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The amplitudes of pseudoscalar meson decays are calculated in a relativistic nonperturbative
quark model. One assumes that mesons are made of a quark-antiquark pair and of a scalar neu-
tral component representing the global contribution of the nonelementary Quctuations of the quark
gluonic field. The model allows us to treat in a unitary way the weak and weak radiative decays,
leading to manifest gauge-invariant amplitudes and to an essential dependence of the form factors
on the photon momentum in the radiative decays. The amplitudes and the form factors are ex-
pressed in terms of the internal functions of the mesons and of the quark masses. The experimental
data can be fitted in a satisfactory manner using current quark masses 0.5 MeV( m„( 3 MeV, 3
MeV( mg ( 15 MeV, 150 MeV& m, ( 300 MeV.

PACS number(s): 13.20.—v, 12.39.Ki, 13.40.Hq, 14.40.Aq

X. INTRODUCTION

The existence of some uncertainties both in the exper-
imental and theoretical information concerning the form
factors in the amplitudes of various pseudoscalar meson
decays [1] stimulated the development of a plethora of
models for these processes.

In the last years chiral perturbation theory, appearing
in the context of nonperturbative /CD, provided a pow-
erful tool for the investigation of low energy behavior of
the form factors [2]. In models of this kind pseudoscalar
mesons are treated. like Goldstone bosons, and their low
energy dynamics is described by efFective Lagrangians
expressed in terms of physical Gelds. By adding some
meson loop contribution to the standard quark level cal-
culations [3], a good agreement with the experimental
data has been obtained.

An alternative point of view is to look at mesons like
quark-antiquark bound states. In this case the central
problem is how to introduce the internal structure of
mesons. This problem is solved either by means of ef-
fective Lagrangians coupling the quark and meson fields

[1,4], or directly by means of a bound-state wave func-
tion such as, for instance, the wave functions given by
the Bethe-Salpeter equation [5], or by the bag model [6].
Recently, trying to escape the diKculties related with the
relativistic treatment of the binding mechanism, simple
models of mesons such as products of free quark and an-
tiquark states have been proposed [7]. Lorentz invariance
is ensured by a suitable relativistic coupling of the spins
and by the particular form of the internal distribution
of momenta. In order to incorporate some effects of the
quantum fluctuations inside the meson, Horbatsch and
Koniuk added a gluon to the qq state [8], and Mishra
and Misra [9] introduced the gluon and quark conden-
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sates which transform the perturbative vacuum into the
physical vacuum having lower energy.

A model similar to the above ones has been proposed
by one of us [10] some time ago. It is based on the
conjecture that, at low energy, the confinement of the
quarks and the hadron interactions can be treated inde-
pendently, although both of them are effects of the same
elementary quark gluon interactions. This allows one to
treat the confinement as a mean field effect, indepen-
dently of the external interaction which is an effect of
some quantum fluctuations. Specifically, it has been as-
sumed that the quarks are independent particles whose
confinement reflects in the internal wave function of the
hadron. As a mean Geld one introduced an effective,
vacuumlike field C representing globally the fluctuations
of the quark gluonic field which cannot be described in
terms of a few elementary excitations. The field C has
some properties which resemble those of other nonpertur-
bative contributions. For instance, it has a nonvanishing
vacuum expectation value like the condensates [ll], it
contributes with its own energy to the hadron energy, like
the bag in the bag models [12], and it can be a source of
other particles like the neutral sea in quark-parton mod-
els [10,13].

The hadron momentum shares between the valence
quarks and the effective field 4 and, according to the
fundamental conjecture, in the absence of an external in-
teraction, the internal distribution of momenta does not
change. The external interaction as an effect of quantum
fluctuations is formally described by a time translation
operitor U, (t, t'), which produces some modifications in
the distribution of flavors and momenta in the interact-
ing hadrons. It is important to emphasize that it is of no
use to write the operator U (t, t') in terms of some ele-
mentary quark gluon Lagrangian, because at low energy
it cannot, be treated perturbatively. In Ref. [10] its ac-
tion on the quark operators has been put in the form of a
Bogoliubov transformation involving the effective field 4
in order to ensure the energy-momentum conservation.

The model succeeds in giving a unitary view of low
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energy processes involving hadrons, but the numerical
results are strongly dependent on the unknown functions
introduced by the model, namely the internal wave func-
tion and the Bogoliubov transformation. The remarkable
feature of the processes studied in this paper is that, in
the limit of a given approximation, there is no need to
specify the Bogoliubov transformation. Moreover, one
can define some ratios of the form factors and decay con-
stants, which are independent of the particular internal
function of the meson, making our results more reliable.

In the following section we present the essential fea-
tures of the model and derive the expressions of the de-
cay amplitudes. The comparison of our results with the
experimental data is performed in Sec. III. Our conclu-
sions are presented in Sec. IV. The Appendix contains
some useful notation and integrals used throughout the
paper, as well as the expression of the partial width of
the weak radiative decay and the inadvertencies found
by us here.

resents the internal wave function of the pion. The quark
creation and annihilation operators satisfy the &ee field
canonical anticommutation relations, the only nonvan-
ishing one being

a.'(p) a~(q) ,= bt (p) b(q)
= (2m) —b (p —q)b p.m

@t(Q) denotes the creation of a nonelementary excitation
having the internal quantum numbers of the vacuum and
carrying the momentum Q. It represents the quantum
fluctuations of the quark-gluonic field in equilibrium with
the valence quarks. It is an independent component of
the meson, and hence it is supposed to commute with the
quark operators.

The physical meaning of the effective field @t(Q) allows
us to assume that

II. CALCULATION OF THE DECAY
AMPLITUDES

The model used for calculating the decay amplitudes is
based on the following picture we now have for hadrons.
Hadrons look like bags, cavities, or bubbles containing a
few bound valence quarks in equilibrium with the excita-
tion of the surrounding quark-gluonic Beld. The equilib-
rium is stable and the internal distribution of momenta
does not change as long as the hadrons remain &ee. Dur-
ing the interaction, the equilibrium breaks down, the fluc-
tuations of the quark-gluonic field become very intense,
and new states can emerge. A long experience proves
that perturbation theory is unable to describe both the
binding effects and the hadron interaction at low energy.
This fact shows clearly that the fluctuations of the quark-
gluonic field generating these effects are far &om being
elementary. For this reason we avoid considering some
elementary excitations such as a small number of quarks
or gluons aside &om the valence quarks, and we introduce
an effective field 4 to describe globally the fluctuations
of the quark-gluonic field inside the hadrons. The field
4 has the quantum numbers of the vacuum and carries
its own momentum which is not the subject of any mass
shell constraint because 4 does not represent an elemen-
tary excitation.

According to the ideas outlined above, we propose the
following expression for the pseudoscalar meson [10]:

I

~M (P)) =f d p —d q d Q hi ~(p+q+0 —P)

xg(p, q; Q) x u(p)psv(q) ytA (p

x .'(p)b&(q) @'(Q) Io)

with the notation p)' = (e, p) and q)' = (e, q), p„p~ =
m, q~q" = m', and where at (p) and b&t(q) are the cre-
ation operators of the valence quark and antiquark whose
color, spin, and flavor are denoted by the collective in-
dices n and P. Here y and y denote vectors in flavor
space whose coupling is described by a A matrix. @ rep-

At the same time, keeping into account that in any
process the conservation of the quark momentum is a
consequence of the commutation relations (2) and that
4'(Q) is an independent component of the hadrons, one
must impose from outside the separate conservation of
its four-momentum. We assume then

(o l@'(Q)
I o) = (2 )'p'b'"(Q), (4)

where p is a constant having the dimension of mass in-
troduced for dimensional reasons and can be determined
from the normalization of the pion state. Condition (4)
is essential for ensuring the overall energy conservation,
solving in this way one of the &equent problems of phe-
nomenological quark models [6].

The introduction of the effective field 4 describing all
the quantum fluctuations of the quark-gluonic Beld inside
the hadrons other than the valence quarks allows us to
assume safely that the valence quarks are bare particles
and their masses are current masses. In this respect our
model differs from many other models for soft processes
where the quarks are supposed to be of constituent type
and have their own dressing.

The binding effects in the expression (1) of the pion
state are introduced through the internal wave function
g(p, q; Q) which must cut ofF the large relative momenta
in order to allow the satisfaction of the orthogonality
relation

(M (P)le(P')) =b $(27r) 2E b~ l(P' —P)
xb(M' —M ).

The factor b(M' —M ) above is due to Eq. (4) following
&om the nonelementary character of the phenomenologi-
cal field 4. It forces us to modify the phase space density
as

2m. s 2E 2a sd P + dM d P p(M, Mp), (6)
1 3 1 1 3 1

2E

where p(M, Mo) is the distribution function of the meson
mass around a central value Mo. If p(M, Mo) has a small
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width, as in our case, the integral over M in the cross
section can be perforined from the beginning, and one
returns to the old phase space density.

Before passing to the explicit calculation one has to
specify the dynamical assumptions of the model.

As stated in the Introduction, the hadron dynamics is
introduced formally by means of a time translation op-
erator U, (ti, t2) which describes the modifications in the
hadron structure produced by an external interaction.

In the cases studied in this paper, the meson is the sin-
gle hadron involved, and nothing can change its structure
up to the emission of a weak or electromagnetic quanta.
Therefore, the tiine translation operator U (tp, —oo),
where to is the momentum of the first emission, acting
on the single meson state leaves it unchanged since there
was no external interaction to perturb the internal equi-
librium in the quark system. It can then be replaced by
unity and the same conjecture can be made on the time
translation operator acting on the final state, where there
are no more quarks.

In the case of the radiative decays, the emission of the
second quanta takes place in a state already perturbed by
the recoil of the first emission. Because of the smallness
of the involved momenta we assume, however, that the
perturbation of the equilibrium state can be neglected.
Therefore, the time translation operator U, (t2, ti), de-
scribing the effects of the quantum fluctuations in the
time interval between the two emissions, will be approx-
imated by unity, which prevents us from specifying its
action on the quark system.

The calculation is presented in detail for the pion case
and is generalized to the kaon case.

(a) P+ -+ l+vi. In the lowest order of the weak inter-
action, the S matrix element of pion decay into leptons
1s

S(m m l vr) =i f d x (l+u(~ U, (+oo, xo)

xK (x) U, (x, —oo)iver+(P)),

where the weak Hamiltonian

K = o 8 [J ' +()J„' () ""+H. .]
Gp

lii

Gy
cos 8C, [d(x)p„(1 —ps)u(x)

2

x vi(x)p" (1 —ps)l(x) + H.c.]

is written in the limit of local quark-lepton interaction.
In Eq. (8) G~ is the Fermi constant, 8& is the Cabibbo
angle, u(x), d(x) are the up and down quark fields, l(x),
vi(x) are the lepton fields, and J„~' l+(x) and J~ ' l (x)
represent the weak quark and weak lepton currents, re-
spectively. The time translation operators U, (+oo, xp),
U, (xp, —oo) in Eq. (7) represent the global effect of the
quantum fluctuations in the quark system due to some
external interactions which are absent both in the sin-
gle pion and in the final state where there are no more
quarks. Then, as we have already mentioned above, it
follows that the time translation operators U, (+oo, xp)
and U, (xp, —oo) in Eq. (7) can be replaced by unity.

After introducing in Eq. (7) the plane wave decompo-
sition of the free fields (Al), (A2), the expression (7) of
the S matrix element can be written as

S(sr+ ~ 1+vi) = i —cos 8~ u~, (I')p" (1 —ps) vi(l)

x d xe'~+

x (O d(x)&„&,u(x) ~+(P)), (9)

where u, (l') and vi(l) are the Dirac spinors for the lep-
tons.

The matrix element of the quark current in Eq. (9)
is calculated using the expression (1) of the pion state.
One gets easily

(O d(*)&„&, ( ) +(P)) =(O A„( ) +(P))
'"+'* 4(p, q; Q)~"(p+ q+ q —P)

e

e e 2m~ 2m'

where p" = (e, p), q" = (e, q) are the quark and anti-
quark momenta, and p = p„p". In Eq. (10), the condi-
tion (4) has been used. In this case it ineans that the an-
nihilation into leptons of the valence quark and antiquark
of the pion, proceeds in a "bare" state, i.e., in the absence
of any other excitation of the quark-gluonic field. This
is a natural result of the present model, which is con-
sistent with our initial assumption that one deals with

current quarks. At the same time, it marks the essential
difference between the present model and the well-known
model of Van Royen and Weisskopf [14], where the decay
constant is proportional with the value at the origin of
the internal function in configuration space.

Using the definition of the pion decay constant E' ~,
(A5), one gets, from Eq. (10),
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v 2~p ( (md —m„)F + = C + (m„+ mg)
~

1—

(11)

with

V(P O'0)
u(p)

d(q)

(m„+ md) (m„—mg)
M2 M2

where C~+ = —3i(2vr) p @~+(0), and where @~+(0) is
the value of internal wave function @(p,q; Q) for Q~ = 0
in the vr+ case, @ + (0) = vP(p, q; 0). The factor 3 in C +
is due to the quantum number of color and is present
whenever one encounters a quark loop.

It is worth noticing that Eq. (10) looks like those ap-
pearing in other quark loop models, with the difference
that the spin projectors of (10) are replaced there by
propagators. In our model the valence quark and anti-
quark are real, on-mass shell particles and, because of
this fact, the integral over their momenta in Eq. (10)
leads to the hnite result (11). In this respect the present
model difFers from the usual quark loop models [4], where
E is infinite and hence cannot be calculated directly in
the absence of a consistent renormalization procedure.

Proceeding in the same manner one can calculate any
other matrix element of a weak current between the vac-
uum and a pseudoscalar meson. The neutral pion con-
stant E o defined by (A5), which must coincide with that
of the charged meson for equal quark masses, is then

(12)

FIG. 1. Quark diagram for the pion decay constant I'
The pion is represented by the quark and the antiquark lines.
The bubble represents the internal wave function of the pion,
4(u q;q).

where C 0 = —3i(2vr) p g 0(0) and

2 M /1 —(2m~ /M) 2, j = u, d.
Following Eq. (11), the charged kaon decay constant

E~+ can be written in the same form:

with C~+ = —3i(2m) p, @~+(0). As currently done
in quark models, one can associate a diagram like that
in Fig. 1 to the expression of the matrix element (10).
An essential di8'erence is that in our diagram the quark
lines correspond to projectors on the states of positive
and negative energy, while in most quark-loop models
the quark lines correspond to propagators.

(b) P+ —+ I+vip. In the lowest order of perturbation
with respect to the weak and electromagnetic interac-
tions, the element of the S matrix for the decay of the
positive charged pion can be written

s(m+ -+ 1+v,p) = (—~)' J d'z d4y

x (& (I)v&(I')p(~)
~

U (+oo, xo) H (x) U (xo yo) H (y) U, (yo, —oo) 8(xo —yo)

+ U, (~oo, yp) H, (y) U, (yp, xp) H (x) U. (xp, —oo) 8(yp —xp)~7r+(P)), (14)

where the electromagnetic Hamiltonian (w'ritten in terms of electromagnetic quark current and electromagnetic lepton
current) is

H. (x) = ep[J~(~" )(x) + J~('" )(x)]A"(x)

= eo ) rr, q; (x)p&q(x) — l(x)p&t(x) A" (x),
i=u, d

(15)

and o; denote the quark charges in terms of electric charge eo.
Then, just as in the P+ ~ I+vi case, the time translation operators U, (+oo, t) and U, (t, —oo) can be replaced

by unity. We also replace by unity the operators U, (xp, yp) and U, (yp, xp) because the perturbation produced in the
equilibrium state by the emission of a quanta can be neglected, as outlined in the Introduction, due to the smaBness
of the involved momenta. We shall comment more about the implications of this approximation in the last section.

The calculation of the S matrix element proceeds then as usual, leading to the expression (with e" for the photon
polarization vector)

GpS(sr+ m I+vip) = —eo cos8~ e d x d y e'"

x l+1v 1' T J ' ~ x J~' ~y 0 0 J~~' ~y m+P

+ l+ 1 v)1' J~' ~ y 0 0 T J~' ~ x J~~' ~ y sr+ P g"",



52 STRUCTURE EFFECTS IN P~lv, P—+ivy, AND m ~yy DECAYS 1581

where the first term is called the bremsstrahlung term and the second one—the structure-dependent term. The Grst
one describes the emission of the photon by the charged lepton, while the second one describes the emission of the
photon by the meson itself.

After using Wick's theorem to pass from time ordered to normal ordered products of quark operators, we can write
the matrix elements involving two currents in Eq. (16) in the following manner:

l+1v) 1' T J~' x J~' ) y 0 = —i l+ 1 v) 1':v) y p„1—ps Sy y —x

peal

x: 0

0 T J„'"-' ~ J«") y ~+ S

=i (0:d(—y)p (1 —ps) S~(y —x) pgu(z): sr+(P)} —i —(0:d(z)pgSp(z —y)p„(1 —ps) u(y): ~+(P) }3 3

0,@+ 0 p q- g() p+q+

2 d k —iI,'(y —x)—ip~ —iqy ~ p+ m„q —mg r i + m~

(2~)' ( 2m' k" —m'„2m„)
where i S~ stands for the fermion propagator. The bremsstrahlung and the structure-dependent terms can be repre-
sented diagramatically as in Figs. 2(a) and 2(b).

Using (A6), (A7), (A8), and (A9) we perform the integrations over the spatial coordinates and over the internal
momenta in Eqs. (16), (17), and (18) and put the amplitude of the weak radiative decay into its standard form [1]:

T(vr + l v~p) = eo cos0~ e i m~~2F + u„, (l )
GF A

2
(+ )()

1
+—~&„pk P~F„+~( Pg. k —P„k„)F~ u, (t')p" (1 —p, ) v(t) I, (19)

where P + is given in Eq. (11),~ denotes the photon polarization vector, and the form factors I'v and I'~ are functions
of the dynamical variables s = P . k and t = k . In our case where t = 0, they are expressed in terms of the usual
adimensional variable x = 2(P . k)/M2 and the quark masses as

1
Pv =& + — fv,x

2 m„e+ p 1 mg s+ p 2p(mg —m„)
fv ——27r — " ln —— ln +3M e —p 3M

(20a)

(20b)

&~=&-+
I

—f~ + —.f~(1 (~) 1 (2)l
(z z2 )

(21a)

(gl 4p(2m„+ mg)2' 2p(m + mg) (mg —m„)
M4

2m„e+ p" ln
3M e —p

mg a+p
ln3M' (21b)

f~ = 4m. (mg —m„)(2) = P
3M2

where

p(m'„—m„')
M4

1 (2, e+p 1, s+p'(
I

-m„Ms (3 " e —p 3 s —p)
(2lc)

1p= —M
2

(m„+ mg)2
M2 1 — ", , e = gp'+ m„', s =(m„—mg) 2

2+ m2
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It is important to notice that neither the brems-
strahlung amplitude nor the structure-dependent one in
Eq. (16) are separately gauge invariant. The detailed
calculation shows that in our model the terms violating
gauge invariance in both cases cancel each other. Gauge
invariance appears then to be a direct consequence of the
unitary treatment of the weak and weak radiative decay,
which is a valuable feature of this model.

It must also be mentioned that the form factors (20)
and (21) depend essentially on the photon energy, both
of them having poles at x = 0, i.e., at vanishing photon
energy. This leads to an in&ared divergence in the axial
contribution to the decay width, which requires a careful
analysis of the soft photon limit.

Finally, one remarks that, due to the appearance of
the same constant in the expressions (11), (20a), and
(2la) the ratios F~/F + and F~/F + depend on the
quark masses only. This fact is a direct consequence of
the neglect of recoil efFects which allowed us to replace
U,'(xo, yo) by unity in Eq. (14). This will enable us to
eliminate the unknown value of the constant C + by ex-
pressing it in terms of F + whose value can be taken &om
the decay rate of the charged pion into leptons [15].

The results obtained up to now can be easily gener-
alized to the charged kaon case, by simply replacing mg
with m, and the pion mass with the kaon mass.

(c) vr + 7p. The calculation of the neutral pion decay
amplitude can be treated in the same manner as we did
in the case of weak radiative decay of the charged pion.
Then, just; as in that case, one has

v(p.q'Q) „(p)

d(q)

(o)

v(p, q;Q) „( )
PA

&(p q'Q) „(p)

FIG. 2. (a) The diagram of the bremsstrahlung term. (b)
Quark diagrams of the structure dependent term.

S(ee' ~ WW)
= (—e)' J &'ed'(V(&e)V(4) I(U(+~ ee) S. (e)&(eeue)S. (u)U(ue, —~)e(ee, —ue)

+ U' (+(x) yo)II m(y)& (yo xo)~em(2:)& (xo~ —oo)8(yo —zo)]l m (P))
= —i e', e'"' +'"'"e" k~ e" k2

a %Myx 0 —uxpS~x —ypuy + —dxp~S~x —ypdy + + P
9 v 9 P pMv

= —(2e) b~ ~(P —k, —ke)&2ee ) ee e f d p d p' (2ee) p g(p, q;0)e.
j=~,d

(4) J)+m, p —k~+m, . p' —m, l r p-+v )xh p+q —P Tr ps p„2 2pv +Tr
l

2m~ (p —kz) —m~ 2m~ ) (kx ~ k2)
) (22)

where 0„=1 and (rg ———l.
Writing the S matrix element of the neutral pion decay into its usual form

S(~ -+ pp) = i(2vr) b (P —k& —k2) eo T(7r -+ pp)s„„pe"(k&)e"(k2)krak~ (23)

1 mg eg+ pg9M'"- p. (24)

and performing the trace and the integration over the
spatial coordinates and internal momenta, one gets, &om
Eqs. (22) and (23),

2~2vr 4 m„e„+p„I

T vr —+ pp = C'„o — ln
M 9 M e„—p„

where C 0 = —3i(2m)4@4@ o(0), ez ——2M and p~

~

~ ~

z, j =,d. Just as in the case of weak ra,dia, tive

decays, the unknown value of the constant C 0 can be
eliminated by using the expression (12) for F o. The
value of E 0 cannot be taken directly &om the experiment
as it is the case for E +. However, it can be extracted
from the experimental value of the neutral pion decay
amplitude to which it is related by the Adler-Bell-Jackiw
anomaly in the soft pion limit [16].
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III. RESULTS 10

The aim of this section is to test the validity of the
model by comparing with the experimental data the val-
ues of vr decay amplitude, Eq. (24), and of the vector
and axial form factors F~ (20), F~ (21) for m+ and K+
case.

As we said before, these quantities depend on the
constant C o or C +,(C~+), which represents the value
of the unknown and model-dependent wave function
@(p, q, Q = 0). This dependence is eliminated by us-
ing the decay constants expressions, Eqs. (12), (11),
and (13), respectively, for which the numerical values are
taken &om experimental data. Because in our model the
valence quarks are bare particles, we shall compare our
theoretical results with the experimental measurements
in the following range of masses: 0.5 MeV & m„& 3
MeV, 3 MeV & mg & 15 MeV 150 MeV & m, & 300
MeV, consistent with the range quoted by the Particle
Data Group [15] for current quarks.

In Fig. 3(a) we represented the quantity O(m„, md) =
T(go m pp)zh/T(n. o m pp), „~~ as a function of the
quark mass ratio rl = md/m„with m„ taken as pa-
rameter. T(vr m pp), „~~ is about 2.72 x 10 4 MeV
[15]. The dashed line represents the perfect agreement
between theory and experiment, 0 = 1. Each paramet-
ric curve corresponds to a given value for m„expressed
in MeV with a variation of 0.1 MeV between two suc-
cessive curves. All parametric curves between the curves
m„= 0.56 and m„= 1.2 can reach the value 0 = 1. A
small variation of m outside this range gives a value
for 0 far &om experiment, due to logarithms of very
small arguments in Eq. (24). (See, for example, the
curve m = 1.36 giving theoretical results 4 times
bigger than experiment. ) So, the model is very sensitive
at small variations of current quark masses, giving per-
fect agreement with experiment for m„= [0.5, 1.2] and
rI = [5.8, 6.5] or md = [2.9, 7.8] (MeV).

As concerns the form factors occuring in the weak ra-
diative decay, we notice that one cannot perform a di-
rect comparison with the experimental values because,
as pointed out above, in our case the form factors Ev
and E~ depend significantly, through x, on the photon
energy, Eqs. (20), and (21), while the experimental data
[15,17] have been fitted with some constant values.

However, in order to test the predictive power of the
model, we treat these experimental values for the form
factors as mean values of the real form factors over the
phase space region where the measurements have been
made and compare them with our theoretical mean values
over the same phase space region.

Using then —instead of —in Eq. (20a) we define the
mean form factor (Fv). We have to evaluate the mean
value of —over the phase space region. Since there are
two different kinematical weights SD+ and SD given
by (A26) and (A27) which correspond to the left and

right photons, one can de6ne two mean values — and
+

—10
5 7

7) =m, /m„

1.0

0.5

E

0.0

—0.5

—1.0
3

7) =m, /m„

m„=O.46

—6—

—10
0 10

7) =m, /m„
15 20

FIG. 3. (a) The function A(m„, mq) = T(7r -+
pp)qp, /T(m -+ pp), „~q represented as a function of q
mq/m with rn parameter; each curve corresponds to a con-
stant value for m„(MeV), written on it. The agreement with
experiment, 0 = 1 (dashed line), exists for a continuous range
of masses m„= [0.5, 1.2]. (b) 7r case: (Fv.) (m, ma) rep-
resented as a function of q = mq/m„with m„parameter;
each curve corresponds to a constant value for m„(MeV),
written on it. The dashed line corresponds to the experimen-
tal value 0.017 [15] for the vector form factor. (c) n+ case:
(F~) (m„, mq) represented as a function of g = md/m„with
m parameter; each curve corresponds to a constant value for
m (MeV), written on it; for unmarked curves m„ increases
by 0.2 MeV from right to left.
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0.'70

0.60—

I I I I I I I I I I
i

I I I I I I I I I I

1.86 1.16 m„=0 96 m„=0.76 m„=0,56

S2

f f —.' SD-(*,y) d*dy
k~ j f f~ SD (~,—y) d~ dy

(25)
0.50—

(P k) 2{P l)

(,y) are given in the Appendix [(A26) and (A27)],

a/. 17 we c
and L is the volume in phase space. F ll

' 8 le. o owing o otov et

with a = 1.; 6 = —0.8; c = 1.; d = 0.3; e = 1, and And

that — — — = 1.65.

In Fi . 3 ~bi'g. ~ ~&we represented, in the sr+ case our
form factor ~&Eac or &E~~ computed as we mentioned above, as a
unction of the quark mass rat's ra io m&y'm„with m taken

on s o a constantas a parameter. Each curve corresp d t
va ue of m written on it. Again, the dashed line shows
the experimental "mean" value of the vector form factor
which is 0.017 ~i151is . ~ ~. The agreement with experiment is
good for the range m„= [0.86 1 46]~j, corresponding to
i1 = [3.85, 5.7] or mg = [3.3, 8.27] (MeV).

We try the same procedure th '
lin e axia case where

there are two contributions to th f ro e orm factor: one
wit a simple pole and the other with a double pole
at x = 0. Following Eq. (2la) we define the theoreti-

(and —
~

w th—»~ with their mean values over 4 — and 2 )

respectively. Defining as above — de —
p an —

g we

find
~

~ ~3.15 for the volume L.
The mean experimental value of the axial form factor
must then be compared with th th '

le eoretical mean value

(E ) = C ~(1.65f/ +3.15f/ ).
With thesese assumptions, we represent in Fi . 3' '

for the ~+he n case, the dependence af (E~) an the ratio
rl = m(g/m~, witli m~ takeil as a pal'alllet Ae er. gain, eac'
curve corresponds to a constant val fva ue o m„, expressed ine; we see that it is not possible to put the theoretical
predictian in agreeznent with the experimental data [15],

[ ]. e ifference is about two orders of magiutude
which is quite bad.

In the kaon case the experimental data are less precise;

an i erence of axial and vector form factors with
„and m, in the range quot d

a ove, 0.5 MeV & m„& 3 MeV 150 M V
e . In Figs. 4(a) and 4(b), the values of (E~) defined as

(E~) = (E~+Ev) = C~(f( ) +f + fv) are represented

vIeVj. For the bvI Vj. the above mass range, our values for ~E+
tC

of 0.23
n wi e experimental value

o 0.23 (dashed line) [15]. (E ) [Fig. 4(b)] is situated
within the experimental interval whi h
o . muon case [15], and is below the upper limit of

0.49, electron case ~L15~& , giving a good agreement with
experinlent.

g 040

0.30

0.P.Q—

0.10 I I I I II I I I I I I I I I I ~ I I I I I I I I I II I I I I I

100 200 300
g =m./m„

400 500 600

I I I I I I I I

—0.10—

—0.20—

30—

-0.40—
0.56

—0.50—

—0.60—
100 800 300

r) =m, /m„
400 500 600

FIG. 4. (a) K+ case: Il m~) (m„, m, ) represented as a func-
lon of f/ = fA~ YA~ %Kith fA

corres onds
fg =, „with m„(MeV) paraineter the dashed 1r; e as e ine
p s to the experimental value I'~ + I"v = 0 23 [15];

unmar e curves m„ increases from ri ht to lef b
case: ) (m„, m, ,) represented as a function

of g = m, /m„with m MeV aof =, „' „e parameter; the experimen-
a ata for I'~ —I'~ —Ev range between —2.2 and 0.49 [15]; for

unmarked curves m, inincreases from right to left by 0.2 MeV.

IV. COMMENTS AND CONCLUSIONS

The model resp ented in this paper has some attractive
features when compared with oth
son deca s. It is

i o er quar' models for me-
son ecays. It is essentially relativistic and allows the
consistent treatmerea ment of the meson structure and of the
electromagnetic interaction le d t, ea ing o manifest gauge in-
variant amplitudes for radiative d
the overall ener

ia ive ecays. It also ensures

for a he
e overall energy conservation which is mo t l bls va ua e

t
phenomenological quark mod l 6 . A ho e . tt esame

i the instabilities related toime, we were able to avoid
t e c oice of a particular internal function of the mesons
by expressing its unknown value at = 0
results in term

e a ~ = entering our
s, in erms of decay constants, E s. 11

( ), w ose numerical values were taken fr
periment.

re a en om ex-

In the rece

agreement with the experimental d ta a a is satis actory in
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the cases analyzed above. However, the values of quark
masses found by us &om the best Gt are not very reli-
able in the absence of a careful quantitative analysis of
the recoil effects on the internal equilibrium in the quark
system after a 6rst emission of a quanta. Keeping this in
mind, the difference between the best values of the quark
mass ratio g in the pion case is not very annoying. In this
sense, the major success of the model is that the quark
masses giving the best Gt are compatible with the quoted
values for current quark masses [15].

As concerns the disagreement observed in the pion case
for the axial form factor [Fig. 3(c)], in our opinion it
is mainly due to the neglect of recoil effects which are
more important in the pion case due to the small quark
masses. As a proof we mention the qualitative agreement
observed in the kaon case, where the large mass of the
strange quark diminishes the recoil effects. However, it
must be emphasized that in the case of radiative decays a
significant comparison with the experiment would require
some more information about the real dependence of the
form factors on the photon energy. In this sense, a new
Gt of the measurements with x-dependent form factors,
including also the interference term which was neglected
until now, would be most interesting and could possibly
remove the uncertainty in the quoted values [17].

The last comment concerns the in&ared behavior of the
form factors. A careful examination of Eqs. (A24) —(A29)
in the Appendix shows that only the axial contribution
to the structure-dependent part leads to an in&ared di-
vergence in the expression of decay width. According
to the standard procedure used in quantum electrody-
namics, the inanities of this kind in the cross section are
eliminated by compensation with those appearing in the
interference term between the amplitude with radiative
corrections and without them [19,18]. Trying a similar
procedure in our case, with quarks instead of electrons, it
is easy to see that the compensation mechanism does not
work, since the integral over the fermion momenta must
be performed in the amplitude, not in the cross section,
as in QED [19]. The problem deserves a further study by
using, instead of the electric charge, a more appropriate
perturbation parameter.

( ) ~ dsk 1

(2~)s 2(ui,

)& [ e»e{ )* a+(k) + i'm {A) (k)] (A2)

dp —dq3 m 3

dp —dq

d p
3 m 3

e

a{4)(p+q —P) = I„
I

2p k

P{ )(p+ q
2p ~ k

I
pppv p{4)(p+q

(A7)

(As)

= A„., (A9)

with p)" = (e, p), q" = (s', q), p"p& ——m2, q&q~ = m'2.
Elementary calculations give

4~ pmm'
Ip (A10)

m mm' e+p
ln

Mw e —p
(A11)

where w is the energy of the real photon, e = —M(1 +
) and p = ge —m .

Using the criterion of covariance we write the integrals
J„as

J„= AP„+ Bk„. (A12)

We observe that

Tr('Y '7 'Y 'y ) =4(g g —g" g + g" g" ),
(A3)

T (~ ~ ~'~ ~.) = -4' ~ """, (A4)
(0 A„(0) vr (P)) = bi, t, E P„, a=1, ..., 8, (A5)

(0 a,+(0) ~+(P)) = i ~2m. ~ P„.
(b) Integrals: The evaluation of the structure-

dependent terms arising from Eq. (18) implies the calcu-
lation of the integrals
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1k" J„= —Ip ——M~AP

and obtain

( 1 ') k„"+ iel-
2Cd M ( 2ld j ld

In a similar way, using covariance, one has

(A14)

(A15)

APPENDIX.

(a) Definitions and notation used throughout the pa-
per:

K„„=aP„P„+b (P„k + k„P„)+ ck„k + d g„„
(A16)

and, proceeding as above, one gets, for k = 0,

&(*)=f, , —,)~() )
*" (k)

+ b+(k) e'" v(k)], (A1)

P"K„=MeI„
= (M a+ M(nb+ d) P„+ (M b+ Ma)c) k„,

(A17)
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P„
2M Ip ——Mar a P„+(M~b+ d) k,

(A18)

g"" K„„=m I = M a+2M(ub+4d. (A19)

We solve the above system and write the integrals K&
as

e P~ P„ ( e m

&4~ 2 )
"+[

(P„k k„P

(, m'
l 3e k„k+

~

e'+ ~I — Ip
2 ) 4Lu

(A20)

(c) sr+ ~ I+vp decay width: Following the classic pa-
per of Brown and Bludman [20] and Ref. [1], the ampli-
tude of the m+ —+ &+vp decay becomes

I IB
dx ly
dt'I';„,
dx 0y

I SD
dx dy

o.I' ~)„
2vr(1 —r)
Ck 1

2n ~gE ~

+(Ev+ E~) 0],

F +~)+„[(Ev—E~) X

with the notation

1 —y+ p

x'(x+ y —1 —r)

x x + 2(1 —x)(1 —r)—

(M)'
16~ "r(1—r)' l E p

x[(Ev —E„)' SD+ + (Ev+E„)' SD ],
(A24)

where

m, A E..—.,TIB = &&0
2

( Pg

xe" (1+p,) v„

2lp + o.„„k"
)

TIB + TSDV + TSDA )

(A21)

(A25)
SD+ = (x + y —1 —r) [(x + y —1)(1 —x) —r], (A26)
SD = (1 —y+ r)[(1 —x)(1 —y) + r], (A27)

1 —y+r
[(I —*)(1—*—y) + ],x(x+ y —1 —r)

(A2S)
1 —y+r x —(1 —x) (1 —x —y) —r,x(x+ y —1 —r)-

(A29)

(A22)

iepG~ cos Hc
TsDA = L" e" E~ [P k g„~ —k„P~],

2M

(A23)

with L" = 6,„,(1')p&(1 —ps)v~(1) and ag„= 2 [pq, p„].
Taking the square of the modulus of the above am-

plitude and summing over the polarizations one gets the
expression of the partial decay rate [1,19]:

d r $ d rIB d I'sg7 d I';„
+ +

d2; dy dz dy dx dy dx dy'

where r = (m /M)2, x = 2(P k)/M2, and y = 2(P .
l)/M

We point out here two inadvertencies appearing in the
expression of the partial decay width quoted in Refs.
[1,15,20].

The erst one concerns the sign of the last term in the
square brackets in IB, which is different &om that ap-
pearing in Ref. [20] and the forthcoming papers. This
difference is negligible in the case of pion decay into light
leptons, but it can be important in other decays involving
heavier leptons. The second one concerns the interchange
of SD+ with SD and of X with g in (A24) when pass-
ing from vr+ decay to vr decay (Ref. [20]). Reference
[15] does not mention this.
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