any consequences for either.

II. FUNDAMENTAL EQUATIQNS

The fundamental equation governing the evolution of
all particle abundances is the Boltzmann equation

where CL, is the Liouville operator and P C, u is the sum
of all possible collisional interactions. In the following we
will assume that all distributions are homogeneous and
isotropic, that is f(x, p, t) = f(p, t). In that case, the
Liouville operator is [7]

dR1 Of
dt B Op

(2)

In the case of standard massless Dirac neutrinos, there
are several contributions to C, n [2,8]. To first order
in the weak coupling constant all interactions are two-
particle scatterings and annihilations. All of these reac-
tions and the corresponding matrix elements have been
summarized in Tables I and II. Higher order contribu-
tions as well as electromagnetic corrections [9] to these
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TABLE I. Possible electron neutrino processes and the cor-
responding matrix elements. 1 is defined equal to the particle
for which we calculate C ll. 2 is the other incoming particle.
3 is defined as either particle 1 going out (scattering) or the
outgoing lepton (annihilation). 4 is defined as either particle
2 going out (scattering) or the outgoing antilepton (annihila-
tion). We have introduced the quantities Cv = i + 2 sin3 Oiv

and C~ ———,where sin 0~ 0.23. p,. is the four-momentum
of particle i.
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TABLE II. Possible p, 7 neutrino processes and matrix el-
ements. The definition of particle numbers is the same as in
Table I.
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lowest order terms are neglected in the following. Since
there are only two-particle interactions such as 1+ 2 ~
3+ 4, C ~~ can be written as

&. u[f] = d'p2d'psd'p4A(fi, f2, fs, f4) (2Ei
x 8

]
M ]i2~34 6 (pi + p2 —ps —p4) (2 rr)

where A(fi, f2, fs, f4) = (1—fi)(1—f2) fs f4 —(1—fs)(1—
f4)fi f2 is the phase space factor, including Pauli blocking
of the final states, and d p = d p/[(2m)s2E]. 8 is a sym-
metrization factor of 1/2! for each pair of identical parti-
cles in initial or final states [10], and ]Af]2 is the weak in-
teraction matrix element squared, summed over the spin
states of all particles except the one under scrutiny. p,.

is the four-momentum of particle i. Note that the be-
fore mentioned assumptions of Boltzmann statistics and
zero electron mass simplify the collision integral tremen-
dously, but it is in fact possible to evaluate most of it
analytically without them.

Assuming standard weak interactions as described in
Tables I and II, it is possible to analytically integrate this
nine-dimensional integral down to two dimensions (Ap-
pendix). This makes the integral much easier to evaluate
numerically.

The left-hand side (I HS) of the Boltzmann equation
contains the factor R idR/dt, which cannot be immedi-
ately evaluated. To do this we have to consider entropy
conservation. Let g, be the efI'ective number of relativis-
tic degrees of freedom [1]. If g, is constant in time we ob-

tain the standard result of R(t) oc t 2, but if this is not the
case (e.g. , during e annihilation), then this is no longer
true. Instead we write R(t) oc ts f (t), where f(t) can be
found using the fact that entropy is conserved in the early
Universe. In the case of totally decoupled neutrinos, f(t)
can be calculated without too much trouble. We have
used this value for f(t) in our calculations as the error

induced is small [ll]. The photon temperature is calcu-
lated at each time step by assuming f df/dt (( zt
which is, at all times, an approximation better than 10
Then the Friedmann equation is

III. NUMERICAL RESULTS

To compare with previous results [2,3], we have solved
the Boltzmann equation numerically for several difFerent
cases: (1) m, g 0 and Fermi-Dirac (FD) statistics; (2)
m, = 0 and FD statistics; (3) m, g 0 and Maxwell-
Boltzmann (MB) statistics; (4) m, = 0 and MB statis-
tics. In all cases we assume zero chemical potentials for
the particles involved.

Case 4 is the approximation used in previous studies.
Case 1 is the correct approach. The other cases test the
errors introduced by different approximations. For each
of these scenarios, the energy density deviation, de6ned
as bp„/p = (p„—p, )/p„, has been calculated as a func-
tion of the photon temperature T~. p„, is the energy
density in a neutrino species that has decoupled long be-
fore e+ annihilation. For electron neutrinos, the result
is shown in Fig. 1, whereas Fig. 2 shows the result for
p and w neutrinos. In the limit of MB statistics and
zero electron mass (case 4), we reproduce the results of
Ref. [2] to within 10—15%. This is quite reassuring, as
we use a completely difFerent procedure for solving the
Boltzmann equations (Dodelson and Turner [2] use a first
order perturbation expansion). It is seen that, using the
correct FD statistics and electron mass (case 1), the end
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FIG. 1. The evolution of 6'p„/p„ for electron neutrinos.
The solid curve corresponds to case 1, the dashed to case
2, the dotted to case 3, and the dot-dashed to case 4.
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and knowing p, p„we can calculate p~ by assuming that
e+ are kept in complete thermodynamic equilibrium by
electromagnetic reactions with the photon gas. We are
thus able to follow all relevant thermodynamic quantities
as functions of time.
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FIG. 2. The evolution of bp„/p„ for p and w neutrinos. The
curve labels are as in Fig. 1.

FIG. 4. The effective neutrino temperature after complete
e annihilation, using MB statistics. The solid line is for v,
and case 3, the dashed is for v~, also case 3. The dotted is
for v, and case 4, the dot-dashed for v„, and case 4.

result of bp„/p„ is around 0.83% for v, and 0.41% for
v„. Generally we see that the deviation is smaller if FD
statistics is used. This is because the phase space factors
A in the collision integral get smaller. Using the correct
treatment of electron mass also lessens the deviation, due
to the changes in matrix element structure.

Figure 3 shows the effective neutrino temperature, de-
fined as [2]

for FD statistics with and without electron mass. Figure
4 shoms the same, but for MB statistics (T,~ = p/lnf). —
The reason for the offset between the two types of statis-
tics is that, for FD statistics, the Gnal neutrino tempera-
ture for totally decoupled neutrinos is (4/11)i~ 0.714
[1], vtIhereas for MB statistics it is (1/3)i/s 0.693. We

see that, regardless of the statistics used, the effective
temperature rises with momentum for medium and high
momentum states. As noted in Refs. [2,3], this is not sur-
prising, because the weak cross sections are much larger
for large momenta. The shape of the effective temper-
ature curve is the same in all four cases, but the ac-
tual numerical values are slightly different, being higher
if the electron mass is neglected in t, n[f]. This efFect
reQects that the neutrino energy density is slightly higher
for massless electrons, as seen in Fig. 1. For the lowest
momentum states the effective temperature rises again.
This may seem surprising, but it has to do with the inte-
grated matrix elements [the functions called E(pi, p2, ps)
in the Appendix]. These functions contain factors that
grow large for very small momenta, leading to a stronger
interaction of very low momentum states, both with e+
and with high momentum neutrinos. This means that
the lowest momentum states are actually kept closer to
thermal equilibrium than the medium momentum states.

IV. DISCUSSION AND CONCLUSION
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PIG. 3. The effective neutrino temperature after complete
e annihilation, using FD statistics. The solid line is for v
and case 1, the dashed is for v„, also case 1. The dotted is
for v and case 2, the dot-dashed for v„, and case 2.

We have calculated neutrino decoupling in the early
Universe by solving the Boltzmann equations. Our
method differs from previous studies in that it makes
no approximations for the distribution functions and the
electron mass. Although our results do not deviate dra-
matically &om these previous calculations, we show that
the inclusion of FD statistics and nonzero electron mass
reduces the effect of neutrino heating on the relativistic
neutrino energy density by almost 50% for v, compared
to the results of Dodelson and Turner [2].

We find that the neutrino distribution after decoupling
is nonthermal at the 1% level. This is also relatively in
good agreement vtI'ith previous results [2,3]. The efFec-
tive temperature grows with momentum for medium and
large momenta, because of the momentum dependence of
the weak interactions. The very low momentum states,
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however, interact more strongly, leading to a rise in the
effective temperature for very small values of p/T.

The slight heating of neutrinos relative to the standard
scenario has consequences for big bang nucleosynthesis.
We have changed the nucleosynthesis code of Kawano [12]
to include the effect of neutrino heating. As discussed in
Ref. [13],there are several effects that combine to change
the nucleosynthesis scenario. First of all, the energy den-
sity in neutrinos is changed. However, this has the conse-
quence of lowering the energy density in photons and e+,
because of energy conservation. The result is, if we use
FD statistics and nonzero electron mass, that the pho-
ton temperature goes up because of e+ annihilations by
a factor of 1.3998 instead of the usual 1.4010 (a change
of —0.09%). Furthermore, the weak rates are changed,
because of different abundances of e+ and v, . With the
relevant changes to the code, we obtain a change in the
primordial He abundance, Y, of AY = +1.0 x 10 4.
This is in good agreement with Ref. [13]. They calculate
a change of +1.5 x 10, but with a 50%%up larger neutrino
heating. Other authors have found similar values [3,4]. A
change in He abundance of = +1.0 x 10 is much below
current observational accuracies. The systematic uncer-
tainty in the primordial He abundance is estimated to
be as large as AY,„,= +0.015 [14], or more than a fac-
tor of 100 larger than the change induced by neutrino
heating.

Another consequence of neutrino heating is that it in-
creases the number density of neutrinos. If one of the
neutrino species has a mass, it will therefore contribute
slightly more than usually expected to 0, the cosmolog-
ical density parameter. In general, it is possible to put a
mass limit on a light neutrino that is completely decou-
pled long before e+ annihilation [15]. The mass density
of such a species today is

whereas for p or ~ neutrinos we And
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APPENDIX: COLLISION INTEGRALS

This appendix shows how to reduce the integral in Eq.
(3) from nine to two dimensions. Except for the inclu-
sion of mass terms, most of what can be found in this
appendix was originally developed by Yueh and Buchler
[17] for use in supernova calculations.

All collision integrals have the form of Eq. (3). The
innermost integral can be rewritten using the equality

d3 ' = d'&4~(&4™4)O(&4).
2 4

(Al)

Q h2 P~~ P~~ (10)

As this is a very small change to the standard value,
neutrino heating does not alter the usual conclusion that
electron neutrinos cannot contribute more than about
0.25 (using the current experimental upper limit to its
mass, m„( 7 eV [16]) to 0, whereas p and 7. neutrinos
can.

Thus it is safe to ignore neutrino heating when doing
nucleosynthesis and structure formation calculations.

p~ = n~m~.

Expressing this in terms of the photon density, n~
2$(3)T /vr2, one gets

(6) The integral over d p4 is now done using the b function.
Hereafter p4 is fixed as

p4 = p~ + p2 + ps + 2(pg p2 —pg ps —p2. ps). (A2)

p = m„"((3)—,T'.
n~

(7)

If the neutrinos decouple long before e+ annihilation, this
can be translated into the normal textbook relation

n.~'= ~
2 93.03 eV'

0 6
2 92.55 eV'

using a present photon temperature of 2.736 K. h is the
dimensionless Hubble constant and g = 2 for one fl.avor
of neutrino and antineutrino. Since observations demand
that 0 & 1, we have a mass limit on any given light neu-
trino. Because of neutrino heating, this limit is changed
by a small amount. Using FD statistics and nonzero m„
the final number density of neutrinos after decoupling
deviates from the standard case by bn„/n„0. 52% for
v, and bn /n„0. 25'%%up for v~ . For electron neutrinos
this changes Eq. (8) to

Now, the following angles are introduced:

pz p2
COSA =

PlP2

cos8 = px 'ps
PlP3

I P2 'P3
COS A

P2P3
cosncos 8+ sinn sin 8cos p.

(A3)

(A4)

(A5)

Thus we obtain

d p2 ——p2dp2d cos ndP,
d p3 ——p3dp3d cos 8dp.

(A6)
(A7)

p4 —~4 = f(p). (A8)

An important relation for b functions is

The integration over dP is carried out using the 8 func-
tion. We use that
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d b = d — b —,, A9

where P; are the roots of f(P) = 0. The derivative is
evaluated to

df (P)
d

= —2p2p3 sin n sin 0 sin P. (A10)

sin P; is found as +(1 —cos P; )
i~2, where

cosp; = 2E2E3 —2p2p3 cos n cos 0 —Q
2p2p3 sin a sin 0

(2EiE2 —2pip2 cos n)
2p2p3 sin o. sin 0

(2EiE3 —2pip3 cos 0)+ ~ ~ )
2p2p3 sin a sin 0

(A11)

and we have introduced Q = mi + m2 + m3 —m42. The
equation for sinP; will have two solutions, one in the
interval [0, vr], and the other in the interval [7r, 2vr]. Since
the RHS of Eq. (A9) is symmetric in P we can multiply by
two and integrate over [0,vr]. The limits on the integral
d cos n coine from demanding that cos (P) & 1. But this
means that

(2p2ps sin n sin 0 sin P) & 0. (A12)

Notice that this is the same as demanding that

&df (P) &

Finally we end up with

(A13)

2'
dP~(f(P)) = 2

0

( df(P)

The derivative can be written as

df (P) = gacos2n+ bcosn+ c,

(A14)

(A15)

where

a = p2( —4K+ 8e),
b = p2(pi —e/pi) (8p + 4Q + 8e),
c = —4p —4pQ —Q —8pe —4Qe —4e2 2 2

+4p2ps(1 —cos 9),

(A16)
(A17)
(A18)

and we have introduced the following parameters in order
to limit the amount of space required to write out the
formulas

p1 ' P2 E1E2 —plp2 cos A )

pi p3 ——Ei E3 —pip3 cos 0

pi p4
——m, + (EiE2 —pip2 cos n)2

(Ej E3 pips cos 0)

p2 p3 = (E1E2 —plp2 cos n) (A25)
—(EiE3 —pip3 cos 0) + Q/2,

p2 ' p4 —(EiE3 pips cos 8) + m2 —Q/2, (A26)

p3 ' p4 —(EiE2 —pip2 cos n) —m3 + Q/2. (A27)

Because all the above products are analytically integrable
over d cos o., the integrals over this parameter can now be
carried out by use of the fundamental relation

dx 28 (a2;2 + b2; +. c)= 0 (b —4ac) .
/ax +bx+c

(A22)

(A23)
(A24)

(A28)
The step function comes &om demanding that there be a
real integration interval. This actually also ensures that
the roots of ax + bx+ c are not outside the fundamental
integration interval of [

—1, 1], because the step function
singles out the physical situations, where d cos o. cannot
be outside this interval. Integrating over dp is no prob-
lem, as there is no dependency on this parameter. The
final integration that can be done is the one over d cos 0.
Any one of the possible products of momenta is analyti-
cally integrable over d cos 0. The solution of b —4ac = 0
gives the integration interval. The solutions are

cos 0 = [—2p —2p2 —Q (A29)

+2p2(2p+ p, + p2 + p3+ Q) ~ ]/(2p, p3).
If there is to be a real integration interval, both of
these solutions must be real. The fundamental integra-
tion interval is of course [—1, 1], but the real limits are
n = sup[ —1,cos 8;„]and P = inf[1, cos 8 „].There can
only be a real integration interval if both n and P are
real numbers and P & n.

Note that there are seemingly two places where diver-
gences occur in the collision integral. The first one is for
p$ —p3, cos 0 = I, but in this case there is no problem
because although the integrand becomes infinite, the in-
tegral is finite [17]. The second place is for pi -+ 0. To see
what happens here, we have to go back to the fundamen-
tal integral, Eq. (A28). If pi -+ 0 then a = —4p2p3, but
then there can be no divergence, as pq no longer appears
in any denominator. Clearly there is still the possibility
of divergence if mi ~ 0 also, because of the 1/Ei term.
Fortunately, it turns out that b —4ac = 0 if mq, p~ ——0,
so that the rate becomes equal to 0 in this case, as it
ought to be. Finally the collision integral can be written
as

w = Ei&2 —E~E3 —E2Es,
6 = pyp3 cos 0

2 2K = pg+p3.

(A19)
(A20)
(A21) X«(fi, f2 f3, f4)+(pi, p2 p3)O(&),

Notice that Eqs. (A16), (A17), and (A18) reduce to those
of Yueh and Buchler [17] in the limit of zero masses.

Now, any one of the possible matrix elements only in-
clude products of four-momenta. All the possible prod-
ucts of these momenta are calculated below:

+(Pi, P2, P3) = iMi dcosndcos9. (A31)

where A is the parameter space allowed (that is, the space
defined by requiring n, P real and P & n). I" is the matrix
element integrated over dcos o. and dcos 0:
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