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We discuss interferometric detection of gravitational waves using multiple bounce parallel beam
systems. We consider as an example the simplest design that allows us to remove the laser frequency
fluctuations, and yet gives a remaining nonzero gravitational wave signal, viz., an antiparallel pair
of folded beams. The resultant sensitivity, however, is about B times smaller than the sensitivity
of a two-arm Michelson interferometer optimally operating with B reflections. We have calculated
other, less symmetrical, designs with similar results. Parallel beam interferometric detectors could
possibly be preferred for engineering reasons, site availability, and simplicity of response.

PACS number(s): 04.80.Nn, 07.60.Ly, 95.55.Ym

I. INTRODUCTION

Nonresonant detectors of gravitational radiation (with
frequency content 0 < f < fo) are essentially interferom-
eters with one or more arms, in which a coherent train
of electromagnetic waves (of nominal frequency v > fo)
is folded into several beams, and at points where these
intersect relative fluctuations of frequency or phase are
monitored (homodyne detection). Frequency fluctua-
tions in a narrow band can alternatively be described
as fluctuating sideband amplitudes and interference of
two or more beams, produced and monitored by a (non-
linear) device such as a photo detector, exhibits these
sidebands as a low frequency signal again with frequency
content 0 < f < fo. The observed low frequency signal
is due to frequency variations of the source of the beams
about vy, to relative motions of the source and the mir-
rors (or amplifying transponders) that de the folding, to
temporal variations of the index of refraction along the
beams, and, according to general relativity, to any time-
variable gravitational fields present, such as the trans-
verse traceless metric curvature of a passing plane gravi-
tational wave train. To observe these gravitational fields
in this way, it is thus necessary to control, or monitor,
the other sources of relative frequency fluctuations, and,
in the data analysis, to use optimally algorithms based
on the different characteristic interferometer responses to
gravitational waves (the signal) and to the other sources
(the noise). Several feasibility studies [1-4] have shown
that this can presently be done to astrophysically inter-
esting thresholds for both ground and space-based instru-
ments.

The frequency band in which a ground-based interfer-
ometer can be made most sensitive to gravitational waves
[2] ranges from about 10 Hz to about a few kHz, with
arm lengths ranging from a few tens of meters to a few
km. Space-based interferometers, such as the coherent
microwave tracking of interplanetary spacecraft [3] and
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proposed Michelson optical interferometers in planetary
orbits [4], are most sensitive to mHz gravitational waves
and have arm lengths ranging from 108 to 10% km.

In present single-spacecraft Doppler tracking obser-
vations many of the noise sources can be either re-
duced or calibrated by implementing appropriate fre-
quency microwave links and by using specialized electron-
ics, so the fundamental limitation is imposed by the fre-
quency (time-keeping) fluctuations inherent to the refer-
ence clocks that control the microwave system. Hydrogen
maser clocks, currently used in Doppler tracking experi-
ments, achieve their best performance at about 1000 sec
integration time, with a fractional frequency stability of
a few parts in 10'®. This is the reason why these one-arm
interferometers in space are most sensitive to mHz gravi-
tational waves. This integration time is also comparable
to the microwave propagation (or “storage”) time 2L/c
to spacecraft en route to the outer solar system (L ~ 3
AU), so these one-arm, one-bounce, interferometers have
near-optimum response to gravitational radiation, and a
simple antenna pattern.

By comparing phases of split beams propagated along
nonparallel arms [2,4,7,13], source frequency fluctuations
can be removed and gravitational wave signals at levels
many orders of magnitude lower can be detected. Es-
pecially for interferometers that use light generated by
presently available lasers, which have frequency stabil-
ity roughly a few parts in 10'3, it is essential to be able
to remove these fluctuations when searching for gravita-
tional waves of dimensionless amplitude less than 10719
in the mHz band [4], or down to 10721-10722 desired
in the kHz frequency band [2]. Combined with the fact
that plane gravitational waves have a spin-two polariza-
tion symmetry, this implies that the customary right-
angled Michelson configuration is optimal. The response
to gravitational waves is then maximized in Earth-based
systems by having many bounces in each arm.

Practical considerations may, however, intervene. The
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requirements of the extended vacuum system strongly
dominate design of ground-based installations, and a
straight (but optically folded) configuration would be
simpler. Site constraints may allow construction of only
one vacuum pipe [5]. Alternatively, the possibility of
implementing independent interferometer detectors with
each arm would imply that existing orthogonal-arm vac-
uum installations would actually be capable of generat-
ing two streams of data with simpler antenna patterns.
This would provide both redundancy in the data analysis
and useful extra directional and polarization information
about the signal. In this paper we derive the response of
folded, parallel-beam configurations to incident gravita-
tional waves and, as a demonstration of principle, calcu-
late a particular design in which opposed multiple beams
are driven by the same laser light, so source fluctuations
are directly removed. The response found is not optimal:
it is comparable to that of a one-bounce (but two arms)
Michelson interferometer of the same scale size.

We cannot exclude a priori the existence of better de-
signs that could make parallel-beam interferometry more
attractive for multibounce Earth-based detectors. Many
configurations suggest themselves when the path lengths
of two split beams are allowed to differ, or when indepen-
dent offset readouts are recorded at different locations. In
practice, modern techniques of heterodyne interferome-
try with unequal arm lengths and/or independent read-
out stations can still yield data from which source fre-
quency fluctuations can be removed by many orders of
magnitude [7-11]. It must be said, however, that we have
calculated the responses of several such offset or unequal
arm configurations, and have not found them to offer
any further improvement. Source frequency fluctuations
have instrumental responses, due to delay time effects,
very similar to those characteristic of passing gravita-
tional waves.

In Sec. II we deduce from first principles the response
function of a single-arm folded beam to a plane gravi-
tational wave train. In the long wavelength limit (arm
length < gravitational wavelength) the usual expression
for the phase shift of a many-bounce system [6] is recov-
ered. In Sec. III we deduce the response function of an
opposed arm many-bounce configuration to a plane grav-
itational wave train. The data from this interferometer
will indeed include a nonzero gravitational wave signal,
and a remaining laser phase noise of magnitude smaller
than the signal, although the usual advantage of having
many bounces is lost. Finally in Sec. IV we present our
comments and conclusions.

II. THE RESPONSE FUNCTION FOR
A FOLDED BEAM

The net effect of a weak gravitational wave train on the
frequency of a coherent light beam reflected once in a sta-
tionary, freely falling, configuration of source and mirror
is the so-called three-pulse response function [1,12,13]. A
gravitational wave pulse contributes to the interferomet-
rically measured phase shift at three times, namely at
the time it is incident on the source, at a time delayed
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by L/c after it is incident on the end mirror, and at the
round-trip light time (delayed by 2L/c).

In this section we will deduce the general expression
for the phase shift due to a gravitational wave when the
laser light is made to bounce B times between two freely
falling (geodesic) mirrors of very high reflectivity. The
source of the light is at the first mirror, and the net fre-
quency change, or equivalent phase fluctuation, is inter-
ferometrically measured there.

Let us consider the space-time metric

ds? = —dt? + (1 + h)dz? + (1 — h)dy® +dz?, (1)

where h = h(t—z) < 1. To first order, this is the general
relativistic solution for the strain field of a linearly po-
larized gravitational wave train propagating in vacuum
along the positive z direction. The metric could be gen-
eralized by adding in an amplitude for the other possible
polarization, but to first order it is just as easy to do
this at the conclusion, as needed. Let us also assume
that our two mirrors are stationary in the (z,z) plane.
The relative geometry is described in Fig. 1; we have
denoted by a the cosine of the angle between the direc-
tion of propagation of the gravitational wave and the line
joining mirror a to mirror b.

In this space-time the mirrors follow a geodesic motion,
represented by world lines parallel to the ¢ axis. With the
geometry described in Fig. 1, we can visualize our phys-
ical system within the space-time diagram shown in Fig.
2. The vertical axis is the time ¢, while the horizontal
axis is the line az + Bz, where 32 = 1 — a?. The t axis
coincides with the world line ¢ = y = z = 0 of mirror
a, while the world line for mirror b is (to first order in
h): ¢ = BL, y =0, and z = aL. The characteristic wave
fronts of the gravitational wave are given by t — 2 =const.

Consider, at an arbitrary time ¢, a perfectly monochro-

y

FIG. 1. Laser light of nominal frequency vo is injected in-
side two highly reflecting mirrors, a and b. It bounces B
times against mirror b, and then is made to interfere with the
incoming light from the laser. The gravitational wave train
propagates along the z direction, and the cosine of the an-
gle between its direction of propagation and the laser light is
denoted by a.
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0 » az+fz

FIG. 2. Space-time diagram describing the optical config-
uration discussed in Fig. 1. The vertical axis is the time axis
t, while the horizontal axis is the line az + B3z. «a is the cosine
of the angle between the direction of propagation of the grav-
itational wave and the direction of the light; 8 is determined
by the relation 82 = 1 —a?®. The geodesic world line of mirror
a coincides with the time axis ¢, while the world line of mirror
bis given by z = 8L,y =0, z = alL.

matic photon of frequency vy (as measured in the rest
frame of a) emitted from a laser at a, which bounces off
the end mirror b at time ¢+ L, and then returns to mirror
a at time t + 2L. In Fig. 2 this trajectory is represented
by two null geodesics, one originating at the event la-
beled 0 and ending at the event 1; the other connects
the event 1 to the event 2. Parallel transport of a null
vector along these null geodesics is used to calculate vy,
the frequency measured at event 1 in the rest frame of b,
and v, at event 2 again in the rest frame of a.

The frequency shifts 1 — vg, and v, — vy are related to
the gravitational wave amplitude according to the simple
“two-pulse” relationships [12] [also see Egs. (13) and (19)
of Ref. [1]]

nE+L) 4 1+ea) [h(t) —h(t+ (1 —a)L)], (2)

Vo 2
%z”(l;a) [A(t + (1 - a)L) — h(t + 2L)],

(3)

where vg is independent of time, since for the moment
we are considering a monochromatic light source (or
“atomic” frequency standard).

If we multiply together Eq. (2) and Eq. (3), and dis-
regard second order terms in the wave amplitude h, we
deduce the three-pulse response function in its original
form [12]

va(t+2L) _ 14 1+ a)
Vo 2

(1-a)
2

h(t) — o h(t+(1—a)L)

h(t + 2L). (4)

Equation (4) is then best rewritten to display the frac-
tional frequency change at a as a function of time ¢:

yy = 2=
=~ L= h) — ahe-(1+ D)
+ 02 ap), (5)

The phase difference A¢(!)(t) measured, say, by a
photodetector is related to the corresponding frequency
change, given by Eq. (5), as

1 dAg(M(¢)

y(t) - (©)

27‘['1/0

If we define the Fourier transform of the time series
A¢M)(t) to be given by

2D (f)

I

+oo
[ e e,
—oo
we can rewrite Eq. (5) in the Fourier domain as

AGD(f) _ R(af)

27 v 2mif Tl(f) (8)

In Eq. (8) R(a, f) is the three-pulse transfer function

l1-«o T o
Ria,f) = - U59) _ g gamisrse
+ (1 _'2_ a) e47rifL‘ (9)

For those who prefer to think in terms of heterodyne
detection, of signals on a carrier of amplitude A, and
frequency vyp, this phase modulation engenders side bands
of amplitude A given by

A(vo + . ~
A2 T) _ % R(a, f) R, TR (10)

0 f
If we expand Eq. (9) in the long wavelength limit (fL <
1), to first order in fL Eq. (8) becomes [13]

1 ~
A60(f) ~— (1-a®) L1+ mi(a+2)fL] h(f). (11)
2w Vo
The factor (1 — o2) is the “beam pattern” of a single-
bounce linear gravitational wave antenna. In the long
wavelength limit, its “antenna gain” is =~ L.

Let us now assume that the light inside the arm makes
B bounces before it is made to interfere with the light of
the laser. We want to determine what the corresponding
phase change will be in this case. From Fig. 2 we note
that the frequencies v2(t + 2L), vs(t + 3L), and v4(t +
4L), for instance, are related among themselves as vy,
vi(t + L), and v2(t + 2L) assuming proper care of the
time argument is taken. We can, for example, easily find
that the following expression for v4(t + 4L)/v2(t + 2L)
holds:
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va(t+4L) _ | (1+a)

va(t +2L) 2

h(t+2L) — o h(t+2L+ (1 —a)L) —

( - %) h(t + 4L). (12)

If we multiply Eq. (4) by Eq. (12) we get, to first order in A,

va(t +4L) 1+ a)
+ @ h(t) —

If we use the definition of y(t) given in Eq. (5), Eq.
(13) can be rewritten as

valt) =¥ _ ) 4yt — 2L). (14)

After some simple algebra we can easily deduce the
following expression for the frequency change after B
bounces:

VZB(t) — Vo _ Bz:-_l .
L2rll) — %0 _ $™ (e - 2kr). (15)
Y k=0

Let us now denote by A¢(B)(t) the phase shift mea-
sured at the photodetector for the B bounce configura-
tion. Taking into account Eq. (15), we can write the
equation

1 dA¢B () =
m_'%t_(l = 3" y(t—2kL), (16)
k=0

which in the Fourier domain becomes

AGB(F) B B2 s
27 v 2mif kz;e‘i ' a7

From the definition of y(t) [Eq. (5)], and after adding
the geometric progression, we can rewrite Eq. (17) as

AB(f) _ _ Rle,f) B(f) [L-e*BIY
2T ve 2nif [l—e4ﬂifL]' (18)

If we expand Eq. (18) in the long wavelength limit, that
is to say when fL < 1 but allow B to be large enough
that 4BfL ~ 1, for the dominant frequency band of the
gravitational wave signal, we get

A¢®)(f) _(1—a?) (1-—etmiBIL
2Ty 2 2mif
x [1+ mi(e + 2) fL] h(f). (19)

Note that the transfer function given in Eq. (19) does
not increase linearly with the arm length, as it did for
the one-bounce configuration, B = 1. For a given arm
length L and for a gravitational wave signal of dominant
frequency f, one can choose the number of reflections
B in such a way that 4BfL ~ 1, and the response is
optimal, depending only on f and the geometrical factor
(1-a?).

= 1+——2— h(t+2L) — ah(t+2L+(1—a)Ll) —

ah(t+(1—-a)l) —

(1—;?'—) h(t + 4L)

(1;70‘) h(t+2L). (13)

[
Note that this condition also holds for a Michelson

interferometer, since its transfer function is essentially
equal to the one given in Eq. (19), apart from a different
antenna pattern [14,15]. At 1 kHz an orthogonal-arm in-
terferometer, of 40 m arm length and B ~ 2000 bounces,
would experience the same phase shift due to a passing
gravitational wave as would an interferometer of 4 km
arm length and B ~ 20 bounces.

III. ANTIPARALLEL ARMS

Let us consider the optical configuration described in
Fig. 3. We have two opposed but parallel folded beams,
each of total length 2BL, with the laser located between
them. This setup will be referred to as antiparallel arms.
At an arbitrary time t a laser light of frequency vy is in-
jected simultaneously into the two arms, through a beam-
splitter and a highly reflecting mirror. It bounces inside
the arms B times, and then the two outcoming beams
are made to interfere at a photodetector where phase
differences are measured. This physical configuration is
represented by the space-time diagram given in Fig. 4.

FIG. 3. Two parallel folded beams disposed sequentially,
each of total length 2BL. Laser light of frequency vo is in-
jected into the two arms through a beam splitter and a highly
reflecting mirror. After making B bounces, the light is re-
combined at a photo detector where an interference pattern
is monitored.
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azdfa

FIG. 4. Space-time diagram describing the optical config-
uration discussed in Fig. 3. The vertical axis is the time axis
t, while the horizontal axis is the line az 4+ Bz. « is the cosine
of the angle between the direction of propagation of the grav-
itational wave and the direction from mirror a to mirror b; 8
is determined by the relation 8% = 1 — o®. The world lines of
mirrors a and ¢ coincide with the time axis ¢, while the world
line of mirror b is given by = 8L, y = 0, 2 = aL. Mirror d
is represented by the world line z = —8L, y =0, z = —alL.

Here we have three world lines for the four mirrors. The
mirrors at the input ports of the two arms are at the
same space location and their world lines therefore are
the same. The time axis ¢ coincides with the world line
of mirrors ¢ and ¢, z = y = z = 0. The world lines
of mirrors b and d are given (to first order in h) by the
equation ¢t = L,y =0, 2 =aL and z = —8L, y = 0,
z = —alL, respectively. The trajectory of the light is
represented by 4B null geodesics: 2B null geodesics con-
necting sequentially events on the timelike geodesics of
mirrors a and b, and the corresponding 2B null geodesics
between mirrors ¢ and d.

The overall phase difference measured at the photo de-
tector is equal to the difference between the phase change
A¢ep(f) of the light bouncing B times between mirrors a
and b, and the phase change A¢.q4(f) experienced by the
light after B bounces between mirrors c and d. From the
space-time diagram given in Fig. 4, and using Eq. (18),
we see that the two phase differences can be written in
the Fourier domain as follows:

Adar(f) _  Rlo,f) h(f) [1—e*mBIL
27T vy 2mif 1 — eamifL
~ 1 — e4miBfL
+ C(f) —;ﬂ—if—_ ) (20)
Adea(f) _  R(=a, f) h(f) [1—e*miBIL
2Ty 2mif 1 — e4mifL
- (1 — edmiBfL
+ C(f) “omif |’ (21)

where C (f) are the Fourier components of the laser fre-
quency fluctuations. Note that they appear in the two
phase differences with the same transfer function. Of all

the noise sources, the laser frequency noise is the largest,
being eight to ten orders of magnitude larger than the
amplitude of any other noise source [2]. As in a regular
Michelson interferometer, also in our scheme the laser
phase fluctuations propagate along the two almost equal
length arms, and when the returning beams are recom-
bined after each makes B bounces, the fluctuations are
delayed by equal times and so cancel. If we subtract Eq.
(21) from Eq. (20) we deduce the overall phase difference
A¢p(f) measured at the photodetector:

Adp(f) _ a [1—2cos(2rafL) + e*™/L] R(f)
2T 2mif

1— e41riBfL 1 ~

[ 1 — e4mifL ] 27 v n(f) ’ (22)

where we have denoted by 72(f) the Fourier components
of the random process associated with the remaining
phase noise sources affecting the output of the one-arm
response.

If we expand Eq. (22) in the long wavelength limit
(fL < 1 but 4BfL ~ 1), for the dominant frequency
band of the gravitational wave signal, we get

1 — Na(l—az)  —amiBfL\ T
s gy (f) =~ ST 1 (1 - ety R
1 ~
by W) (23)

Equation (23) shows some interesting, and somewhat
peculiar properties of the remaining gravitational wave
signal. In fact the transverse gravitational wave signal
goes to zero not only when the wave propagates along
the direction of the arms (a = =+1), but also when it
propagates orthogonally to the arms themselves (a = 0).
For a = 0 the “three-pulse” response of any one-arm in-
terferometer, Eq. (19), becomes a “two-pulse” response
identical to that for a laser fluctuation in Eq. (20), and
therefore the two gravitational wave signals that combine
at the photodetector will cancel out. We finally note that
the maximum value of the antenna pattern given in Eq.
(23) is equal to v/3/9, while for a regular Michelson in-
terferometer the maximum is equal to 1. This allows
us to compare, for each Fourier component of the same
wave amplitude A, the maximum value of the phase shift

&E;’;( f) induced by a wave in a parallel-arm interferome-

ter against the corresponding one, A¢? (f), experienced
by a Michelson interferometer. We find the following
ratio of the two phase shifts at an arbitrary Fourier fre-
quency f:

AGL(S)
AG(f)

For a gravitational wave signal of dominant frequency
1 kHz, and assuming L to be about 2 km, an antiparallel
arm interferometer would observe a gravitational wave
effect 100 times smaller than what would be observed
by a regular Michelson interferometer. If the number
of bounces B are chosen to maximize the signal at this

1.3 x ifL. (24)
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frequency, then Eq. (24) can be rewritten in the form

AGh(f) i
— ~ 1.3 —_ 25
A¢h(f) "B )

IV. CONCLUSIONS

We have discussed a method of interferometric detec-
tion of gravitational waves using multiple bounce parallel
beam systems. The main result of our analysis, deduced
in Eq. (23), shows that it is in principle possible to re-
move laser frequency fluctuations from a parallel beam
interferometer without removing the gravitational wave
signal. The magnitude of the remaining gravitational
wave’s phase shift appears to be, however, about B times
smaller than that which an orthogonal two-arm Michel-
son interferometer with B bounces would measure.

Parallel beam interferometry would be applicable to
situations in which engineering and/or site constraints

do not allow the construction of two long vacuum pipes
along orthogonal directions. It would also imply that
orthogonal-arm vacuum installations could be used to
generate two streams of data, from independent one-arm
systems, providing both redundancy in the data analy-
sis and useful directional information about the gravita-
tional wave signal.
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