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Naturalness and superpartner masses or when to give up on
weak scale supersymmetry
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Superpartner masses cannot be arbitrarily heavy if supersymmetric extensions of the standard
model explain the stability of the gauge hierarchy. This ancient and hallowed motivation for weak
scale supersymmetry is often quoted, yet no reliable determination of this upper limit on superpartner
masses exists. In this paper we compute upper bounds on superpartner masses in the minimal
supersymmetric model, and we identify which values of the superpartner masses correspond to the
most natural explanation of the hierarchy stability. We compare the most natural value of these
masses and their upper limits to the physics reach of current and future colliders. As a result, we
find that supersymmetry could explain weak scale stability naturally even if no superpartners are
discovered at the CERN LEP II or the Fermilab Tevatron (even with the Main Injector upgrade).
However, we find that supersymmetry cannot provide a complete explanation of weak scale stability,
if squarks and gluinos have masses beyond the physics reach of the CERN LHC. Moreover, in the
most natural scenarios, many sparticles, for example, charginos, squarks, and gluinos, lie within the
physics reach of either LEP II or the Tevatron. Our analysis determines the most natural value of
the chargino (squark) [(gluino)] mass consistent with current experimental constraints is 50 (250)
[(250)] GeV and the corresponding theoretical upper bound is 250 (700) [(800)] GeV.
PACS number(s): 14.80.Ly, 11.30.Pb, 11.30.+c, 12.60.Jv

I. INTRODUCTION

As a candidate for physics beyond the standard model,
weak scale supersymmetry has several appealing features:
It provides an understanding of why a light weak scale
is stable, it successfully predicts the value of sin 0~ as-
suming gauge unification, it predicts a top quark Yukawa
coupling of order one, leading to a heavy Mt (assuming r
lepton and bottom quark Yukawa coupling unification),
and it provides a natural cold dark matter candidate in
the form of the lightest superpartner.

Despite these circumstantial arguments for weak scale
supersymmetry, there is not a shred of direct experimen-
tal evidence to support it. Should we be surprised or
discouraged that we have not yet found any supersym-
metric partners to the standard model particles? To
date, of the particles we believe to be fundamental, all
those observed would be massless if the gauge symme-
tries of the standard model were unbroken. Because
the current, experimental probes only reach up through
the lower &inges of the weak scale, it is not surprising
that the fundamental particles discovered so far obtain
masses as a consequence of spontaneously broken gauge
symmetries. Their superpartners, by contrast, can have
gauge-invariant mass terms, provided supersymmetry is

broken. Although they are not required to be light by
gauge symmetries, there is a theoretical upper limit on
their masses above which the weak scale does not arise
naturally. As the scale of supersymmetry breaking is in-
creased, the weak scale can only remain light by virtue
of an increasingly delicate cancellation. Requiring that
the weak scale arises naturally places an upper bound on
superpartner masses.

In this paper, we attempt to quantify the relationship
between naturalness and superpartner masses. Using re-
cently formulated naturalness measures we compute the
most natural value of the superpartner masses, the ex-
tent to which naturalness is lost as experimental bounds
on superpartner masses increase, and a theoretical upper
limit to the masses of superparticles.

In Sec. II we review the naturalness measures used in
our study. Section III is devoted to a discussion of radia-
tive electroweak symmetry breaking in the minimal su-
persymmetric extension of the standard model (MSSM)
and to details of the numerical methods we employed in
our analysis. The results, presented in Sec. IV, demon-
strate that the MSSM cannot accommodate the weak
scale naturally if superpartner masses lie beyond the
reach of the CERN Large Hadron Collider (LHC). More-
over, in the most natural cases, physics beyond the stan-
dard model has a good chance of being discovered at the
CERN e+e collider LEP II or the Fermilab Tevatron.
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Only quite recently has there been experimental evidence
for the top quark.

II. MEASURING FINE TUNING

In this section we review the recently formulated natu-
ralness measures we use in our analysis. A more detailed
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f(a)da
( ) I f( )d

(2 1)

a likelihood distribution for the low energy observable X
follows:

ada= pX dX. (2.2)

The value of an observable X is unnatural if it is rela-
tively unlikely to end up in an interval u(X) about X
compared to similarly defined intervals around other val-
ues of X. The probability that X lies within an interval
u(X) about X has weight up. So we define our quanti-
tative measure of naturalness as

motivation and derivation of these criteria can be found
in Ref. [1]. Any measure of naturalness contains as-
sumptions about how the fundamental parameters of a
Lagrangian are distributed. If we parametrize these as-
sumptions, a quantitative measure of naturalness follows
directly. Consider a Lagrangian density written in terms
of fundamental couplings specified at the high energy
boundary of the efFective theory: l:(ai, a2, ..., a ). At
a low energy scale, we can write the Lagrangian in terms
of physical observables X (e.g. , X = M&). These observ-
ables will depend on the a; through the renormalization
group and possibly on a set of minimization conditions:
X = X(a). If we assume the probability distribution of
a fundamental Lagrangian parameter a is given by

The naturalness measures defined by Eqs. (2.5) and (2.6)
are a refinement of Susskind's description of Wilson's nat-
uralness criteria [3]: Observable properties of a system,
i.e., X, should not be unusually unstable with respect to
minute variations in the fundamental parameters, a. In
other words, X(a) is fine-tuned if the values of the fun-
damental parameters a are chosen so that X depends on
the a in an unusually sensitive manner when compared
to other values of the fundamental parameters a. Sen-
sitivity in this case is understood to mean that a small
fractional change in a leads to a large fractional change
in3 X.

Returning to Eqs. (2.4)—(2.6), we see that three choices
need to be specified before we can make practical use of
this prescription. First, the choice of f(a) reflects our
theoretical prejudice about what constitutes a natural
value of the Lagrangian parameter a. We will make two
difFerent choices for f(a) as an aid in determining how
sensitively the bounds we derive depend on this theoret-
ical prejudice: f(a) = 1 and f(a) = 1/a. We denote the
corresponding naturalness measures by pq and p2, respec-
tively. The bounds we derive on superpartner masses in
Sec. IV are fairly insensitive to this choice. Second, the
conventional notion of naturalness for hierarchy problems
is u(X) = X [1]. This choice has already been made in
Eq. (2.6), and it is implicit in the qualitative statement
of naturalness written above. Finally, the range of inte-
gration (a, a+) for the averaging must be chosen. This
range will be discussed in Sec. IV.

where

(«)
u(X) p(X)

'

t' up da

da

(2.3)

(2.4)

III. THE MSSM

All the chiral interactions of the MSSM are described
by its superpotential

W = u Y„@„Q+ dYg@gQ + eY,C'gL + pC „4'g . (3.1)

It'=C C. (2 5)

This definition of c gives

1 daaf(a) c(X;a)1 c=
af (a) 1' da

(2.6)

The conventional sense of naturalness for hierarchy prob-
lems corresponds to an interval u = X. With this pre-
scription, fine-tuning corresponds to p )& 1. The p de-
fined in Eq. (2.3) is proportional to the Barbieri-Giudice
sensitivity parameter c(X,a) = ~(a/X)(OX/Ba)

~
[2]. We

can use Eqs. (2.3) and (2.4) to define an average sensi-
tivity c through the relation

The p term explicitly breaks the Peccei-Quinn symmetry
and avoids a phenomenologically disastrous axion. In
addition to all the particles of the SM, there are 31 new
ones including three new Higgs bosons.

Supersymmetry (SUSY) is explicitly broken in the
MSSM using soft terms derived from the low energy limit
of supergravity (SUGRA) theory. The form of the soft
SUSY-breaking potential in the MSSM includes mass
terms for all the scalars and for the gauginos as well as
bilinear and trilinear terms following from the Kahler po-
tential of the SUGRA theory in the low energy limit.

A generic feature of minimal low energy SUGRA mod-
els is universality of the soft terms. Universality implies
that all the scalar mass parameters are equal to the grav-
itino mass mo at some high energy scale which we take
to be the scale of gauge coupling unification, M~ ——10

For example, in a theory of fundamental scalars, the scalar
mass is related to the cutoK A and the bare term mo by
m, = g A —mo. In this theory we must adjust g with the
saxne precision to place the scalar mass squared in a 1 (GeV)
window whether the scalar mass is A or 10 A. A
small mass for the scalar is unnatural in the sense that a
small change in g leads to a large Pactional change in m,

In deriving the naturalness criteria Eqs. (2.3)—(2.6), we
have attempted to make explicit the discretionary choices in-
herent in any quantitative measure of naturalness. In any
particular application, in order to obtain a reliable measure
of naturalness, these choices must be made sensibly.
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GeV. All soft trilinear couplings share a common value
Ap that can be related to the soft bilinear coupling Bo,
depending on the form of the Kahler potential. To some
extent, universality in the soft breaking terms is required
in order to avoid unwanted flavor-changing neutral cur-
rent effects. Since the gauge couplings unify, the gaugino
mass parameters are assumed equal to a common value

m~y2 at M~. Consequently, the minimal model intro-
duces Gve new parameters: mo, Ao, mz/2, Bo, and po.
However, it is very predictive since these account for the
masses of 31 new particles [4].

In the MSSM, the electroweak symmetry is broken ra-
diatively [5—8]. In our analysis, we use the one-loop ef-
fective Higgs potential

Vl loop = Vo + LVj. (3.2)

The m; represent the Geld-dependent masses of the par-
ticles of the model and the s, the associated spins. We
include the contributions of all the MSSM particles in
the one-loop correction.

Using the renormalization group, the parameters are
evolved to low energies where the potential attains va-
lidity. This RG improvement uncovers electroweak sym-
metry breaking. The exact low energy scale at which to
minimize is unimportant as long as the one-loop effective
potential is used and the scale is in the expected elec-
troweak range. The minimization scale will arbitrarily
be taken to be Mz. If the electroweak symmetry is bro-
ken, minimization yields nonzero values for the vacuum
expectation values (VEV's) of the two Higgs fields v„
and vq, or equivalently v = gv2 + v& and tan P = v„/vd.
The two minimization conditions may be expressed as

where the expression for the one-loop correction is given
by

m2
AVi —— ) (—1) '*(2s;+ l)m;

~

ln
64rr' - ' ( ' 2)

(3.3)

eters. We take the value of the strong coupling at Mz
to be as(Mz) = 0.118. The corresponding value of the
strong coupling at M~ is determined based on this low

energy constraint. The values of ni(Mx) and a2(Mx)
are set equal and fixed at 1/25. 3. This constant value for
ni 2 at Mx never leads to more than about 1% and 3%
error in o., and sin 8~, respectively. The difference in
ns(Mx) and ni 2(Mx) is at most 3% and can be accom-
modated using grand unified theory (GUT) thresholds.

Not all input values for the &ee parameters will yield
adequate solutions, and the (4+ 1)-diinensional param-
eter space must be explored and restricted using vari-
ous criteria. Cases are rejected based on the existence
of color- and/or charge-breaking vacua or a charged
lightest supersymmetric particle (LSP)i In arriving at
the superpartner mass bounds, the fine-tuning prescrip-
tion, Eq. (2.3), is applied to all solutions found in a
grid of approximately 2000 points bounded as follows:

~Ap~ & 400 GeV, 0 ( mp ( 400 GeV, ~miy2~ ( 500 GeV,
1 ( tan P(Mx) ( 15, and sgn(p) = +.

IV. ANALYSIS

The essential, novel feature of the Gne-tuning measure
p is to evaluate the sensitivity c of a physical quantity
relative to a benchmark c. We have derived a formula
for this benchmark in Sec. III and in Ref. [1]. This pre-
scription for calculating c requires us to choose a range
of integration (a, a+). We use two conditions to de-
Gne a suitable range of integration. First, we integrate
over the all values of a where SU(3) x SU(2) x U(1)
is broken to SU(3) x U(l), . The resulting limits on
the range of integration generally come from two condi-
tions on the value of Mz. The minimum value of Mz

50

m2@ —m2@ tan P 1
p2(Mg) = " " ——mz,tan2 P —1 2

(m@ + m@ +2@ ) sin2P
a(M ) =

2„(M,)

(3.4)

(3.5)

40—

where rn@ ——rn@ +M Vi/Ov„&. In the process of in-
1

tegrating the two-loop renormalization group equations,
the threshold corrections due to all the light particles are
implemented as step functions [9].

The procedure we follow to analyze the MSSM as-
sumes the following 4+1 &ee input parameters: Ao, mo,
miy2, tanPp, and sgn(p) since it is undetermined from
Eq. (3.4). The other parameters of the MSSM are fixed
using the following constraints: Electroweak breaking in
the form of two minimization conditions at Mz, the phys-
ical masses of the bottom quark and 7. lepton, and the
value of the strong coupling at Mz. Therefore, solutions
for Bp, pp, y~(Mx), ns(Mx), and Mi are found con-
sistent with the renormalization group (RG), the above
constraints, and speciGed values for the free input param-
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FIG. 1. Curves representing the lower envelope of re-
gions defined by c = max{c(rni~2), c(ms), c(yt. ), c(gs)} and
pi, ~ = max(pi, ~(rnid~), pi, sc(ms), pi, 2(y~), pi, 2(gs)) p»t«d
as a function of tan P. The upper curve represents the amount
of sensitivity required by current experimental superpartner
limits, and the lower curves display the amount of fine-tuning.
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cannot be less than 0, and its maximum value cannot
exceed some upper bound, often set by the requirement
that sneutrino squared masses be positive. Second, in
our analysis we only consider points where we are able
to find a significantly large range of integration. If the
range of integration is not suitably large, we will fail in
our attempt to compare the sensitivity of M~, when a
is chosen so that the value of Mz is 91.2 GeV, to the
average sensitivity. Inspection of Eq. (2.6) shows that in
the limit of vanishing (a+ —a ), c approaches c, and p
tends to one. To eliminate spurious calculations of p, we
only consider cases were ba = a+ —a exceeds a j4 or a/8
for Mz(a) = 91.2 GeV. We find that typically this has
the effect of removing points where SU(3) only remains
unbroken as the result of a fine tuning.

Figures 2—9 display correlations between the super-
partner masses and fine-tuning. For each solution point,
we computed the Fine-tuning with respect to the com-
mon scalar mass, the top quark Yukawa coupling, and
the common gaugino mass. Then, for each individual so-
lution, we define p as the largest of these fine-tunings.
Many earlier studies of naturalness, as well as employing

measures of sensitivity instead of fine-tuning, considered
the naturalness of the Z mass with respect to individ-
ual parameters separately. This separation can lead to a
significant underestimate of fine-tuning. In particular,
we have compared the lower envelopes defined by scatter
plots, and we find explicitly that, if fine-tuning is plot-
ted as a function of a particular coupling or mass, the
envelope defined by p cannot in general be constructed
from the individual envelopes for p(mo), p(mi/2), and
p(yt). Figures 2—9 display the 6ne-tuning measure p plot-
ted against selected superpartner masses. The individual
points shown in these figures correspond to the grid of
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FIG. 3. (a,b) The fine-tuning measures pi 2 as a function
of the lightest squark mass of the first two generations.
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FIG. 2. (a,b) The fine-tuning measures pi, 2 as a function
of the gluino mass.

In fact, the original bound of c ( 10 imposed by Barbieri
and Giudice can no longer be satisfied. A calculation of the
sensitivity of the Z mass with respect to mo, mzy2, y~, and
gs gives c ) 30 (see Fig. 1).

This is a refiection of the fact that because the Z mass de-
pends on several parameters, even if another variable is fixed,
it is easy to find solutions where the Z boson's dependence on
an isolated fundamental parameter is relatively insensitive.
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approximately 2000 points discussed in Sec. III. We cau-
tion the reader that the density of these points is not
an indication of how likely particular values of the su-
perpartner masses or p are. This is because the grid.
we have used is not completely uniform, and more im-
portantly because the minimization conditions (3.4) and
(3.5) have been used to determine the values of Bo and
po. The dashed and dotted curves in these figures show
the minimum 6ne-tuning necessary for a particular value
of the superpartner mass. The likelihood. or naturalness
of a particular value of a superpartner mass scales like
I/p.

Figure 1 contrasts the sensitivity parameter c with our
measure of 6ne-tuning p. We see that currently viable so-
lutions depend on at least one fundamental parameter in
a fairly sensitive manner, however the fine-tuning curve,
p, shows that this sensitivity is not always unusual.

Figures 2(a) and 2(b) display the correlation between
the gluino mass and the 6ne-tuning parameters pq and
p2. This plot and, unless otherwise noted, the following
plots are constructed &om solution points consistent with

the current LEP limits on superpartner masses [10]. We
have taken the limits on the sneutrino and the charged
superpartner masses to be Mz/2, and the lower limit on
the light Higgs boson mass as 60 GeV. If no superpartner
masses lie below these limits the most natural value of
the gluino mass is about 260 GeV, above the published
Collider Detector at Fermilab (CDF) limit of 141 GeV
and also above the recently reported limit from D0 [11].
For potential, future search limits at the Tevatron see for
example Ref. [12]. If we require that fine-tunings are
at most a part in ten, the gluino mass should. lie below

600 —800 GeV, a value that should be easily accessible
at the LHC [13].

Figures 3(a) and (b) display the correlation between
fine-tuning and the lightest squark mass of the 6rst and
second generation. The analogous plots for the top
squark mass are shown in Figs. 4(a) and (b). The most
natural value of the stop mass is around 220 GeV, and
for the lightest of the remaining squarks it is about 240
GeV. This is close to the preliminary mass limit reported
by D0 at Glasgow [11]. If we require that Bne-tunings
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FIG. 4. (a,b) The fine-tuning measures pi 2 as a function
of the lightest top squark mass.

FIG. 5. (a,b) The fine-tuning measures pi, s as a function
of the lightest chargino mass.
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are at most a part in ten, the stop mass should He below
500—600 GeV and the lightest of the remaining squark

masses should lie below 600 —800 GeV.
Figures 5(a)—(b) display the correlation between fine-

tuning and the lightest chargino mass. This plot dis-
plays solution points consistent with the LEP derived
constraints on superpartner masses with the exception of
the chargino mass. The most natural value of the lightest
chargino mass, corresponding to the smallest p, is around
50 GeV. Note that a signi6cant region of the most natu-
ral solutions lie within the physics reach of LEP II, which
should be able to search for charged particles up to the
kinematic limit [14]. The lightest chargino mass should
not exceed 200 —300 GeV if p & 10.

Figures 6(a) and (b) display the correlation between
fj.ne-tuning and the mass of the lightest superpartner.
The most natural value of the LSP mass appears to be
around 42 GeV, and the theoretically favored values of
the LSP mass are concentrated below 70 GeV. The LSP
cannot be heavier than 150 GeV if p ( 10. This bound
provides a more stringent limit than bounds set by the

requirement that the LSP not overclose the Universe.
Figures 7(a) and (b) summarizes the mass predictions

for all the superpartners. The upper and lower ends of
the bars correspond to p ( 10 and the current exper-
imental limits, respectively. The diamond point repre-
sents the p ( 5 mass limit, and the square represents the
most natural value for the respective sparticle mass.

Finally, for completeness we display the correlation be-
tween the lower bound on fine tuning and the fundamen-
tal parameters mo and ~po~ in Figs. 8 and 9.

V. CONCLUSIONS

As the mass limits on superpartners increase, it be-
comes increasingly diKcult to accommodate a light weak
scale naturally. %'e have presented a detailed study of
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FIG. 6. (a,b) The fine-tuning measures pi q as a function
of the lightest sparticle mass.

FIG. 7. (a,b) Superpartner mass ranges. The upper and
lower ends of the bars correspond to p ( 10 and the cur-
rent experimental limits, respectively. The diamond (square)
represents the limit p ( 5 (the most natural value).
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FIG. 8. (a,b) The fine-tuning measures pi, 2 as a function
of the common scalar mass mo.

FIG. 9. (a,b) The fine-tuning measures pi q as a function
of the mixing parameter ]ys~.

the relationship between superpartner masses and natu-
ralness. This analysis demonstrates that supersymmetry
cannot accommodate the weak scale without significant
fine-tuning if superpartner masses lie beyond the physics
reach of the LHC. In addition our analysis reveals that
the most natural values of these masses often lie well
below 1 TeV. We note that our limits are higher than
those which would be obtained using conventional sen-
sitivity criteria, but they lie below the bounds found in
common folklore. In light of our results, we feel the po-
tential for the discovery of physics beyond the standard
model before the LHC is promising. However, this opti-
mism should not be interpreted as a guarantee that LEP
II or the Tevatron will see superpartners even in the case

when supersymmetry is relevant to electroweak symme-
try breaking.
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