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Fermions on the lattice by means of Mandelstam-Wilson phase factors
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We propose a Mandelstam-Wilson phase factor approach to solve the problem of handling cor-
rectly ferinion fields on a lattice. We apply this approach to fermionize exactly +CD [SU(oo)] at
the leading limit of the strong coupling limit
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One of the long-standing unsolved problems in the lat-
tice approach to QCD is how to handle discretized mass-
less fermionic fields [1]. In this Brief Report we propose
a solution for the above-mentioned. problem by consider-
ing as the QCD natural field variable to be discretized on
the lattice the Mandelstam-Wilson phase factor defined
by the color-singlet quark currents, instead of the fermion
field as proposed by previous studies. Additionally, we

I

show the usefulness of this propose by obtaining, in an
unambiguous way, the associated QCD Nambu —Jona-
Lasinio fermionic model, which, upon being bosonized,
leads to a low-energy theory of the meson and baryon of
QCD.

Let us start our study by considering the Euclidean
QCD [SU(N, )] generating functional for the color-singlet
scalar and vectorial quark currents:
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where @(x),vP(x) are the independent Euclidean quark
fields, a (x) + psP(x) and J„(x)+ psA„(x) are the exter-
nal sources for the scalar, scalar-axial, and axial-vectorial
QCD quark currents. A~(x) denotes the SU(N ) gluon
field.

In order to obtain effective quark field theories &om
Eq. (1) we propose to integrate out their gluon degrees
of freedom in the lattice; i.e., let us Brst consider the pure
gluonic functional integral

IW»el = f& t& [*)1~«~] —— d'*T [+„'.(&)](*) ]4

consider directly the bosonic quark fermion current on
the lattice by means of its associated Mandelstam-Wilson
phase factor defined on each lattice link ([n„],[n„]+ o.)

C'-([~~]) = exp(za(@~ @)([n~])) .

Note that the above-written phase factor has indices (i, j)
on the group SU(N, ) and an index a related to the
Lorentz group as it should be.

The associated gluon U(N) group-valued Mandelstam-
Wilson phase factor is still given by the link lattice gluon
variable

«««~
l

*sf ~'*(@~"@)(*).(*)
l

(2) U„([n ]) = exp(iaA„([n ])) . (4)

Our procedure to evaluate Eq. (2) is, first, to introduce a
lattice space-time. At this point we put forward our idea
to handle fermonic fields on the lattice. As was shown in
[1], it is impossible to have a well-defined procedure to
define massless fermion fields on the usual lattice (x„=
[n„],n„E Z) (with spacing a) [1). We propose, thus, to

At this point of our study, we point out that the quark-
gluon coupling on the lattice may be written as a product
of the Mandelstam-Wilson phase factor given by Eqs. (3)
and (4) since we have the formal continuum limit at the
lattice space going to zero as one can see by expanding
the exponentials

Our proposed gauge-invariant lattice version of the gluon functional integral, Eq. (2), is, thus, given by
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The advantage of this lattice phase factor approach to analyze the gluonic path integral, Eq. (2), is its allowance for
an exact integration of the lattice gluon phase factors in both the perturbative and the nonperturbative regimes. I.et
us show its usefulness by evaluating in closed form Eq. (6) in the leading limit of the number of colors and in the
leading limit of strong coupling as in [2] [Eq. (3.17)]:

p( )

p N ). T ((&"([ ]) —~}(& ([ ]) —~}') (7)

where AQcD(a) is the QCD strong-coupling phenomeno-
logical scale with dimension of inverse area (the gluon
nonperturbative condensate) which by its turn is lattice
spacing dependent.

It is very important to remark that the Jacobian J
of the variable change U„([n ]) ~ U~([n ]) + IL on the
lattice functional integrals, Eqs. (6) and (7), is unity only
at the continuuxn lixnit a -+ 0 (or at large N, ) since it is
explicitly given by the ratio

M;, =T(U '([n]) U([n])Bt,.

D [Uy([n ])] = (dt;det [Mv(t)]),

(ga)

(gb)

~ t'*(~'.Ã (( -I)+ ~))( )

)(j '„I& det (M' '(U ([~ ])})((x)

and for a ~ 0 we have that i + U~t([n ]) -+ 3l. Here
the Haar measure g~„~ D (U„([n ])} on the group

I
U(N ) follows from the metric tensor group on each

factor U(N, ) [3]:

U~([~ ]) = e»(it'([~~l)&x) . (10)

The formal continuum limit a ~ 0 of the result, Eq.
(7), after a Fierz transformation, leads to the following
quartic fermionic action in the continuum:

where the derivatives are with respect to the group pa-
rameters (t;};i.e.,

Here the fermionic effective coupling constant g& is de6ned in the continuuxn by the formal limit g& ——lim ~0 AcDa
and signaling the usual QCD dimensional transmutation phenomenon.

After substituting Eq. (11) into Eq. (1) we get our proposed fermionization for quantum chromodynamics in the
very low-energy region with the gluon field U(N ) integrated out for large N, in the sense of [2]. We remark that by
introducing the Hubbard-Stratonovich ansatz to linearize the quartic fermion interactions, we obtain the U(1) chiral
scalar and vectorial bosonized QCD [U(oo)] meson theory which improves that considered in [4] which was deduced
by using phenomenological guessing arguments:

&I~+7sP, ~„+~a&„)= fD (~1~ I)II~ (~,ID I&,)~xvl —;f~'*Kl'+ ', ))'+ —,'J„'+ l&,')K*) I-
x(det [ip8+ ((r + io) + ps(p+ ip) + p„(J„+iJ„)+ p 7 (iA„+ A„)]}. (12)

Note that in Eq. (12), ((r + ipsP) and (J„+ipse„) should be identified with the U(1) chiral scalar and vectorial
low-energy physical meson 6elds. Let us comment that the dynamics for the meson 6elds above comes &om the
evaluation of the quark functional determinant [4]. In the limit of the heavy scalar meson mass (cr) ~ oo, one can
easily implement the technique of [5] to get the full efFective hadronic action in terxns of 1/(o) power series.

In the case of baryonlike field excitations of the form O(x) = e;zsQ;(x)@z(x)gx, (x) it is still possible to analyze
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them in our proposed framework. For this task we consider a Hubbard-Stratonovich ansatz to write the generating
functional for the baryonlike excitation B(x): namely,

zis(*)I = fa la)D'isla Ix.)n Wln (4)~xp
I

— ~'*Y.I*~"s.+*a-+~"(".)-I@.)(x)
I
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I

—i d'~[&~q(&)&q~(&)l
I

where (p, q) are U(~, ) indices and the auxiliary fields (4, A) belong to the adjoint U(K ) representation.
After integrating out the gluon field A„(x) following the steps leading to Eq. (7) and the quark field as in Eq. (9),

we get our proposed efFective @CD-baryon field theory:
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(14)

It is instructive to remark that Eq. (14) indicates the impossibility to consider baryon excitations in isolation &om
the meson excitations in our proposed bosonized efFective @CD field theory.

It is worth pointing out that strong-coupling corrections Rom the neglected gluon field kinetic action in Eq. (7) are
straightforwardly implemented on the lattice by using the usual quantum field theory perturbation theory with the
external lattice gluon source coupling [2]: ) J„([n ])U„([n ]);

1[4' 0)¹~

where [see Eq. (7)]
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The associated 1/4g2 corrected fermionized @CD [U(oo)]
effective theory will, thus, be given by nonlocal current-
current quark correlation functions averaged with the
leading Nambu —Jona-Lasinio quark field theory, Eq.
(11). Unfortunately, only at the limit of large mass of
[5] it is possible to implement reliable approximate cal-

culations useful for nuclear physics at low energy. Work
on these applications for very low-energy nuclear hadron
dynamics will be reported elsewhere.
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