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We propose a new and universal approach to the hadronization problem that incorporates both
partonic and hadronic degrees of freedom in their respective domains of relevance, and that de-
scribes the conversion between them within a kinetic field theory formulation in real time and full
seven-dimensional phase space. We construct a scale-dependent effective theory that reduces to
perturbative +CD with its scale and chiral symmetry properties at short space-time distances, but
at large distances (r & 1 fm) yields symmetry-breaking gluon and quark condensates plus hadronic
excitations. The approach is applied to the evolution of fragmenting qq and gg jet pairs as the system
evolves from the initial two-jet configuration, via parton showering and cluster formation, to the final
yield of hadrons. The phenomenological implications for e+e -+ hadrons are investigated, such as
the time scale of the transition, and its energy dependence, cluster size, and mass distributions. We
compare our results for particle production and Bose-Einstein correlations with experimental data,
and find an interesting possibility of extracting the basic parameters of the space-time evolution of
the system from Bose enhancement measurements.

PACS number(s): 13.87.Fh, 12.38.Bx, 12.38.Lg, 13.65.+i

I. INTRODUCTION

The physics of QCD exhibits different relevant exci-
tations at distinct length (or momentum) scales. To
give this notion a well-de6ned meaning, consider some
characteristic length scale I, of the order of 1 fm that
crudely separates short- &om long-distance physics. At
short space-time distances (r (& L ) the relevant degrees
of &eedom are quarks and gluons, e6'ectively unconfined
due to asymptotic &eedom, and their interactions are
well described by perturbative QCD. The theory exhibits
chiral symmetry and (approximate) scale symmetry. At
large distances (r )) I,) on the other hand, we are in
the regime of hadronic degrees of &eedom and physical
observable particles, whose nonperturbative interactions
are known to be described well by chiral models. In be-
tween these two regimes, in the range r —L, our current
knowledge is essentially limited to the understanding that
there must be a rather sudden dynamical establishment
of long-range order, i.e., some kind of "phase transition"
from the unconfined, chiral- and scale-invariant phase
of partons to the hadronic phase with massive physical
states and broken symmetries.

The dynamics of this parton-hadron conversion and
confinement mechanism has scarcely been studied yet,
although QCD-inspired efFective quark models that in-
corporate confinement phenomenology in some way have
been exploited extensively to describe static hadron prop-
erties rather well [1]. This problem is particularly serious
for attempts to describe the phenomenon of hadroniza-
tion in high-energy QCD processes. The theoretical tools

'Electronic address: johneocernvm. cern. ch
t Electronic address: klausosurya11. cern. ch

currently available for studying QCD are inadequate to
describe the transformation &om partonic to hadronic
degrees of &eedom as a dynamic process: perturbative
techxuques [2] are limited to the short-distance regime
where confinement is not apparent, while efkctive low-
energy chiral models [3] and QCD sum rules [4], that in-
corporate con6nement, lack partonic degrees of &eedom.
On the other hand, common descriptions of parton &ag-
mentation [5] are usually based on ad hoc prescriptions to
simulate hadron formation &om parton decays. In prin-
ciple, lattice QCD [6] should be able to bridge the gap,
but in practice dynamical calculations of parton-hadron
conversion are not yet feasible.

The purpose of this paper is to give a detailed docu-
mentation of our progress toward a consistent, fully dy-
namical formulation of the nonstatic properties of con-
Gnement, chiral symmetry breaking, and hadron forma-
tion, as recently proposed in Ref. [7]. Aside froxn the
aforementioned arguments, these issues are of great in-
terest in the context of the QCD phase transition in
the early Universe when hadrons formed &om uncon-
6ned quark-gluon matter, or in high-energy heavy-ion
collisions, where one expects a very hot and dense de-
confined quark-gluon plasma to be created. Here it is
inevitable to employ a dynamical treatment of the tran-
sition from short-distance (perturbative) regime of par-
tons to the long-distance (nonperturbative) doxnain of
hadrons. We extend here previous work [8] and present
a universal approach to the dynamic transition behoeen
partons and hadrons based on an efFective QCD field the-
ory description and relativistic kinetic theory.

Our concept is the following: we start &om a gauge-
invariant Lagrangian formulation that embodies both
fundamental partonic and composite hadronic degrees of
&eedom. It is explicitly dependent on the space-time
scale L = ~r~ at which the physics is "probed. " The
scale dependence is however not external, but the varia-
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tion of the scale is governed by the dynamical evolution
of the physical system under consideration. The field
equations of motion can be cast into evolution equations
for the real-time Green functions of the various particle
species, and by following the space-time evolution we can
trace the conversion &om partonic to hadronic degrees
of freedom in full seven-dimensional phase space, as it is
driven by the dynamics. This effective field theory ap-
proach recovers QCD with its scale and chiral symmetry
properties at short distances or high momentum trans-
fers, but yields at low energies the formation of symmetry
breaking gluon and quark condensates including excita-
tions that represent the physical hadrons.

It is important to explain in more detail the physical
basis of our approach: we assume that the vacuum state
in QCD can be visualized as a "color dielectric medium"
[9] characterized by some collective color-singlet fields
that correspond in the long-wavelength limit to the gluon
and quark condensates, and incorporate phenomenolog-
ically the complex structure of the physical vacuum as
order parameters. Specifically, the underlying hypoth-
ysis [10, ll] is that the long distance (no-nperturbative)
gluon self-interactions generate an effective scalar gluon
condensate field y which is self-interacting through some
potential V constructed [12—14] on the basis of the sym-
inetry properties of the QCD Lagrangian. As a conse-
quence of symmetry constraints, the scalar field y must
in addition couple through the potential V to an effective
pseudoscalar quark condensate field U, a feature which is
also suggested by lattice QCD studies [6], indicating that
the confining and chiral symmetry breaking "phase tran-
sitions" are in some way related and occur approximately
at the same scale. The long-range properties of the non-
perturbative vacuum are then characterized by gluon and
quark condensates which are proportional to the nonvan-
ishing vacuum expectation values (y) = go arid (U):—Up
in the long-distance limit.

Our central idea is that the effective gluon conden-
sate field y plays the driving role in the generation of
confinement and chiral-symmetry-breaking mechanisms:
the nonperturbative gluon self-interactions are assumed
to modify the long-range properties of the vacuum in
such a way that the propagation of the elementary gluon
fields A" is altered with increasing space-time distances
and eventually completely suppressed (confinement). As
a direct consequence [ll], the self-energy of the elemen-
tary quark fields vP will be modified accordingly through
the quark-gluon coupling, so that it generates dynami-
cally an effective quark mass term which becomes infinite
at large space-time distances. The coupling between the
perturbative regime with elementary fields A+, g and the
nonperturbative vacuum represented by the condensate
fields y, U is mediated by a single dimensionless "color-
dielectric function" r (y) [15],which vanishes in the short-
distance limit, but approaches unity at large distances.
There is no need to iotroduce an additional coupling to
the field U, nor to consider an explicit chiral-symmetry-
breaking quark mass term, because, as mentioned, the
quarks aquire a dynamic mass via their coupling to the
gluons in the presence of the field g.

We thus obtain an effective QCD field theory which

in the short-distance limit [(y) = 0, (U) = 0, e(0) = 1]
is chiral invariant and incorporates &ee gluon and quark
propagation (asymptotic freedom), whereas in the long-
distance limit [(y) = yo, (U) = Uo, K(go) = 0] no gluon
nor quark propagation can occur (confinement). In be-
tween these two regimes, the effective theory interpolates
and governs the dynamics of the conversion of short-
distance fiuctuations (partons) to nonperturbative bound
states (hadrons) embedded in the physical vacuuin. As
a prototype case, we study in detail the parton-hadron
conversion in e+e —+ hadrons. We visualize the process
e+e ~ qq as producing a "hot spot" in which the long-
range order represented by yo and Uo is disrupted locally
by the appearance of a bubble of the naive perturbative
vacuum. Within this bubble, a parton shower develops in
the usual perturbative way, with the hot spot expanding
and cooling in an irregular stochastic manner described
by QCD transport equations. This perturbative descrip-
tion remains appropriate in any phase-space region of the
shower where the local energy density is large compared
with the difference in energy density between the pertur-
bative partonic and the nonperturbative hadronic vacua.
When this condition is no longer satisfied, a bubble of
hadronic vacuum may be formed with a probability de-
termined by statistical-mechanical considerations.

This paper is organized in two main parts. The first
part, consisting of Secs. II and III, is intended as a com-
prehensive presentation of the general field-theoretical
&amework and necessary elements of quantum transport
theory. In Sec. II we construct on the basis of the dual
vacuum picture of coexisting perturbative and nonper-
turbative domains an effective theory that embodies the
correct scale and symmetry properties of QCD and that
has the desired features outlined above. We also discuss
the relation to the phenomenology of the QCD phase
transition, where the role of the critical temperature is
analogous to the critical confinement length scale in ou"
approach. Section III outlines the method of real-time
Green functions that we use to derive &om the field equa-
tions of motion the corresponding coupled equations for
the particle distribution functions. We also indicate how
macroscopic quantities related to observables can be ex-
tracted from the microscopic particle dynamics within
the kinetic theory of (nonequilibrium) many-particle sys-
tems. The second part of the paper, Secs. IV—VI, is de-
voted to the application of this effective QCD field theory
to the dynamics of parton-hadron conversion for the pro-
totype process of &agmenting jet systems initiated by
e+e annihilation. In Sec. IV we derive transport equa-
tions that, in the case of the partons, are generalized
QCD evolution equations in full phase space, and simi-
lar equations for the excitations of the y and U fields. In
Sec. V we present results of simulating this real-time evo-
lution of partons through the perturbative showez stage,
via subsequent formation of color-singlet clusters, and
finally hadronic cluster decay to give the final hadron
yield. We investigate phenomenological implications for
particle production and the Bose-Einstein effeci, which
we find to be a particularly sensitive probe to measure
and test the confinement dynamics. Finally, Sec. VI is
reserved for a summary and a brief discussion of future
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perspectives of the approach, in particular its applica-
bility to the QCD phase transition, and to high-density
QCD.

II. FIELD THEORY FRAME%TORE

As explained in the Introduction, the vacuum state
in QCD may be pictured as a color-dielectric inedium
characterized by long-range order parameters. Consider
the vacuum expectation values (VEV's) of the normal-
ordered products of color-singlet and Lorentz scalar
(pseudoscalar) functions y (U) [8, 15]:

(0 I ~(F.")
I 0), (0 I U(y;, q, ) I 0)

where F~" is the usual SU(3) field strength tensor, g,
@ the quark fields, and g(0), U(0) is set to be zero.
For instance, y can be f s,F F„&F& or (F~„F~„)
or other combinations. Similarly, U may be composed
of Tr[(g,@i)2], Tr[(g;gi@][,@~)2], etc. These VEV's are
physical quantities that characterize the structure of the
QCD vacuum [16] and are related to the measurable
gluon and quark cond. ensates, respectively.

Clearly, if we take the long wavelength limit L ~ oo
and simultanously let the coupling strength g, among the
fields tend to zero, we have in general the noncomutativ-
ity of the double limits:

lim lim (OI y(F"") IO) = 0 gLmoo g, —+0

hm lim (0IU(@;,@,) Io) = 0 gL—+oo gs —+0

lim lim ( 0
I
y(F"")

I
0 ),g, —+0 L-+oo

lim lim ( 0
I U(@;,@ .) I

0 ) (2)

with (OIF""IO) = 0 = (OI@;IO). Equation (2) is a pure quantum phenoinenon and a typical property of phase
transitions. It implies that there is long-range order in the vacuum which can be characterized by the operator
functions y and U.

In order to embody this concept into a field theory formulation, let us define the distance measure L for the
space-time separation between two points r and r' [rl" = (t, r)],

r —r'~r —r'&, (3)

and introduce a characteristic length scale I, that separates short-distance (L « I„)and long-range (L ) I,) physics
in QCD. The scale L, can be associated with the confinement length of the order of a hadron radius, as we will specify
more precisely later.

A. The short-distance regime L g& L,

At small space-time distances L « L„because of asymptotic freedom, the properties of QCD are well described by
a perturbative expansion in powers of the coupling g, of the generating functional for the connected Green functions:

W[d, ei, ei] = fDAeDdDd det& exp (i d e (A[A d, d] +ede A" + d, ei + eide]) (4)

In the path integral, detT denotes the I"addeev-Popov determinant and J, g, g are the generating currents for the
gluon fields A" and the quark fields @,g [which are vectors in flavor space, g = (g„,gg, . . .)], and the QCD Lagrangian
1S

C[A", g, g] = —
4 F„„F""+ @; (ip„B"—m)b;i —g, p„A"T'~ @~ + ( (A), (5)

where F" = 8"A —8"A" + g, f ~,A&A, is the gluon field-strength tensor. The subscripts a, b, c label the color
components of the gluon fields and g, denotes the color charge related to n, = g, /(4vr). The T are the generators of
the SU(3) color group, satisfying [T,Tg] =if g,T, with the structure constants f s, The indices .i, j label the color
components of the quark fields and m = diag(m„, mg, . . .). Throughout, summation over the color indices a, 6, c and
i, j is understood. %le recall that on setting the quark current masses m to zero, one has exact chiral symmetry. The
gauge-fixing term is denoted by a general function ( (A) which, e.g. , in covariant gauges is ( (A) = —1/(2o. )(8~A")
with Lagrange multiplier 1/n. However, we will later consider a difFerent (ghost-&ee) gauge that is more convenient
for our purposes, and in which the ghost contributions [which we did not explicitly exhibit in (4) and (5)] decouple.

B. The long-distance regime L )) L

The long-range physics of QCD at large space-time distances L )) L„ is known to be described well by an effective
low-energy theory. Here we adopt the approach of Ref. [14] and define the corresponding generating functional as

W[dx, Ke, Ke] = f DXDUDU exie (i f d e (Z[y, U, Ui] + dxy + UiKe + KeU) ) . (6)
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gp .'= ln W[J~t KUt K~]
(ol ~ lo)

0 0
0,

(ol U + Ut lo)inW[JxtKUtK~t] = g 0 tU0 ..——

The field degrees of freedom are a scalar gluon condensate field y and a pseudoscalar quark condensate field U =
f„exp [i+. chir]t/f„) for the nonet of the meson fields ttr [f„= !}3Mev, Tr[hh ] = 2br, U'Ut = fs), with

nonvanishing VEV s in the long-distance limit,

and an effective action

r[~, uVt]=intt']Z„h, Jtt] —j der(Z, ~ -t VtZ d- hittj

dr —Vy, U + 2 B„y 0"y + 4Tr O„U 0"U~ +

Consequently the Lagrangian in (6) is given by

C[y, U, Ut] = —,
' (B~y)(B"y) + 4 Tr (B„U)(B"Ut) —V(y, U), (1o)

with a potential V that has been constructed [12, 13] on the basis of constraints which arise from the scale and chiral
symmetry properties of the excact @CD Lagrangian, namely,

v(x U)=~ —xo + x'»l, 4 l

+—X l 1 &Xl'
&e'~ xo j. 4 (xo)

+c Tr mq(U~U ) l

—
l + —mapo

(g ]' 1, , (yl

Tr (B„U)(B"Ut)

Here the parameter b is related to the conventional bag
constant B by

~0B = 6 —.
4

(12)

Furthermore, c is a constant of mass dimension 3, mq ——

diag(m„, mg, m, ) is the light quark mass matrix, and mo
is an extra U(1)-breaking mass term for the ninth pseu-
doscalar meson Pe (which we will disregard in the follow-
ing). In the chiral limit, this potential has a minimum
when (y) = yo and equals the vacuum pressure H at
(X) = 0

C. The intermediate regime I L

Having established a 6eld theory framework for the
two regions L && I and L &) L, the crucial issue is
now the intermediate range. Clearly there must be a
dynamical interpolation around L = I &om the short-
range to the long-range description. We propose here
the following approach. Let us Grst consider the long-
range domain, i.e. , the physical vacuum characterized by
y0, and introduce into the vacuum an excitation of small
space-time extent. For instance, imagine the creation of a
qq pair with invariant mass Q I i )) I, i by a timelike
virtual photon &om e+e annihilation. The insertion
of such a localized excitation ("hot spot") modifies the
vacuum and we assume that the corresponding change
in the action integral S = 1' d4rd[y, U, Ut] in (6) can be
evaluated suKciently accurately to second order as

where +L, and pL, refer to the appropriate VEV's. Note
that this change bS in the action preserves local gauge
invariance. We also remark that this ansatz implicitly
assumes that the elementary gluon (E~„)and quark fields

(@,vP) couple directly only to the scalar field y, but not

to the pseudoscalar 6eld U. The dynamics of U is solely
driven by its coupling to y through the potential V(y, U),
Eq. (11).

On the other hand, we know that the short-range prop-
erties at L && L, of our qq excitation are not affected by
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the long-range correlations. Thus, here we can use (5)
with perturbative methods, since the quanta are asymp-
totically free and (x) = 0 = (U+ Ut). Thus we can com-
bine (5) and the efFect of (13) by adding to l:[A",@,Q]
and L[X, U, Ut] the following contribution that carries an
explicit scale (I ) dependence:

&I[A" 0 0 x]

P 4 1 KI g F~~ ~F pL

—
[ 1 —«(x)1 ]!-(A)) (14)

x (X)
— v (x) ~op

Lc
I

Lo
jl
~ I

jI
I

tI
I I

I

I

I I

I

I

I

I

I

I

XQ

«(o) = 1, «(x, ) = o, (15)

and is constrained to be a Lorentz-invariant color-singlet
function of scale dimension zero, a minimal possibility is

«(x) = 1—( I.x l'
(Lo Xo)

(16)

It turns out that the particular form of KL, (X) is not cru-
cial as long as the properties (15) are satisfied [17], be-
cause parton-hadron conversion is quite rapid, as we see
later, being related to the weakly first-order nature of the
QCD phase transition at finite temperature. The essence
is that (16) enforces color charge confinement due to the
fact that a color electric charge creates a displacement
D = lcI,E, where E" = I"o", with energy 2 f d rD /lcl,
which becomes infinite at large r for nonzero total charge.

Similarly, absolute confinement can be ensured also for
quarks by coupling the quark Gelds to the y field through

] o (Lx)'
vl. (x) = vo

l

(KL, (x) ) (Loxo)' —(Lx)' '1 'i

(»)
where po is a constant of mass dimension one that we will
set equal to 1 GeV. This form reflects that the quark mass
term ]L]I,(X) in (14) is induced by nonperturbative gluon
interactions, rather than being an independent quantity,

I

where the third term in the integrand is necessary to
maintain local gauge invariance. It remains to specify
the form of the functions lcl, (X) and pL, (x). Since «has
to satisfy the boundary conditions [15]

FIG. l. Schematic behavior of ri, (X), Eq. (16) and ]]A(X),
Eq. (17).

as is suggested by an explicit calculation [ll] of the quark
self-energy involving the gluon propagator in the presence
of the collective field x. It has been shown [10] that the
dynamical mass pL, (X) leads to an efFective confinement
potential with the masses of the quarks at small L ap-
proximately equal to the current masses, but at large L
when (X) -+ Xo it generates an infinite asymptotic quark
mass,

pL, (0) = o, pL, (xo) = ~
It is evident Rom (16)—(18) that Z[A", @,g, X] given
by (14) vanishes in the short-distance limit (L ~ 0,
(x) ~ 0), whereas in the long-distance limit it sup-
presses the propagation of colored gluon and quark fluc-
tuations, and interpolates smoothly between the two ex-
tremes. The typical functional forms of r L, (X) and p, L, (X)
are illustrated in Fig. 1.

D. The scale-dependent generating functional
for the effective theory

I.et us now summarize and combine the three contri-
butions of Secs. II A—C into a single action integral, and
write down the resulting generating functional as an ef-
fective description covering the full range 0 & L & oo and
depending implicitly on the scale L as defined by (3):

W [d, q, q, J„e,Ke, Ke]] = f 23AeÃdVQ'UyVUDUt detE

+ ~,, U, Ut

Je A" d- dq + el/ d Jey + U Ke + KeU)),

where Z, [A~, g, vP] is given by (5), ZjX, U, Ut] by (10), and CL, [A~, @,vP, X] by (14), so that the eifective, L-dependent
Lagrangian density Zr, = K[A~, @,Q] + K[X, U, Ut] + Cl. [A~, @,vj, X] in the generating functional (19) can be written
as

+~-,-&."" + @'([&~~&"—I ~(x)l~v —g.~~A."& ) @~ + «(x) ]!-(A)

+ 2 (O„x)(8"x) + 4 Tr[(O„U)(]9"U )] —V(x, U), (2o)
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where V(y, U) is the potential given by (11),and we have
gone over to the limit of zero current quark masses. It
is important to realize that the scale dependence of (19)
and (20) arises solely through the L-dependent functions
Kl. (g) and pL, (y), given by Eqs. (16) and (17). The
scale I is not to be misunderstood as an external param-
eter. Instead it is intrinsic variable of the formulation.
As we will see later, the variation of L is governed by the
dynamics of the fields itself, and it in turn determines
the time evolution of the interacting fields. Therefore,
when studying the dynamical evolution of some system
under consideration, one must necessarily require this
self-consistency for a meaningful solution.

At this point let us state clearly the following impor-
tant remarks.

(a) The efFective field theory defined by (19) and (20)
represents a description of the duality of partonic and
hadronic degrees of &eedom: high-momentum, short-
distance quark-gluon fiuctuations (the perturbative ex-
citations) are embedded in a collective field y (the non-
perturbative vacuum), in which by definition the low-
momentum, long-range Huctuations are absorbed. Con-
finement is thus associated with a dual stucture of the
QCD vacuum. The formulation is gauge and Lorentz
invariant, and is consistent with scale and chiral symme-
try properties of QCD. It interpolates between the high-
momentum (short-distance) QCD phase with unconfined
gluon and quark degrees of freedom and chiral symme-
try ((g) = 0, (U) = 0, ei, = 1, pL, = 0), to a low-energy
(long-range) QCD phase with confinement and broken
chiral symmetry ((y) = yp, (U) = Up, rl, = 0, pl, = oo),
where yo and Uo are the long-range order parameters of
the vacuum, directly related to the gluon condensate and
the quark condensate, respectively (Sec. IIE below).

(b) By introducing additional fields y and U to de-
scribe the long-range behavior of the gluon and quark
fields, we must obviously be careful not to double count
the degrees of &eedom, since the full theory of QCD is
contained in l:[A",vP, g], Eq. (5), already. However, by
our construction the sum l:l. in (20) gives a consistent
formulation that strictly avoids double counting, because
the introduction of the scale L and the behavior of the I-
dependent coupling functions r~(y) and p, L, (y) truncate
the dynamics of the elementary fields A", @ to the short-
distance, high-momentum regime (L « L ), whereas the
effective description in terms of the collective fields y,
U covers the complementary long-range, low-energy do-
main (L )) I,). Accordingly, a quark or gluon is either
considered a colored short-range fiuctuation (parton) or
it is part of a complex bound state (hadron), but not
both.

(c) The presence of the nonlinear coupling function
rL, (y), which also enters pl. (y) via (17), means that
the sum Al: = l:[y, U] + l:[A~, @,@,y] in (20) is non-
renormalizable. However, there is no need for explicit
renormalization, because the composite fields y and U
are already interpreted as effective degrees of freedom
with loop corrections implicitly included in LZ, and it
would be double counting to add them again. More-
over, as mentioned in item (b) above, the low-energy do-
main of l:[y, U] is by construction bounded &om above

by the onset of the high-energy regime described by
l:[A",vP, g]. The characteristic scale L, that separates
the two domains, therefore, provides an "ultraviolet" cut-
off for l'. [y, U], and at the same time an "in&ared" cutofF
for l:[A&, vP, Q].

E. Analogies with +CD at Bnite temperature

We close this section with pointing out some immedi-
ate phenomenological implications: the particular form
(11) of the potential V as a function of g, as well as the
functions +L, and pl. that couple short- and long-range
regimes, play a central role in dynamical processes where
the scale I changes with time. The efFect of (14) can be
interpreted as a scale- (I-) dependent modification bV,
which adds to the (L-independent) potential V, Eq. (11):

V(L):= V(y, U) + bV(L, y), (21)

bV(L, y)=,F„F""(LX)'
4 Logo '

up (Lx)'
(L )2 (L )2 Px4t & ( )

where we used Eqs. (16) and (17). We emphasize again
that L is not an input parameter, but rather is deter-
mined by the space-time dependent separation of the col-
ored quanta. In Sec. IV, we will specify how to determine
the variation of the variable I.

In view of (22), one has b'V oc O(L ), therefore it is
suggestive that the variable L plays a similar role as the
temperature T in finite-temperature QCD, where the cor
rection to the zero-temperature potential is O(Tz) [18].
This formal analogy will be indicative in the following.
However, one must bear in mind that here we are aiin-
ing to describe the evolution of a general nonequilibrium
system in real time and Minkowski space, as opposed to
thermal evolution in Euclidean space. Nevertheless, we
adopt the general concept of Ref. [14], and &om the
analogy with this previous work we can qualitatively ex-
pect that the correction bV will give a first-order "phase
transition" &om the parton to the hadron phase, when
combined with V.

As seen in Fig. 2 there are three characteristic scales
Iz, L, and I0, that mark the time evolution &om the
small-I to the large-L region as the scale-dependent po-
tential V(I), Eq. (21), changes.

(i) L~ is the characteristic length scale below which
the vacuum with y g 0 cannot exist. The potential V
has an unique minimum at y = 0; i.e., we are in the
perturbative vacuum of the pure parton phase.

(ii) L, marks the point when the V develops two degen-
erate minima, one at y = 0 and the other at y = y . The
pressure in the parton phase is here equal to the pressure
in the hadron phase, and the probability for partons to
tunnel through the barrier becomes large.

(iii) L p defines when bV = 0 and V becomes equal
to V in Eq. (11), and has a single absolute minimum at
(g) = gp. The parton phase cannot exist any longer, and
the parton-hadron conversion is completed. We are in the
true (physical) vacuum characterized by the presence of
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N(X L) = V(X) + 5V{XL)

LC(Lc Ly L Lp

ing. They include in principle (a) glueballs and hybrids
as quantum fluctuations in the gluon condensate Xo, (b)
pseudoscalar mesons as excitations of the quark conden-
sate Uo, (c) the pseudoscalar flavor singlet meson Po, and
(d) baryons as topological solitons. We will return below
to the issue of hadron formation.

III. EQUATIONS OP MOTION
AND KINETIC EVOLUTION

Xp

FIG. 2. Form of the scale-dependent potential V(L), Eq.
(21), where Lz characterizes the point of inaection at Xz, L
marks the point when the two minima are degenerate at y„
and Lp when the potential has a single absolute minimum at
Xo. The value at X = 0 is equal to the vacuum pressure (bag
constant) B.

and the quark condensate

(o I ev I o) = c
I

—
I

(x&'
(Xoy

(24)

where b and c are defined in (11). These condensates can
be regarded as local order parameters associated with
gluon and quark confinement, respectively, and chiral
syminetry breakdown. Also, as discussed in [14], one can
interpret small oscillations about the minimum of the
potential V = V at (X) = Xo, (U + Ut) = Uo, as phys-
ical hadronic states that emerge after symmetry break-

a gluon and a quark condensate.
Following [14] we can relate the VEV's (8), Xo and Uo,

to the gluon condensate

In this section we outline how to obtain a fully dy-
namical description of the parton-hadron conversion in
real time and complete phase space, starting &om the
defining generating functional (19) of our efFective field
theory. A comprehensive derivation can be found in Ref.
[19], to which we refer for details. The method is based
on the Green function technique [20, 21], here applied
to derive transport equations for the field operators A",
@, X, and U. The form of the transport equations re-
sults directly &om the Dyson-Schwinger equations [22].
The self-energy operators that enter the connected part
of the equations can then be evaluated in a perturba-
tive expansion. This leads to corresponding equations of
motion for the distribution functions of particles, namely,
gluons and quarks as colored Huctuations, and scalar and
pseudoscalar hadronic excitations. The solution for the
time development of these particle distribution functions
in phase space will then allow us to calculate macroscopic
observable quantities within the framework of relativistic
kinetic theory.

A. Equations of motion

We start &om the field equations of motion that follow
&om the variation of the generating functional (19) with
(20):

4&-""+g f-s.A~, s+.""—[B~»«(X)]&." —
I
1+

I g.0;~ T"vj, +("(A) = 0,
Po

BV(X, U) 1 BKr (X)& +„„BPr(X)— „BV(X,U) BV(X, U)B„BX+
B

+
B +„,F +, ; —0, B„B U+ +B„—0,

where B~ = B/Bx~ and we set U = (U + Ut)/2. In the
second equation, the function

( B( (A) )("(A) := B„
I

rr, (26)

results &om the gauge-fixing constraint in Eq. (5), e.g. ,
in covariant gauges ("(A) = (1/n)B" B~A~. Note that in
general there are additional equations of motion involving
the ghost fields coupled to the gluon Gelds, however, since
we will later choose a ghost free gauge, these decouple
and are irrelevant here.

It is evident 6..om the above equations and the form
of the potential V(X, U), Eq. (11), that in the short-

distance limit when (X) = 0 and KL, (X) = 1, the system
of equations decouples and reduces to the usual Yang-
Mills equations. Similarly, in the long-wavelength limit,
one has (X) + Xo, (U) ~ Uo, and rL, (X) ~ 0, so that
the dynamics in this case is completely described by the
equations for the effective fields y and U. A very im-
portant point is that the U field does not couple directly
to the quark or gluon fields. By construction [14], the
dynamics of the quark condensate field U is solely driven
by the gluon condensate Geld y. As a consequence, the
equation for U is readily solved, once the solution for y
is known. It is important to realize that the interplay
between the X field and the quark and gluon fields, g
and A, is the crucial element of this approach. From
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a phenomenological point of view, this implies that the
transformation of parton to hadron degrees of freedom
proceeds first by formation of scalar color-singlet states
which subsequently decay into pseudoscalar excitations
(Sec. IV).

B. Real-time Green functions
and microscopic kinetics

ip 8 S;,(x, y) =

8' D"b(x, y) =

8' A(x, y) =

b;~b (x, y)

+ d4~'Z;k x, x' Sky x', y

b bb (x, y) (g" —E"")

d'x' II.".
b (* x') Db "b(x' y)

-b (x, y)

d x' =(x, x') A(x', y),

The central role in the following is played by the real-
time Green functions in the "closed-time-path formal-
ism" (for an extensive review, see [21]). This formalism is
the appropriate tool to describe general nonequilibrium
systems, and its particular strength lies in the possibility
of studying the time evolution of phenomena where ini-
tial and final states correspond to different vacua, as we
are addressing here. In [19] it is shown how one obtains a
dynamical formulation which systematically incorporates
quantum correlations and. describes naturally the transi-
tion from the perturbative QCD regime to the nonper-
turbative QCD vacuum. The real-time Green functions
are defined as thestwo-point functions that measure the
time-ordered correlations between the fields at space-time
points x and y (as before we suppress the spinor indices
for the fermion operators):

D.""(*,y):= (»."(*)A (y) )

i &(x y): = ( T X(x) X(y) ) — ( ~(x) ) ( ~(y) )

' &(x y): = ( T U(*) U'(y) )

—(U(*) ) (U'(y) ), (27)

where angular brackets denote the vacuum expecta-
tion value, or, in a medium, the appropriate ensem-
ble average, and T A(x)B(y) = 0(xp, yp)A(x)B(y) +
8(yp, xp)B(y)A(x) stands for the generalized time-
ordering operator along a closed time contour [21] with
+ (—) for boson (fermion) operators. For the y and U
fields we have subtracted the classical expectation values
in order to separate the quantum fjuctuations of the fields
around the classical field configuration. These Green
functions generally describe the propagation of an ex-
citation in a many-particle system from space-time point
x to point y. In the absence of a coupling between g,
A~ and y, U, and in the zero-density limit, the expecta-
tion values S;~ and D b can be shown [19] to reduce to
the usual quark and gluon Feynman propagators, respec-
tively, and L with the scalar Feynman propagator.

Using definitions (27) and implementing the gauge-
fixing constraint in (25) for the gluon fields, one finds
&om (25) the following equations of motion for the Green
functions (in the limit of zero rest masses):

8 A(x, y) = —b (x, y)

+ d x' =(x, x') A(x', y), (28)

describing the change with respect to x, plus similar
equations for the change with y by the substitutions
8 ~ —8&, and Z(x, x')S(x', y) -+ S(x, x')Z(x', y), etc.
The explicit expressions for the self-energies Z, II, :",and
:- are rather lengthy and can be found in Ref. [19]. We
remark that the functions Z and II include both the usual
quark and gluon self-energies, as well as the additional
interaction of the quanta with the y field. Similarly, the
self-energy " incorporates the effective self-interaction of
the y field described by the potential (ll), plus the inter-
action with the quark and gluon fields in (22). Finally,
the self-energy of the U field plus its coupling to the y
field is described by =. In the equation for the gluon
Green function D

&
we have on the right-hand side the

remnant of the gauge constraint,

d4 —i p-(x —y)

(2~)4 &2+'0+

x g„„+ ) s"„(&,s)sq (&, s)
8=1)2

(29)

which involves a sum over the two physical (transverse)
gluon polarizations (e.g. , iii Feynman gauge s"„=g„" and
thus P, s"s& ———g~„, i.e. , E'„„=0). We note that Eqs.
(28) are of the form of Dyson-Schwinger equations [22],
and can be rewritten in symbolic operator notation as

S = So + SoZS, D = Do —DoIID
b,p+ Ap=A, A = b,p+ Ap-A, (30)

where So, Do, Ao, Lo denote the free-field Green func-
tions that satisfy the equations of motion in the absence
of self- and mutual interactions. Figure 3 illustrates
the diagrammatic representation of the Green functions
S, D, L, L, the self-energies Z, II, :",:", and the Dyson-
Schwinger equations (30).

A quantum transport formalism can be derived Rom
Eqs. (28) that is very suitable for the present purposes
[19]. We confine ourselves here to sketching the essen-
tial steps. One introduces the Wigner transforms W
[23] of the Green functions and the self-energies W
S, D, 4, Z, II, :":

W(e, y) = f d se*s' Wee, s)

where
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Propagators:

S= )L

iI X

tY

4x

tY
Z= $

hx

Self-energies

~qg

+ s $ I+"=rqx',

mx

Qg = ~gg

nsx =
q j +

) j +

=yu

+ ~ ~ 0

rxx
*'

y
T'.—

FIG. 3. Diagrammatic representation of
(a) the two-point Green functions S, D, A, A;
(b) the self-energies Z, II, :-,:-; (c) the cor-
responding Dyson-Schwinger equations (30).
Notation: Thick (thin) lines indicate fully
dressed (bare) propagators, shaded circles
and bo~es denote the full quark and gluon
vertex functions, black circles and boxes with
attached loops represent the local interac-
tions with the collective fields y and U via
the potential V, Eq. (21).

Dyson-Schwinger equations:

(I) s = sp + zs

It
0

+ p I
qx ~-~

O

(ii) D = Dp + IID + I gg, :;:,:;I +
I

rgx

(iv) g = h,p + "UX& i
A
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8 S
w(r, s) = w (r+ —,r —— = w(x, y), (32)

with r:—(x + y)/2 and s = x —y denoting the center-of-
mass and relative coordinates, respectively, and 8 being
the canonical conjugate to the momentum p (as before r,
p, etc. , denote four vectors and a b = a„b"). The equa-
tions of motion for the Wigner transforms W(r, p) are
now obtained [19] under the assumption that the Green
functions and self-energies W(r, s) can be approximated
by a gradient expansion in r up to erst order:

8W(r+ s, s) W(r, s) + s —W(r, s) .
OT

(33)

p a„S,, (r, p) =
2 p. a„b;i + «(p pb;g + E;A:) &„+.

~( )
8

p'a D &(r p) —«g b

p. a. z (., p) =--' ~~+l, (34)

while the renormalization equations are obtained as

This assumption implies a restriction to quasihomoge-
nous or moderately inhomogenous systems, such that the
Green functions vary only slowly with r. In homogenous
systems, such as the vacuum, translation invariance dic-
tates that the dependence on r drops out entirely, and the
Wigner transforms then coincide with the momentum-
space Fourier transforms of the Green functions and self-
energies. Although we will in this paper consider the
evolution of a fragmenting jet system in vacuum, the
subsequent formulation is tailored to apply also to more
general translation noninvariant situations in moderately
inhomogenous media.

The Dyson-Schwinger equations (28) can now be con-
verted into kinetic equations by performing the Wigner
transformation (31) for all Green functions and self-
energies, and using (33). One arrives at two distinct
equations for each of the Wigner transforms 8, P and
E (K), with rather different physical interpretations: (i)
a transport equation and (ii) a renormalization equation.
The transport equations are found as

The equations for 4 are formally identical to those of L.
The operator functions X, g, and '8 ('R), which include
the effects of spatial inhomogenities, are given by (a„
a/ar" a& = a/ap")

0„"Z,0„"8 —0„"Z,0„"8
w~+l = (a„"z,a„'8) —(a„"z,a„"8)
g~-~ = a„.rl, a„"x —a„.n, a~v

g~+l = (a~11,a„x ) —(a~a, a~v),
z~-l = a;=-, a„~ — a;=-, a~~

x~+' = (a„":-,a„'z) —(a.":-,a&a) (36)

i~a(r p)
i17"b (r p)

iA(r, p)

iA(r, p)

= 8,, (p .p + Z) (2m. i) b (p —Z ) Fq(r, p),
= b i, s" (p, s)s" '

(p, s) (27r i)
xb (p' —ll) F,(r, p),

= (2~i) b (p' —=) F~(r, p),
= (2m~) 8 (p

—=) P~(r, p) . (37)

Then, by tracing over color and spin polarizations, and
taking the expectation values (or, in a medium, the en-
semble average) of these Wigner operators, one obtains
the scalar functions

F (r, p)—:E (t, r;p, p = M ) (o. = q, g, y, U)

(38)

Equations (34) and (35) are our general master equa-
tions. The physical significance [19] of the transport
equations (34) and the renormalization equations (35) is
that the former essentially describe the space-time evo-
lution of the Wigner transforms, whereas the renormal-
ization equations describe the "orthogonal" evolution in
momentum space, and express a normalization condition
imposed by unitarity and the renormalization group. In
order to relate these operator equations to physically rel-
evant (observable) quantities, we define the Wigner op-
erators F (r, p) (n = q, g, y, U) in terms of the operators
8, 'V, 4, L and the self-energies Z, II, L, L as

with

(+)—Ip |9

g~ (k2 ——,'a„') b.. —11~..(r, k)] D:,"(r, k)

F.(r p) = (T I~(r p)])
F ( p) = (T ['D( p)])

Fx(r p) = ( &(r p) )

F~(r p) = ( T [&(r p)] )

M = Z(r, p),
M = II(r, p),
M' =:-(r,p),

, M~ = =-(r, p) . (39)

[p —«a„+ =(r, p) b, (r, p) = 1 ——'R (35)

The c-number functions E (r, p) are the quantum-
mechanical analogues of the classical phase-space distri-
butions that measure the number of particles at time t
in a seven-dimensional phase-space element d r d p. Be-
cause of the effects of the self-energies, three-momentum
and energy are generally independent variables, because
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the quanta can be o8' mass shell, i.e., for zero rest masses,
E2 = p2+ M2 g p2, where M2, Eq. (39), represents the
oK-shellness due to the self and mutual interactions of
the quanta (M = 0 for on-shell particles). ln contrast
with the classical propagation of on-shell particles, the
Wigner functions (37) incorporate the quantum "zitter-
bewegung" even in the absence of interactions with other
particles. These spatial Huctuations arise kom the com-
bination p —0„/4 acting on the Wigner operators in
(35), and account for the uncertainty in spatial localiza-
tion of a quantum particle due to its momentum that is
determined by the particle's self-interaction. The self-
consistent solution of the transport and renormalization
equations (34) and (35) therefore corresponds to sum-
ming over all possible quantum paths r in space-time
with Huctuations in energy-momentum p, constrained by
the uncertainty principle [19]. This simultaneous evolu-
tion in r and p of the signer functions E is illustrated
in Fig. 4.

n" (r) = f do p"5' (p, r),

T"'(r) = f do p"p E (r, p),

(40)

One can then calculate, in a Lorentz-invariant manner,
directly from the microscopic densities E, the relevant
macroscopic quantities that are related to observables.
Relativistic transport theory [25] relates physical quan-
tities to phase-space integrals over products of combina-
tions of four-momenta or tensors and the particle distri-
butions. Specifically, using (37), performing the traces
over color and spin indices where necessary, and taking
the ensemble average, one obtains the local space-time-
dependent particle currents n and the corresponding
energy-momentum tensors T~" for the di8'erent particle
species n = q, q, g, y, U, which are given by [24]

C. Macroscopic quantities

The functions I", Eq. (38), contain the microscopic
information that is required for the statistical descrip-
tion of the time evolution of a many-particle system in
complete phase space [24]. Depending on the physical
situation under consideration, one starts &om specified
initial distributions at t = to and follows the time evo-
lution of the phase-space densities I" (r, p) according to
the master equations (34) and (35). At any time t ) to,
E (r, p) reflects the state of the system around r and p.

where dB = p dM d p/(16vr p ), the p are degen-
eracy factors for the internal degrees of freedom (color,
spin, etc.), M measures the amount by which a particle
o. is ofF mass shell as a result of the self-energy terms
in (34), (35), and p = E = +gp2 + M2. These macro-
scopic quantities can be written in Lorentz-invariant form
by introducing for each species o. the associated matter
flow velocity u& (r), defined as a unit-norin timelike vector
at each space-time point (u~u~) = 1. A natural choice
is, e.g. , u" = n"/gn„n . By contracting the quantities
(40) with the local flow velocities u", one can now ob-
tain corresponding invariant scalars of particle density,
pressure, and energy density, for each particle species o.
individually. For instance, in the absence of viscosity,

F (&, v)
n r =n„r u" r,
P (r) = ——,

' T„„(r)[ g" —u" (r)u (r)], (41)

time
Because of the scalar character of these quantities, they
provide local, Lorentz-invariant measures of the many-
particle system. It is left to convenience in which Lorentz
kame the calculation is performed, but in general it is
considerably simplified in the local rest frame of the mat-
ter where u~ = (1,0). The total number and the free en-
ergy of the particles at a given time can then be obtained
by integrating over position space.

F(&p p)

FIG. 4. Illustration of the simultaneous evolution in
space-time r and, "orthogonal" to it, in energy-momentum
p of the Wigner functions I' (r, p), according to the trans-
port and renormalization equations (34) and (35). The self-
consistent solution of these equations corresponds to summing
over all possible quantum paths r, accounting for Quctuations
in p, under the constraint of the uncertainty principle.

IV. PARTON-HADRON CONVERSIGN
OF FRAGMENTING JET SYSTEMS

The preceding kinetic formulation allows us now to
apply the conceptual ideas of the efFective field theory of
Sec. II to the dynamics of parton-hadron conversion in
rather general situations. In accord with the formalism
of Sec. II, the parton-hadron transition can be visualized
as the conversion of high-momentum colored quanta of
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A. Ceneral concept

As stressed in Sec. II, the phenomenological color-
singlet function y represents the efFect of the long-range

partons hadrons

!
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FIG. 5. Schematics of the diferent stages of the process
e+e ~ hadrons. The initial qq pair with large invariant mass
q initiates a shower which can be followed perturbatively until
L L~. At this point the conversion into clusters sets in,
which is completed around L = Lo and followed by the decay
of clusters into hadron states.

the fundamental quark and gluon fields into color-neutral
composite states that correspond to local excitations of
the condensate Gelds y and U embedded in the physical
vacuum.

Ultimately, we would like to address the dynamics
of the (nonequilibrium) @CD phase transition in finite-
temperature systems. Here, however, we will as a
first application study a much simpler system, namely,
the &agmentation of a qq jet system with its emitted
bremsstrahlung gluons, and describe the evolution of
the system as it converts &om the parton phase to the
hadronic phase (illustrated in Fig. 5). A timelike virtual
photon in an e+e annihilation event with large invariant
mass Q )) AQCD (AQCD —200—400 MeV), corresponding
to a very small initial size L « L, (L, = 0.5 —1 fin), is
assumed to produce a qq pair which initiates a cascade
of sequential gluon emissions. The early stage is char-
acterized by emission of "hot" gluons far o8' mass shell
in the perturbative vacuum. Subsequent gluon branch-
ings yield "cooler" gluons with successively smaller vir-
tualities, until their mutual separation approaches I
L~. As is evident from Fig. 2, this point character-
izes the beginning of the transition, because the partons
can now tunnel through the developing potential barrier
and form color-singlet composite states, which represent
the particle excitations of the scalar long-range y field.
These "prehadronic" excitations must then convert into
physical hadronic states —either excited gluonic states,
or, via coupling to the U Geld, quark-antiquark me-
son excitations —and subsequently decay into low-mass
hadrons.

order of the nonperturbative vacuum, so that the for-
mation of a color-neutral parton cluster, or bubble, can
be interpreted as a domain structure immersed in the
medium of the nonperturbative vacuum. In quantum
field theory such stable Geld configurations arise as clas-
sical soliton solutions of the equations of motion [9, 26].
On the other hand, it is well known that @CD exhibits
the so-called "preconfinement" property [27] already on
the perturbative level, which is the tendency of the gluons
and quarks produced in parton cascades to arrange them-
selves in color-singlet clusters with limited extension in
phase space. It is therefore natural to suppose that these
clusters, or bubbles, are the basic "prehadronic" units
out of which hadrons arise nonperturbatively.

Thus, the kinetic evolution of the system develops in
three stages: parton multiplication, parton-cluster con-
version, and cluster decay into hadrons. It is clear that
in this approach the conversion process is a local, micro-
scopic mechansim, that proceeds earlier or later at dif-
ferent points in space, depending on the local density of
partons and their nearest-neighbor separation L, as de-
fined by Eq. (3). Thus, in order to trace the full dynam-
ics, it is necessary to follow the evolution of the particle
distributions in real time using the kinetic &amework of
Sec. III. In accord with the above picture we will now
proceed in several steps, starting &om the master equa-
tions (34) and (35): (i) employ a separation of a coherent
(mean) field part and a contribution from quantum exci-
tations for the composite fields y and U, (ii) fix a specific,
ghost-kee gauge for the gluon Gelds that is most conve-
nient for our purposes, (iii) treat the evolution of the
high-momentum quarks and gluons perturbatively in the
presence of the coherent field y.

(i) According to our interpretation of oscillations about
the minimum of the potential at yo, Uo as physical exci-
tations of the coherent fields y and U, we separate in a
standard way [28] the classical field configuration at the
minimum of V~ ~, in Fig. 2, Rom the quantum fluctu-
ations around this minimum. We represent y = y+ y
and U = U + U, where y, U are c-number functions
(the mean field parts) and y, U denote quantum oper-
ators (describing the excitations). The physics behind
this separation is that the coupling of y to @, @, A~,
as well as to U, will make the composite fields y and U
dynamical variables, so that the fluctuations around the
mean fields y and U will propagate and form collective
excitations. Therefore the system is characterized (aside
from the elementary fields g, @, A~) by the mean fields,
as well as by the collective excitations with their own
energy spectrum and distribution. With this prescrip-
tion we can treat the local interaction of the partonic
fluctuations with the coherent Geld analogously to the
familiar problem of quantum fields (g, @,A~) interacting
with a classical "external" field (g), which converts the
partons to color-singlet clusters or bubbles corresponding
to excitations in the coherent field (y). Specifically, in
our approach the bubbles represent nontopological soli-
ton configurations which are stable, classical solutions of
the equations of motions, as have been studied, for in-
stance, by Friedberg and Lee [9] and Coleman [26]. We
do not include here the possible additional interactions
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between partons and bubbles, or among bubbles them-
selves.

(ii) It is convenient to work in a physical (axial) gauge
[29, 30] for the gluon fields, generically given by choosing
the gauge function ( (A) in (5) as

( (A) = —,Op(n A )cl"(n. A ), (42) r yyy~ool &
A

P
&000~«0& +

P
f000~0&001

x (x) -1
where o. is the gauge parameter and n" is a constant
vector with n g 0. In particular, we will set a = 1
which is known as the planar gauge. In contrast to co-
variant gauges where ( (A) = —1/(2n) (cl .A )2, the class
of gauges (42) is well known to have a number of advan-
tages. It is ghost-free, i.e., the ghost field contribution in
(19) decouples and drops out. Also, the so-called Gribov
ambiguity is not present in this gauge. Another feature
of (42) is that the gluon propagator involves only the two
physical transverse polarizations, so that Eqs. (34) and
(35) simplify considerably [19]. Furthermore, it allows
for a rigorous resummation of the perturbative series at
high energies in terms of the leading logarithmic contri-
butions and consequently leads to a simple probabilistic
description of the perturbative parton evolution within
the (modified) leading log approximation (MLLA) [31,
32] in QCD.

(iii) We will evaluate iteratively the two-point Green
functions 8 and 'V of quarks and gluons, respectively, in
the one-loop approximation in the &amework of "jet cal-
culus" [33], using the MLLA techniques of coherent par-
ton evolution including soft-gluon interference [31]. The
associated quark and gluon self-energies Z and II include
both the one-loop quark-gluon self-interaction through
real and virtual emission and absorption, and the eKec-
tive interaction with the confining background field y
[8]. Similarly, the self-energy " of the y field embod-
ies the self-interaction and the coupling to the U field,
as contained in the effective potential (ll), as well as
contributions &om quark and gluon recombination to y
excitations. Correspondingly, the function = of the U
field incorporates its self interaction and the interaction
with the y field.

B. The kinetic equations for real-time evolution
in phase space

(iv) eoeeee+ososoo
A

qqg

y.

(II) isoHi pygmy i

GXq
gq

qg

Q XX

1/2
m„=( 2)

-------X --.-- ~

(
g2y )1/2
BU2

s"~ = (u-, py), (43)

and

As a consequence of the prescriptions (i)—(iii), and of
exploiting in the present e+e ~ hadrons case the special
property of translation invariance of the parton evolution
in the perturbative vacuum, one finds after a lengthy
calculation [19] that the transport equations (34) and
the renormalization equations (35) can be combined in a
single set of coupled integro-di8'erential equations for the
phase-space densities F (r, p) defined by (37) and (38).
Introducing the usual light-cone variables

Pmmw+Q

Pg

a e «Q g

X

P
0 ~ POOD P+ oeoee

E, h
U

(b)

FIG. 6. Diagrammatic representation of the kinetic equa-
tions (49). (a) The operator K describes free propagation
plus the efFect of the mean field. (b) The integral operators
A, B,C, . . ., include the squared amplitudes for the various in-
teraction processes among the difFerent particle species, which
change of the particle distributions according to the balance
of gain (+) and loss (—) terms.
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.'+I„' S' = J~S", (44)

where Q is the hard scale of the initial qq pair created by
the photon, and r = rl' = (t, r), we write

F—:F (r, p) = F (t, r;z, p~, p ) . (45)

The kinetic equations which one obtains &om the kinetic
equations (34) and (35) can now be summarized com-
pactly as (see Fig. 6)

—) B~q FgFq+q,
f

f f

KEU ——+O' F~ —E'U EU,

(48)

(49)

K:F—: p„&9„" + (M 0„"M )0" F (5O)

I

where we have abbreviated Fq+q = Fq+ Fq, which in the
present case is equal to 2Fq, and the P& means summing
over quark flavors f = u, d, s, . . . . The left-hand sides of
these equations describe the propagation of the particles
in the presence of the mean field, whereas the terxns on
the right-hand sides represent the effects of particle cre-
ation, annihilation, and recombination. The operator K
on the left-hand sides is given by

with the 6rst term describing the &ee propagation and
the second term reQecting the effect of the mean field
[Fig. 6(a)]. The functions M are the mean-field parts
of the self-energies M defined in (39). On the right-
hand side the quantities I~,"s", " (where I = A, B, . . .)
represent integral operators that incorporate the effects
of the self-energies in terms of the relevant amplitudes
for the various processes a1, a2, . . . —+ b1, b2, . . ., and that
act on the phase-space densities to their right [Fig. 6(b)].
These coupled equations reHect a probabilistic interpre-
tation of the evolution in terms of successive branching
and recombination processes, in which the changes of the
particle distributions on the left-hand sides are governed
by the balance of gain (+) and loss (—) terms on the
right-hand sides. The different terms on the right-hand
sides of Eqs. (46)—(49), the contributions to the gain and
loss of particles, fall into three categories: (a) parton mul-
tiplication through emission processes q —+ qg, g ~ gg,
and g ~ qq; (b) parton cluster formation through recom-
binations qq + yy, qg -+ qy, gg m gy; (c) hadronic clus-
ter decay either through direct conversion of the formed
scalar g excitations into hadrons h through y m 6, or
via coupling to the pseudoscalar states y —+ U, and the
subsequent decay into hadrons, U ~ h.

In the following subsections we explain these contribu-
tions in detail.

C. Parton multiplication

The integral operators A in the quark and gluon evo-
lution equations (46) and (47) represent the changes of
the parton distributions in phase space due to the per-
turbative cascade evolution. Explicitly,

Aqg E
q

Agg Eg g

1
= A„dz
= «„j —'*

1
= A„dz

0

1 X 2 2 2 2 2
Eq r» zp~& zp Fq(r& z& p~& p ) pq+qg (z& e) aq(z& p )&z z

X 2 2 2
Eg F) ) ZP~ ) ZP Pg~qq Z) 6' Gg Z) P )z

1 X 2 2 1 2 2 2—Eg r; —,zp&, zp ——F~(r;x, p&, p ) pg gg (z, e) ag(z, p ),z z 2
(51)

1

A Fs ——Ax ny(p') Fg(r; x p~ p&') &dzpg~qq (z& e) ag(z, p'),
0

1
gq GZ X 2

Aq Fq+q: Ax Fq+q r» zp~ & zp pq~gq (z& E) aq(z& p )
0 Z z

Here Ax—:Ax[y(r)] = 1 —(y/yo)4+ 0[(g/ys)s], and the
function a(z, p ) is given by

-, ,(.,p'):= —,.T, ,(p') .[(1—.)p'],

with a "life-time" factor Tq g(p ) that expresses the prob-
ability for a parton of virtuality p to decay (branch)
within a time interval t in the laboratory frame,

n„(k ) [33 — nX(k')] Kk'+ o)
(54)

and ny(k ) is the effective number of quark flavors at k,

where r(p2) oc F/p (explicit expressions can be found
in Ref. [34]). Furthermore, a, is the one-loop @CD cou-
pling)

Tqg(p ) = 1 —exp
t

&q,g(p')
(53)

Ny

ng(k ):= ) 1—
f

4m' ( 4m' )
l

8 1— (55)
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In (54) we have assuined the correspondence I, A&cD
to the intrinsic perturbative QCD scale, and kp is a pa-
rameter that prevents a divergence when A: —+ L, , and
defines a maximum value n, (0). We will determine kp in
Sec. V &om the total parton multiplicity. The functions
p(z, e) are analogous to the standard branching kernels in
the MLLA [29]. Note that the four-gluon vertex does not
contribute in the MLLA in the gauge (42), because it is
kinematically suppressed. As a consequence, the effect of
the couplings KL, (y) and pl, (y), Eqs. (16) and (17), on
the parton evolution reduces to two-parton recombina-
tions into color-singlet clusters —the terms proportional
to B,C which will be given below.

The branching kernels p ~l„(z) are the familiar energy
distributions for the branching a -+ bc with z = xl, /x
and 1 —z = x, /x the energy fractions of daughter par-
tons:

f 1+z'
qg(z, e) = CF (1 —z+ e)

( I + (1 —z)'
pq~gq(z~') =CF

l )z

g~gg(z e) (1 —z+
~,-„-(, ) = —,

' ["+(1-.)'1
1 —z+

(56)

where CF = (N —1)/(2N, ) = 4/3, C~ ——N, = 3. In
the denominator of pq~qg and pg~~» there appears the
function

p&2~2 p2

4(p n)2
(57)

D. Parton cluster (bubble) formation

The operators B,C in Eqs. (46)—(48) represent the
changes of the phase-space densities due to recombi-

where p (p') is the momentum of the mother (daugh-
ter) parton and p~ the relative transverse momentum
of the daughter partons with respect to the mother. It
arises here as a consequence of the renormalization equa-
tions (35) which determine spatial uncertainty associated
with the off-shellness of the partons. It effectively cuts
off small-angle gluon emission when the emitted gluon is
soft, i.e. , when zg = 1 —z ~ 0, by modifying the free
gluon propagator oc 1/zg to the form 1/(zg + e) when

p~/p, 1, that is, in branching processes with large
space-time uncertainty. This ensures that the two daugh-
ter partons can be resolved as individual quanta only if
they are separated sufficiently by Ar~ oc 1/p~ in position
space, in accord with the uncertainty principle. Note that
e can be neglected in the terms oc 1/(zg + ~) in (56) for
energetic gluon emission (zg ~ 1), but is essential in the
soft regime (zg ~ 0). The effect of e has been shown [29,
35] to result in a natural regularization of the infrared-
divergent behavior of the branching kernels (56), due to
destructive gluon interference which becomes complete
in the limit z~ ~ 0.

nations of two partons at r and r' to color neutral
clusters, or bubbles that arise as nontrivial structures
in the vacuum because of the confinement mechanism.
Their formation is determined, in analogy to the finite-
temperature QCD phase transition [14], by the proba-
bility for tunneling through the potential barrier of V
between y = 0 and y = y in Fig. 2, which separates
perturbative and nonperturbative vacua. The associated
rate of bubble formation around L = L is generically
given by an exponential probability distribution [36, 37],

vr(L) = Irp(L) ( 1 —exp[ —AE L]), (58)

LF =E (+ E,„,g
= —R (L) AP(L) + 4~ R (L) o(L), .(59)

where R(L) is the radius of the bubble depending on the
parton separation. The first term is the volume energy
determined by the difference of pressure in the perturba-
tive and the nonperturbative vacuum,

»(L) = Pqg(L) —Px(L) (60)

The second term in (59) is the surface energy with the
surface tension estimated to be

QC QC

o(L) = d.y i/2V(L) = 2 dy +2V(L),
0 +max

(61)

where y corresponds to the local minimum of V at L
and y „ is the point of the local maximum of 7 that
separates unconfined and confined domains, as defined
in Fig. 2.

A parton bubble is stable if BDI"/DR = 0, which leads
to the condition for the stationary bubble radius:

R, —:R(L, )
L=L

(62)

When inserted in (59), this gives, for (58),

4~
7r(L) = harp(L)

~

1 —exp ——R o', L (63)

with o, = o(L,). In accord with our definition (3) we
interpret the space-time scale L as the characteristic in-
terparton separation, that is, we define it in terms of the
distance measure L;~ between two partons, labeled with
indices a and 6,

wllcre 7lp = coilst x ln(1 —u)0(1 —2u) + 8(2u —1), with
u = EEL, modifies the small-L behavior for which the
exponential form is not appropriate. Here LE is the
change in the &ee energy of the system that is associated
with the conversion &om partons to clusters. In our case
(for baryon-&ee matter in general),
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ab bi@ Pab = Pa Tb )

and identify L with the the minimum distance L b for a
certain parton a to its next neighbor b:

L(r) = I s =—ming(b, i, . . . , A g, . . . , A „) . (65)

Other measures are possible, e.g. , A b = [1/x &+ 1/y s+
1/z & + 1/(At) ] ~, but we find that the particular
choice of 4 b is not crucial as long it provides a reason-
able distance measure. We choose (64), because it has
the advantage that it is manifestly I orentz-invariant and
has a simple interpretation as the two partons' spatial
separation in their center-of-mass frame.

We assume that the dominant contribution to bub-
ble formation arises &om two-parton fusion and ignore

~(" "') = ~(~) = ~ga xx(~) = ~me xx(~)

= ~Be xe(~) (66)

where I is given in terms of r and r' by (65). The various
B terms in (46) and (47) can then be expressed generi-
cally as

recombinations of three or more partons. This is rea-
sonable, unless the local parton density becomes so large
that also the latter processes have a significant probabil-
ity to occur. We take the same probability distributio+
7r(1) for the various types of configurations, since it de-
pends only on the "color- and fIavor-blind" variable L;
i.e., we set

B ~ E Eb: I' (P;X,P g~l ) f d T K(PT) f d p , Pb(F;. pl~,Tgl ), (67)

where a, b = q, q, g and c = y, q, and d4p' = dp'2dp&2dz'/x'. Similarly the C terms in (48) are given by

n I I i2 12 v. Il 112 112 4 ~ p'+p"~
) (68)

E. Hadronic cluster decay

The ensemble of clusters determined by the coupled
equations (46)—(48) yields a continuous mass spectruin
of color-singlet excitations with difI'erent flavor contents
corresponding to the types of recombined partons. These
states must then decay into physical hadronic states with
a discrete mass spectrum. The invariant mass distri-
bution of the formed clusters may be interpreted as a
"smeared out" version of the spectrum of primordial res-
onances formed in the early stages of the confinement
mechanism [31]. It therefore seems reasonable to treat
the &agmentation of these central clusters as a kind of
averaged resonance decay which, as implied by our lo-
cality assumption, must be determined entirely by their
invariant masses, Qavors, and total angular momenta.
Each cluster in the resonance spectrum may either rep-
resent a single hadron resonance that converts directly
into a physical hadron with a definite mass, or else &ag-
ments through a two-body decay into a pair of 6nal-state
hadrons. From the particle spectra obtained in e+e
annihilation experiments it appears that quasi-two-body
final states are universally dominant, so that the latter
possibility seems favored if kinematically allowed.

We adopt the cluster fragmentation scheme of Refs.
[38, 39], however with some modification concerning
heavy clusters. We assume that each cluster C = y, U

can decay by either one of the following mechanisms: (i)
If a cluster C is too light to decay into two hadrons, it is
taken to represent the lightest single hadron (meson) h,
corresponding to its partonic constituents, C + h, with
its mass shifted to the appropriate value by adjusting its
energy through exchange with a neighboring cluster; (ii)
if, however, a cluster is massive enough to decay, it de-
cays isotropically in its rest frame into a pair of hadrons
(mesons or baryons), C -+ hi+ h2 according to the decay
probability specified below.

Occasionally it occurs that a cluster comes out very
heavy, in which case isotropic two-body decay is not a
reasonable mechanism any more. In this case we impose
the constraint that, if a cluster is heavier than a critical
threshold M „.& ——4 GeV, then it is rejected and the two
recombining partons of that potential cluster propagate
on as individual quanta, and continue to participate in
the parton cascade process, either until they have de-
creased their virtuality suKciently, or until they recom-
bine with a lower-mass partner.

To implement this scheme we observe from Eqs. (48)
and (49) that the cluster-hadron transformation can pro-
ceed through the scalar channel g —+ h, or via the pseu-
doscalar channel y —+ U ~ hqh2, depending on the cor-
responding density of states with masses below the de-
caying cluster. We assume a Hagedorn [40] density of
states
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( m)
ph(m) = c m exp

~

——
~To)

(69)
Fc—+h h (mc ml m2)

where c, a are constants and To is the Hagedorn tem-
perature with the typical values e = Sm, a = 3, and
To ——m . The decay probability of a cluster with
mass mc = ~p2 to decay into a hadron state of mass

mh ——gp' is then given by

P (mc, mi + m2) P, (j i, j2) Ph(mc, mi, m2),

(73)

where ji 2 (mi 2) are the angular momenta (masses) of
the two hadrons hq 2. The factor

Here

(70)

1 c=+S'
Fc~h(p, p') = Tc(p ) dm ph(m) .

Nc p2

P (mc, mi + m2)

', +
)

xg(mC —mi —m2)

(mi + m2)2
M2

(74)

Nc(p ) = dm ph(m),
mar

and in analogy to (53), Tc(p ) is a "lifetime" factor giving
the probability that a cluster of mass mc ——p decays
within a time interval t in the laboratory frame,

Tc(p ) = 1 —exp
t

. «(p') (72)

where in this case we simply take 7c(p ) = Fc/p
p/mc from the uncertainty principle. In order to find the
value for the decay probability (70) for a given cluster of
mass mc, we sum over the possible decays for this cluster
according to the particle data tables. The probability for
a specific two-body decay mode is taken to be a product
of a flavor, a spin, and a kinematical factor [38],

P, (ji, j2) = (2ji + 1) (2j2 + 1) (75)

takes into account the spin degeneracy with the allowed
spins j~ and j2 of the two hadrons. The kinematic factor

QA(mC, m„m2)
+A,.~mC, ml

&
f02 2

mpC
(76)

is the two-body phase-space factor, where A(a, b, c)
a2 + b + c2 —2 (ah + ac + bc)

Thus, with the decay probability Fc~h of (70) eval-
uated in this fashion, the terms involving the D and E
operators in the kinetic equations (48) and (49) can be
expressed as

is the two-body phase-space suppression function for the
decay. The spin factor

D„P =P„(r;T,p, p ) f dp' P (p, p' ), Pl„P„=P~(r;z, , )pfpdp' P ( , p)p
I

D / — dp dp P' ~ p p I' ~ p p E g~ —P~ ~ p p dp I'~ ~ p p (77)

F. Method of solution by Monte Carlo simulation

We can now solve the set of evolution Eqs. (46)—(49) by
means of a real-time simulation in full phase space using
the computational methods of Ref. [38]. One starts &om
an initial phase-space density of partons, which in the
case of a jet-initiating qq pair with invariant mass Q is

Fq+q(t = 0, r; a, p~, p )

= b'(-) &( -Q') b(--1) &(p') &(p'-Q') (78)

where we choose the qq center-of-mass kame as our
reference frame, and we sum over all quark flavors f
weighted with a factor my = e&/ny(Q ) 1 —4m&/Q 8

(Q2 —4m&), that accounts for the electromagnetic charge
and mass threshold of the initial qq pair produced by the
photon (or Z ).

The parton shower development is then followed in a
cascade simulation (for details see [24, 38]) in the center-
of-mass frame: The system of particles is evolved in dis-
crete time steps, here taken as Lt = 0.01 fm, in coarse-
grained seven-dimensional phase space with cells AO =
4 rL pLM . The partons propagate along classical
trajectories until they interact, i.e., decay (branching)
or recombine (cluster formation). Similarly, the formed
clusters travel along straight lines until they decay into
hadrons. The corresponding probabilities and time scales
of interactions are sampled stochastically &om the rele-
vant probability distributions according to Secs. IVC-
IVE. At any time t & 0 we can extract the phase-space
densities (38), F (t, r, p, p2) = dN (t)/dsr d4p of the par-
ticle species o. = q, g, y, U, and with these phase-space
profiles we can then calculate, using formulas (40) and
(41), the associated local pressure P(r), particle density
n(r), and energy density e(r) for each species individ-
ually, these being the quantities that characterize the
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macroscopic state of the system at t and r.
With this concept we can trace the space-time evo-

lution of the parton-hadron conversion process self-
consistently: at each time step, any "hot" off-shell parton
is allowed to decay into "cooler" partons, with a probabil-
ity determined by its virtuality and lifetime. Also in each
step, every parton and its nearest spatial neighbor are
considered as defining a fictious space-time bubble with
invariant radius L, as defined by (65). By comparing the
local pressure of partons Pqg(t, r, L) with the pressure
Pz(t, r, L) that such a prehadronic bubble would create
instead, we obtain the associated value of the conversion
probability m (I) which determines the cluster (bubble)
formation rate explained in Sec. IVE. If the partons
do convert into a cluster, they disappear from a phase-
space cell, and instead the composite cluster appears at
the same space-time point, from which it propagates on.
Otherwise the partons continue in their shower develop-
ment. The final decay of each formed cluster into hadrons
is simulated analogously, except that it does not require
the comparison of pressures, but is determined by kine-
matics and the available phase space. This cascade evo-
lution is followed until all partons have converted, and
all clusters have decayed into final-state hadrons.

As an illustrative example we show in Fig. 7 the time
evolution of the particle density profiles of partons [Fig.
7(a)] and clusters [Fig. 7(b)] for a jet system with in-
variant mass Q = 100 GeV. It is evident how the system
evolves in position space with respect to the center of
mass of the two inital partons as a polar wave front (the

pictures are symmetric in r~ = r2 + r2), with the par-

tons gradually converting to clusters. It is interesting
that this local excitation of the vacuum due to the injec-
tion of the highly virtual dijet system, and the subsequent
evolution, resemble very much the situation of a stone
plunged into water, with a well-shaped "shock front" ex-
panding isotropically in the center-of-mass frame.

V. PHENOMENOLOGY

In this section we study the observable implications of
our approach to parton-hadron conversion, and investi-
gate its consistency with standard particle physics phe-
nomenology.

A. Determination of the potential V(y, U)

We first need to specify the parameters of our ap-
proach. Recall that this phenomenological input is con-
tained in the effective long-range potential V(y, U), Eq.
(ll), which combines with the dynamical contribution
bV(L, y) to the I-dependent potential V(L), Eq. (21).
As L varies, P changes its shape, which affects the dy-
namical evolution of the system, and the latter in turn
determines the further change of P. Hence, the details of
the dynamics are governed by the choice of parameters
in V and thus V. The crucial parameters are the bag
constant B which defines the vacuum pressure V(0) in
the short-distance limit L —+ 0, and yo, the value of the

condensate of y in the long-distance regime. As indicated
in Fig. 2, as L increases, the changing form of V(L) is
characterized by three distinct length scales: I = Lz, the
point when partons begin to convert, L = L, when the
pressures of partons and prehadronic clusters equal each
other, and L = Lo, when the transition is completed.

We will fix B and yo, which have well-defined physical
interpretations, and then determine L~, L„and Lo. Al-
though the values of B and yo are not precisely known,
there is agreement of various phenomenological determi-
nations about their ranges: one expects [14] B ~4 = 150—
250 MeV and yo ——50—200 MeV. In the following we
adopt two representative parameter combinations:

B = 230MeV ) &0 = 200 MeV,
B = 180 MeV, yo ——100 MeV .

Then, with the potential P specified, we can determine
the values of Lz, L, Lo &om the Monte Carlo simulation
of the evolution of the system as the scale I changes due
to the particles diffusion in phase space. The most in-
teresting quantity is L, the point which is characterized
by the equality of partonic and hadronic pressures. As
explained in Sec. IVF, we can compute the correspond-
ing pressures Pqg and P~ from the phase-space densities
of partons and clusters, respectively. In analogy to Ref.
[14] we represent (on dimensional grounds)

Pqg(r L) = aqg(r L) L — B
P~(r, L) = a~(r, L) L — V(L), (80)

and, because V(y, I)~L, 1. = V(y„L,) = 0 (cf. Fig. 2)
we have

L
a (r, L,) —a (r, I,)

B

I 0.6 fm for B ~ = 230 MeV,
0.8 fm for B ~ = 180 MeV. (82)

The dimensionless functions aqg and a~ are obtained
from the numerical simulation and are shown in Fig.
8 as a function of time for the above two choices of
B and yo in the cases of qq and gg jet evolution with
Q = 10 and 100 GeV. Plotted are the kinetic pressures
P(t, L):= a(t, L)L (where t QL + z ) along the
"shock front" of the jet profile which is seen in the pre-
vious Fig. 7. From Figs. 8(a) and 8(b) one observes the
following. (i) The pressure evolution obviously depends
on the type of the two jet-initiating partons: it decreases
more slowly for qq pairs of difFerent flavors than for a
gg pair, because gluons have a larger emission rate and
therefore the two leading gluons evaporate their initial
energy faster. (ii) The crossover point between the pres-
sures Pqg and Pz is rather insensitive to the choice of
L,. (iii) The crossover is shifted away from t = 0 with
increased jet energy Q. (iv) At L, the partonic pressure
Pqg still exceeds Pz, i.e., aqg(I ) ) ax(L ), consistent
with (81). From this analysis we find using the deter-
mining condition (81),
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Directly associated with the scale L is the parton-
cluster conversion probability (63), which is determined
by the width of the potential wall between the two phases.
It enters the kinetic equations via (67) and determines
locally the time scale of the parton-to-cluster transition
by the magnitude of the surface tension o as given by
(61). We find

40 MeV for L, = 0.6 fm (Bi~4 = 230 MeV),
48 MeV for L, = 0.8 fm (Bi~ = 180 MeV),

(83)

which by virtue of (63) fixes the cluster-formation proba-
bility m (L). It is noteworthy that the above small values

of the surface tension 0 are in agreement with lattice
@CD simulations [41] and correspond to a weakly first-
order transition at 6nite temperature, which is consis-
tent with astrophysical constraints [42) on inhomogeni-
ties. This finding implies a rather rapid conversion of
partons into color-singlet clusters (prehadrons), as is also
evident &om Fig. 8. This means that parton-hadron con-
version is not dependent on the details of the interpola-
tion functions Kg(y) and pl. (y), as already advertised in
Sec. II C, and has interesting consequences for the cluster
size and mass distribution, as we will discuss below.

The value of L ~, below which size only the perturbative
vacuum of the pure parton phase can exist, is given by
the point of inflection of the efFective potential V, when
the local minimum at (y) g 0 ceases to exist (cf. Fig.
2). It turns out to be rather close to L„

0.4 —0.5 fm for L, = 0.6 fm (B ~ = 230 MeV),
'0.6 —0.7 fm for L, = 0.8 fm (B ~ = 180 MeV),

(84)

which is a consequence of the small values (83) for the surface tension o.„and indicates that the transition occurs
very abruptly. Finally, we Gnd that the scale Lo, when the parton-cluster conversion is complete and no partons are
left over, depends not only on L, but also on the initial jet energy Q. It gives an estimate for the time scale ro oc Lo
of the global conversion process, and comes out rather long: namely, for I, = 0.6 fm we get 7.o -- 8.5 (21) fm for
Q = 10 (100) GeV, while for L, = 0.8 fm the time scale is vo = 10 (26) fm for Q = 10 (100) GeV.

Immediate consequences of the values for B and yo in (79) are the "critical temperature" for the phase transition
in finite-temperature @CD,

( 9BI 160 MeV for L, = 0.6 fm (B ~4 = 230 MeV),
( 4vr2p 125 MeV for L, = 0.8 fm (B ~4 = 180 MeV), (85)

the characterist c mass scale of the lightest scalar glueball, given by [14]

& &(g&0) V& 1.05 GeV for L, = 0.6 fm,
1.30 GeV for L = 0.8 fm,

X—Xo
(86)

and, the estimate for the value of the gluon condensate
(23),

generated during the time evolution of the system in the
center-of-mass of the initial jet pair:

1.25 GeVfm for I = 0.6 fm,
S 0.50 GeVfm for I = 0.8 fm.

(87)

p~ (t) = f d r f dxdp dp~ y~ F (t r T, y~, gP),

(88)
The parameter values obtained above are summarized in
Table I. Both choices (79) of B ~4 and yo give reason-
able results that are in the range of commonly accepted
phenomenology.

B. Cluster distributions and hadron spectra

Using the parametrizations of Table I we have inves-
tigated more quantitatively a number of typical features
of the jet evolution, which we discuss now.

In Fig. 9 we show the total transverse momentum

where o. labels "partons" or "clusters, " and p~
p2 + p2. As before, we compare the cases Q = 10 (100)

GeV and L, = 0.6 (0.8) fm. At t = 0 we start
with pz (0) = 0, because the two initial partons recede
back-to-back along the z axis. Then, with progressing
time, the jet evolution can roughly be divided into four
stages: (i) a very short hard stage ( & 0.02 fm), charac
terized by an explosive production of partons and conse-
quently transverse moinentum; (ii) a longer shower stage
( 0.02 —0.3 fm) that essentially just causes diffusion in
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however very significantly, because only a small &action
(typically less than 5'%%uo) of the clusters are affected. At
the same time, the mass distribution loses its high-mass
tail and falls o8' considerably above 3 GeV, and the aver-
age cluster mass comes down substantially to (M, i) = 0.8
GeV.

The most remarkable result of Figs. 10 and 11, how-
ever, is that the shapes of both the cluster size and cluster
mass distribution are essentially independent of the jet
energy, as well as of the initial two-jet configuration, and
therefore appear to be universal.

The decay of the spectrum of formed clusters into
hadrons, simulated according to Sec. IVE, then yields
the average particle multiplicities of final-state hadrons.
It is interesting to look at the relation between parton
and hadron multiplicities. The feature evident in Figs.
10(b) and 11(b), namely, that the mass spectrum of color-
singlet clusters is independent of the total jet energy, is in
agreement with analytical predictions [31]. This implies
that parton and hadron multiplicities should be propor-
tional to each other at high energies, which is known
as local parton hadron d-uality [32]. Figure 12 displays
our results for the total gluon and quark multiplcities
(nqs) = (ng) + g&(nq + nq), as well as the ratios of
charged hadrons to partons (n, i, )/(n&g), and of clusters
to partons, (n, i)/(nqs), as a function of jet energy Q.
In Fig. 12(a) the calculated rise of (nqg) is shown for
the two choices of L . The smaller value of L, gives
a larger multiplicity because we identified I with the
scale Aq&D in n„Eq. (54). From Fig. 12(b) one reads

A
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FIG. 12. (a) Total gluon and quark multiplicities (nqq) =
(nq) + g (nq + nq), for L, = 0.6 (0.8) fm as a function of
energy Q. (b) The corresponding ratios of charged hadrons to
partons (n h)/(nqq), and of clusters to partons, (n,~)/(nqq).

off, however, that the average number of clusters per par-
ton is independent of L, and of energy Q. As a con-
sequence, the number of charged hadrons per parton is
larger for larger L„because at any fixed Q and due to
four-momentum conservation, fewer partons yield more
massive clusters which in turn decay in a larger num-
ber of low-mass hadrons. Most important, one sees that
the ratio (n,h)/(nqg) is only weakly energy dependent
for Q & 30 GeV, in accord with the hypothesis of local
parton-hadron duality: it rises over this range by less
than 10% and appears to saturate asymptotically, ap-
proaching a constant of = 1.6 (1.7) for L, = 0.6 (0.8)
fm.

The resulting average multiplicity of charged hadrons
as it rises with Q is shown in Fig. 13(a) together with
experimental data [45, 46]. In order to obtain the correct
overall normalization, we fitted the in&ared regulator ko
entering n„Eq. (54), to give the ineasured total charged
multiplicity at Q = 91 GeV for L, = 0.8 fm. The re-
quired value is kp = 0.5 GeV which implies a, (0) = 0.8.
With this adjustinent we then obtain in Fig. 13(b) the
momentum spectra of charged hadrons with respect to
the variable ln(1/x), where x = 2E/Q is the particle
energy normalized to the total energy Q. The spectra
clearly exhibit the well-known "humpback plateau" [32].
The good agreement of the simulation with experimental
spectra is another indicator of the aforementioned local
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FIG. 13. (a) Calculated average charged multiplicity ver-
sus total energy Q in e+e annihilation events, in compari-
son with experimental data [45]. (b) Momentum spectra of
charged hadrons with respect to the variable ln(1/x), where
x = 2R/Q, at Q = 34 GeV and Q = 91 GeV, confronted with
distributions measured at the SLAC e+e storage ring PEP,
DESY e+e collider PETRA, and CERN e+e collider LEP
[46].
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C. The Bose-Einstein effect

From Figs. 10 and 11 we can conclude that the dis-
tribution of formed clusters clearly resembles the picture
of preconPnement [27], which is the tendency of partons
produced during the cascade evolution to arrange them-
selves in color-singlet clusters with limited extension in
both position and momentum space. Since the clusters
are the basic units within which the Anal-state hadrons
arise, the ensemble of clusters in phase space, as it builds
up with time, can be interpreted as a particle emission
source with a space-time distribution that is determined
by the preceding parton evolution. This notion allows
us to directly relate the dynamics of cluster formation
to the well-known Bose-Einstein effect [48], which cor-

TABLE II. e+e m hadrons at Q = 34 GeV: Average
multiplicities of partons (n~~) = (n~) + P (n~ + n~), of clus-
ters (n, ~), and of charged hadrons (n, i, ), plus the contribution
of pions, kaons, and protons, in comparison with measured
particle multiplicities [47].

Q= 34GeV
(n.u)
(n ~)

(n.g)
(n ++n )
(na-+ +na- )
(n„+ np)

I = 06fm
9.7
8.7

14.1
11.4
1.6
0.8

L = 0.8 fm
8.6
7.7

13.5
10.9
1.5
0.7

Experiment
Ref. [47]

13.6 + 0.9
10.3 + 0.4
2.0 + 0.2
0.8 + 0.1

parton-ha, dron duality. The result is not surprising, since
the simulation incorporates the coherent parton shower
evolution [38] based on the soft-gluon interference prop-
erties of the MLLA, which cause this humpback plateau
with its depletion at small x. Because in our approach
cluster formation and subsequent cluster decay involve
no momentum dependence, but are solely described by
the space-time separation of partons, the parton momen-
tum spectra in x are mapped almost unaltered onto the
hadron distributions. We also conclude, that the com-
parisons in Fig. 13 do not indicate any clear preference
for one value of B or L over the other. However, as we
will discuss in Sec. V C, an indication may be drawn &om
Bose-Einstein correlations among produced hadrons.

An example of the composition of the final hadron
yield in terms of difFerent particle species is given in Ta-
ble II where we compare the result of our simulation of
e+e annihilation events at Q = 34 GeV with measured
particle multiplicities [47]. The remarkable agreement is
in accord with the presumption that the diferent par-
ticle yields are essentially determined by the available
phase space and the density of hadron states, and not by
more complex mechanisms. Further experimental con-
straints by more sensitive measures of event shapes such
as thrust, sphericity, etc. , may be investigated, but it is
evident &om the results shown that our approach yields
an overall satisfactory description that withstands con-
&ontation with experiment, and encourages us to study
more complex reactions in the near future.

responds to an enhancement in the production rate of
identical bosons (in our case mainly pions) emitted from
similar regions in space and time, arising from the im-
position of Bose symmetry. Enhancements in the mass
spectrum of same-sign pion pairs have been seen clearly
in e+e data (for a review see, e.g. , [44]). Let us briefly
recall that the Bose symmetry imposed on the produc-
tion amplitude of identical particles from a distribution
of sources leads to an interference term in the squared
amplitude which is only observable if the sources are in-
coherent. From the analysis of e+e data one finds [44]
that the Bose-Einstein e6'ect is reasonably described by a
spherically symmetric space-time distribution of sources
with Gaussian form

f r'l
p(r) = p(O) exp 2o2) (89)

where OP is a radius parameter. Such a source leads to an
enhancement due to interference caused by the identical-
particle efI'ect, relative to the rate with no interference,

b(q) = 1 + Ap exp( —cr q) (9O)

where q = m —4m and m = g(pi + p2) is the
invariant mass of the emitted pion pair. The degree of
incoherence of the source is measured by A~ (=1 for com-
plete incoherence, and =0 for complete coherence), o ~
measures the source size in fm, or alternatively, o mea-
sures the range of enhancement with respect to q in GeV.

To observe an enhancement in q among identical par-
ticles one must compare the particle distributions with
corresponding spectra in the complete absence of Bose
symmetry. Thus, in order to get an estimate of the mag-
nitude of enhancement implied by our hadronization pic-
ture, we proceed as follows. First we evaluate the pion
distributions resulting &om a simulation which does not
include the Bose-Einstein efFect. Then we repeat the
calculation, but now imposing Bose symmetrization on
same-sign pion pairs by assuming complete incoherence,
corresponding to AP = 1. Here we use the method of
Sjostrand [49], which simulates the enhancement due to
the identical-particle eÃect. Finally, we compute the ra-
tio b(q) of the pion distributions of same-sign pairs with
Bose symmetrization to the one without, as a function
of the invariant mass q. In Fig. 14(a) we show the re-
sulting enhancement bl, (q) for our two previously used
values of L„confronted with the corresponding distribu-
tion obtained by the OPAL Collaboration [43] at Q = 91
GeV. It is remarkable how well this comparison with the
experimental data allows us to separate the two choices
of L, in our calculations. Clearly the value L = 0.8
fm appears to be strongly favored. In fact, the average
source size in this case turns out crP = 0.84 fm, which
is almost identical to the average cluster size determined
from Figs. 10 and 11. On the other hand, this value is
well in the range of the pion source radius determined by
OPAL 0'~I'~ = 0.93 + 0.17 fm with A "~ = 0.87 + 0.14.P P

We may thus conclude that our presumed identifica-
tion of I 0P indeed has physical relevance that pro-
vides a unique relation between the parameter L and
the experimentally observed pion emission source radius.
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FIG. 14. (a) Simulated Bose-Einstein enhancement bl, .(q)
as a function of the pair mass q of same-sag, 'n pron pairs for
the two values of L, at total energy Q = 91 GeV. The data
points are from the OPAL experiment [43] at LEP. (b) Ratios
of the enhancements bo.er (q)/bp s&~(q) for total jet energies
Q = 34 and 91 GeV.

With this important insight, it would be interesting to
investigate this issue in more detail, because it provides
a promising method to extract properties of the partons'
space-time evolution and cluster formation from the mea-
sured particle distributions. Since the structure of the
perturbative parton cascade development is projected lo-
cally onto the cluster distribution, which itself maps on
the hadron spectra, the characteristic shape of the Bose
enhancement b(q) will depend only on the local environ-
ment, which may in turn depend on the physical situation
(vacuum, as considered here, or medium, as, e.g. , in deep-
inelastic lepton-nucleus scattering or nucleus-nucleus col-
lisions). Thus, by comparing, for instance, the Bose-
Einstein correlations measured in e+e —+ hadrons to
high-energy heavy-ion collisions, one might extract spe-
cific features of perturbative QCD in a finite-density and
-temperature medium, which are absent in vacuum [24,
5O].

As an illustrative example of such a comparison we
show in Fig. 14(b) the ratio bp sr~(g)/bp sr (q) of the
curves in Fig. 14(a). Although the individual curves in
Fig. 14(a) are very similar to each other, their ratio is a
very sensitive quantity that filters out clearly their subtle
difference. It is evident that a smaller L gives rise to a
significantly stronger enhancement at low masses k 300
MeV, peaked at about 1.5 times the pion mass. Figure
14(b) also shows that the results for Q = 34 and 91 GeV
are identical, even for this sensitive ratio, which implies

that the specifics of the Bose-Einstein effect and Bose
enhancement are independent of the energy, in agreement
with what is observed experimentally [44].

VI. SUMMARY AND PERSPECTIVES

In conclusion, we have presented a novel approach to
the dynamics of parton-hadron conversion and confine-
ment, based on an efFective QCD field theory and a ki-
netic multiparticle description in real time and complete
phase space. Our formulation provides an extension of
the well-understood perturbative QCD parton evolution
to account for the full space-time history traced from par-
ton cascade development, via cluster formation and de-
cay, all the way to the production of final hadrons. The
essential points in our approach may be summarized as
follows.

(i) We have constructed a scale-dependent Lagrangian
that incorporates both parton and hadron degrees of free-
dom. It is manifestly gauge and Lorentz invariant, and
consistent with the scale and chiral symmetry properties
of QCD. The introduction of the scale I (r) determines
locally which are the relevant degrees of freedom around
a given space-time point r.

(ii) The formulation recovers QCD with its symmetry
properties at short space-time distances, and merges into
an effective low-energy description of hadronic degrees of
freedom at large distances. In between the two regimes
it interpolates as determined by the scale- (L-) changing
dynamics, and results in a transformation from partonic
to hadronic degrees of freedom.

(iii) The dynamics are described by a set of coupled
kinetic equations that derive from the field equations of
motion, and yield a real-time description in both position
and momentum space, constrained by the uncertainty
principle.

As a test application we have considered the proto-
type reaction e+e ~ hadrons where the fragmentation
of parton jets and their hadronization serves as a generic
process that can also be imagined as an integral part of
more complex reactions. We investigated in detail the
specifics of the time evolution of parton shower, cluster
formation, and hadron production in phase space, wnicn
extends the usual QCD evolution techniques that are lim-
ited to momentum space and integrated over time. The
consistency with experimental data was tested, and we
found good agreement with measured hadron spectra. A
prospective method to extract the characteristics of the
space-time development from Bose-Einstein correlations
of identical hadrons was suggested. Our main results are
the following.

(i) The details of the parton-hadron conversion are con-
trolled by the quantity L, the spatial separation of neigh-
boring color charges in their rest frame, which defines the
scale at which nonperturbative confinement forces be-
come substantial. The value of L is determined by the
choice of the bag constant B' and the condensate value

All other macroscopic quantities which character-
ize the evolution, such as pressure, energy density, the
time scale of the transition, etc. , are then determined
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self-consistently. The found values are in agreement with
common phenomenology.

(ii) The tiine scale obtained for the transition is a re-
markable result: the local conversion of partons to clus-
ters occurs very rapidly (= 0.1—0.2 fm), but the global
time scale for the transition of the system as a whole is
long (= 10—30 fm).

(iii) The QCD features of the perturbative parton evo-
lution are projected unscathed onto cluster and hadron
distributions, because the conversion is a local, univer-
sal mechanism. As a consequence the multiplicities of
charged hadrons and their momentum spectra are pre-
determined by the preceding parton evolution, which we
find in good agreement with experiments.

(iv) Our main result is the sensitivity of the Bose-
Einstein correlations among identical pions due to Bose
symmetry. It allows us to identify the parameter L with
the hadron emission source radius measured in experi-
ments, and to fix its value rather precisely to L 0.8 fm.
Moreover, the ratio of Bose enhancement of same-sign pi-
ons in different scenarios or physical situations can pro-
vide a very sensitive probe of the environment in which
the parton system evolves. It can be exploited to study,
e.g. , modifications to parton evolution in finite-density
media.

It is interesting to note that our model appears to be
able to correlate successfully such diverse quantities as
the macroscopic bag constant B, the microscopic length
scale L for the parton-hadron transition, the associated
critical temperature T, and the magnitude of measured
Bose-Einstein correlations.

Finally we comment on future applications. These are
manifold, as the advocated picture of parton-hadron con-
version is universally applicable to any dynamical pro-
cess where the issue of hadronization arises. Since the
strength of our statistical real-time description lies in re-
solving the details of the space-time structure, situations
where parton cascades undergo interactions with an envi-
ronment would be interesting to investigate. Let us give
three examples.

(a) In deep inelastic -lepton nucleus scat-tering the pri-
Inary quark struck by the photon can travel and rein-
teract before hadronizing, and produce a cascade of sec-
ondary partons that differs &om a parton shower in vac-
uum. The secondaries are themselves potential candi-
dates for hard reinteractions and can lead to a specific A

(atomic number) dependence for the final-state hadron
production. Clearly, here it is essential to keep track of
the parton-hadron conversion at each point in time and
space, because partons that reinteract will not be able
to hadronize before they approach the free-streaming
regime.

(b) In high-energy nucleus nu-cleus collisions [51]
(~s jA & 200 GeV) the parton density of the highly
Lorentz-contracted nuclei is very large already in the ini-
tial state, and is further increased by the materialization
and multiplication of partons [24]. Therefore multiple
scatterings of partons can easily lead to a large number
of simultaneously evolving cascades that also can interact
with each other. In order to resolve such an intertwined
structure of parton interactions, the space-time dynamics
of the system must be taken into account. Again, here a
microscopic space-time description of parton-hadron con-
version is crucial to resolve the details of such an inter-
twined structure of parton interactions and the following
hadron formation process, depending on the local densi-
ties of surrounding parton and hadron matter.

(c) The qCD phase transition Rom a hot, deconfined
quark-gluon plasma to excited hadron matter as occurred
in the early Universe [37] is of long-standing theoretical
interest. Lattice QCD calculations to date can only in-
vestigate the critical behavior in the vicinity of the tran-
sition temperature. Moreover, a dynamical evolution of
the system deviating significantly &om thermal equilib-
rium is not achievable. In view of the future experimen-
tal programs at the BNL Relativistic Heavy Ion Collider
(RHIC) and CERN Large Hadron Collider (LHC), it will
soon become possible to recreate the QCD phase tran-
sition in the laboratory [52], and to investigate its dy-
namics in the real world. It is clear that the conversion
of a quark-gluon plasma into hadrons is a Inuch more
complicated process than the hadronization of final-state
partons in &ee space (as in e+e annihilation), or dilute
systems (as in hadron-hadron collisions). In heavy-ion
collisions the transition is expected to proceed as a com-
plex evolution of expansion and cooling of the plasma,
perhaps through a mixed parton-hadron phase, until a
purely hadronic phase is reached [53]. Therefore, a fully
dynamical and microscopic hadronization scheme as pro-
posed in this paper is needed to trace the space-time-
dependent cooling and expansion process &om the parton
to the hadron phase.
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