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Study of the color string configuration in a multiparton system
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Using the recursive formulation of matrix elements for e+e ~ m(qq) + ng, we obtain the color
efFective Hamiltonian of the process, which makes it possible to develop the method proposed in our
previous work on analyzing the color string structure for m = n = 1 and m = 0, n = 3 systems to
more general multiparton ones. The method for calculating the probability of the color configuration
in a multiparton system is given. The ratio of the singlet string identified by PQCD is found to
decrease rapidly as the gluon number grows.

PACS number(s): 13.87.Fh, 12.38.Bx, 12.40.—y, 13.65.+i

I. INTRODUCTION

The multiparton state predicted by perturbative quan-
tum chromodynamics (PQCD) is extensively verified by
multijet phenomena observed in high energy collisions.
The current theoretical treatment describing these pro-
cesses involves two main procedures: One is to determine
the kinematic state of the system; the other is to use a
certain phenomenological model to hadronize [1,2]. For
example, when the Lund model is applied to the pro-
cess e+e -+ m(qq) + ng, first, one might use the parton
shower model (PSM) [2] or the color dipole model (CDM)
[3] to give the kinematic state of this multiparton system
and then separately assign the color string configuration
(or the color dipole chain) stretched between partons [4];
next, one applies the string fragmentation model (SFM)
to each substring or dipole in the same way as the qq sin-
glet [2,5]. This color string structure of the multiparton
system is regarded not only as a consequence of parton
evolution, but also as the interface to connect hadroniza-
tion models. Therefore it can be thought of as the bridge
between perturbative and nonperturbative phases.

In the Lund model, the color string con6guration for
the multiparton system is an extension of the neutral
color flow model for the simplest system qqg. In the neu-
tral color flow model, the gluon is always treated as a
composite color object consisting of one color and one
anticolor. For the system qqg, i.e. , m = n = 1, the
neutral color flow surely provides a chain of single sub-
strings (dipoles) in the subsystems q-g and g-q at the first
approximation, and so the two substrings (dipoles) frag-
ment into hadrons in the same way as a qq singlet. Lund
then extrapolated the above picture to the multiparton
system [2,3]. But this kind of color string structure based
on neutral color flow implies a nonet gluon rather than
an octet, and the neutral color flow is not just the singlet
string and hence the confining attractive field for PQCD
[9]. Lund assumes that some topological effects of non-

PQCD in a multiparton system may lead to this string
picture [6]. The Lund string model which implements
this color string structure has achieved great success by
providing a fair description for various reactions [1,7,8].
The momentum configuration is obtained via PQCD in
the popular Lund model, while its color string structure
is assigned by the neutral color flow model rather than
by PQCD. It is worthwhile to find out in PQCD lim-
its what the color configuration is like and how it dif-
fers &om the color string picture inspired by the neutral
color flow model. In our previous paper, we de6ned by
PQCD some attractive string configuration among par-
tons, say, 3, 3*, and particularly the singlet string 1 in
terms of which the color string structure is very close to
that used by Lund for the qqg system [9]. enlightened by
the idea of our previous work, in this paper, according to
PQCD, we present a more general approach to calculate
the probability of a color string con6guration for the pro-
cess e+e ~ m(qq) + ng and to study their dependence
on the strong coupling constant n, and the gluon number
n.

The conventional matrix element method to calculate
the process e+e ~ m(qq) + ng by PQCD encounters
great diKculties as the number of partons increases as a
result of the vast number of Feynman diagrams involved
and particularly the complexity of the loop structures.
Recently, two authors have developed a kind of recursive
method to compute the matrix elements which naturally
include all Feynman diagrams at the tree level. This
method makes it convenient to deal with the multipar-
ton processes recursively [10]. In Sec. II, we derive the
color effective Hamiltonian H from the recursive formu-
lation of matrix elements as the basis to study the color
string structure of the multiparton system. Section III
discusses the physical meaning of the color string and the
completeness set of SU (3) singlets. Section IV gives a
general approach to calculate the probability of the color
string con6guration, particularly that of singlet string.
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The ratio of singlet strings is found to d.ecrease drasti-
cally with the increasing of gluon number. In the last
section, we make the conclusive remarks on the results.

I+ ——RtY+ Y R,

I = YtR+R Y,
(2 6)

II. COLOR EPFECTIVE HAMILTONIAN H
and they satisfy

[I+,I ]
= 2Is, (2 7)

The recursive formulation of the matrix element re-
cently developed is an exact approach at the tree level.
It has the great merit of a simple form of the color part
which is easy to separate for further study [10]. This sec-
tion presents the operator form of color freed. om in ord.er
to find out the color effective Hamiltonian &om the re-
cursive amplitude for e+e + m(qq) + ng and some of
its basic properties.

where I3 is the component of I spin along the third axis.
We can use I~ to ascend or descend one SU, (3) multiplet
to another along the I3 direction. We have, for example,

I+IY) = IR), I+IR) —IY&, etc. , (2.8)

for 3 and 3* multiplets. So do U~, V~.
For the SU, (3) octet of gluon colors, we define their

creation and annihilation operators as

A. Operator form of color freedom A„'t = (RtY'+ YtR')„/~~,

The color triplet 3 for a quark and the anticolor one
3* for an antiquark are written as

I@*.& = (IR) IY) IB)) I@*"&= (IR) IY) IB)) (21)

where i„ is the color index for quark u; (IR), IY&, IB))
are the three color charges, and (IR), IY&, IB&) are the
three anticolor charges. For convenience of expression
hereafter we work in the particle number representation
and introduce color creation and destruction operators
as follows:

A t = (YtR —RtY )„/~2

A t (RtR YtY ) /~2

A„t = (RtB + BtR )„/~2,

Ast = (BtR —RtB )„/v 2i,

@&ut

= (Rt, Yt, Bt),
= (R, Y,B ),
=[(~t.) ]'=(»»B)
= [(@'"t)~]' = (R, Y, B),

(2.2)
A„'t = (YtB + BtY )„/~2,

A t = (BtY —YtB )„/v 2i,

(2 9)

where T and the asterisk denote transposition and the
complex conjugation manipulation, respectively. Obvi-
ously, we have

A„t = (RtR +. YtY —2BtB )„/~2,

I+'.&
= +.'. Io&, I+'-& = +"'Io&

e'-
Io& = O'-

Io& = o (2.3)

IA -& = A„-tIo&,

where Io) is the color vacuum state. For the color creation
and destruction operators of quarks u and v, define these
commutation relations as

[@;„,C t
] = [4"",@'"t]= b;„,„b„„,

A~"—:[(A "t) ]'

where i = g—1 and a„= 1, 2, . . . , 8 in (2.9). They satisfy
the relations

(A„"IA„")= (OIA„"A„"t]0)= b „„b,„,
other commutators = 0 . (2 4) (2.1o)

From the above formula, we have

(~'.I~,.&
= (+"I+'& = b', .b-.-

(2 5)

(colorIanticolor) = 0 .

We may define the ascending and the descending oper-
ators I~, U~, and. V~, for I, U, and V spin, respectively,

[A„",A„"]= [A„"t,A„"t] = 0 .

B. Color efFective Hamiltonian H for the process
e+e m m(qq) + ng

We derive in this subsection the color effective Hamil-
tonian H from the invariant amplitude given by Ref.
[10]. First consider the case m = 1, i.e. , e e ~ qq+ ng.
According to Ref. [10], the invariant amplitude for
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the process in which a quark pair in color states ~4;)
and ~4'~) and n gluons in ~A„") (a„= 1, 2, . . . , 8; for
u = 1, 2, . . . , n) are produced can be written as

qq+ ng which satisfies

(f iH. iO) = (O'; O' A, " . . A "iH. iO) = I, ,',
(T' . .T") D (2.11)

The following H satisfies the above relation:

(2.12)

where T~" = A "/2 for a = 1, 2, . . . , 8,
is the Gell-Mann matrix for SU(3), the summa-
tion is over all permutations of (1,2, . . . , n), D~
D(q, q, g~& il, g~~ 2&, . . . , g~~„ l) is the function of the mo-
menta of partons where momentum indices are sup-
pressed, and p denotes a certain permutation of
(1,2, . . . , n); (T ~&'~ . T ~&"&)~ is the ith row and jth
column element of the matrix (T &'& . T ~&"&), where
the denotion p = P(1,2, . . . , n) has been used.

Now we find H, for the initial color state ~0) and the
I

final one
~ f) = ~4; &II~ Ai' A ") for a parton system

I

H =& (T'. .T") 44' A' A "t
C u 1 n

P

= ) (1/y 2)" Tr(QtGt . Gt )~D~, (2.13)

where the repetition of two subscripts represents sum-
ming (we use this convention unless explicitly specified)
and (Qt)~ = Mt'&, is the reducible nonet tensor com-
posed of a color creation operator for a quark and an
anticolor one for an antiquark. In (2.13),

G„= (1/~Z)A -A„-t
- Ast + Ast/~g Ait, A2t A4t,.A5t-

= (]/A) A t + iA2t —Ast + As&/~~ Ast &A7t

A4t+ iA t A t +iA7t 2Ast/~3

= G'„t —StE/3 = 4'„t@t, —@'„t@t,E/3 (2.14)

is the octet tensor operator for gluon color and A„"t is given in (2.9); E is a unit matrix.
It can be seen in (2.13) that H g K . Since the effective Hamiltonian is another expression of an S matrix, it is

not necessarily Hermitian.
The validity of H, can be verified by the following calculation of the matrix element for the process e+e

I I

m(qq) + ng. For the color initial state ~0) and the final one
~ f) = ~@;~ALII Ai A "), we sum over the color indices

i' and j' of the quark and antiquark and those az, az. . . , a' of n gluons; then, we obtain

).l(f IH IO) I' = (OIH.+HIO) = M,", ""(M;,' '")*,
f

(2.i5)

where we have used (2.4) and (2.5) and (2.9) and (2.10). We can see from (2.15) that the calculation of ordinary
matrix elements through H returns to the original form.

In the same way, one can show that the color effective Hamiltonian H for e e -+ qzqzq2q2+ ng can be written as

H, = ) ) ) (1/y 2)"D~
q& Tr(Qti Gti Gt2 . G, TGt+i Gs).Tr(Qt2Gtq+i Gq+2 Gtq+ TGtq+ +i G. ted+i),

.

p=P(z, ...,n) k+l=n i,j
(2.i6)

where D, &&
is a function of the momenta of partons and

7

i and j the position indices of the inner gluon line which
connects two qq pairs; k and l are numbers of gluons
emitted by qqq~ and q2q2., x is the color index of the
virtual gluon (see Fig. 1).

For the general case with m pairs of qq and n gluons
in the final state, we can also write their Hamiltonian
similarly.

k+j

k+ I

C. Matrix element of H

The matrix element of H between the initial and final
states, (f~H, ~O), describes the invariant amplitude of the
transition &om the color vacuum state to a color config-

FIG. 1. Feynman diagram for process e+e —+ vector bo-
son —+ q&q~q~q~g~g2 - ~ g~+&. The solid lines stand for quarks
and the dashed lines for gluons. The circles stand for all
structures at the tree level.
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uration of a multiparton system. In this subsection, we
list several properties of the matrix element for further
use.

(a) Since H, is a SU, (3) scalar and (flH, ]0) obeys
SU, (3) invariance, the physical color state

l f) also must
be a color singlet or scalar. This property excludes any
color neutral states as physical ones unless they are sin-
glets as well. The SU, (3) invariance plays an essential
role in our exact PQCD analysis of the color string struc-
ture for a multiparton system.

(b) Let lA ") be the color state of a gluon g„and
l
8 )

be the singlet composed of its color charges; we have
(~-I&:-) = o so if l~-) ~ lf) then (flH. IO) = o. This
property imposes that color charges from the same gluon
must combine with those &om di6'erent partons into a
physical color singlet state. Most of present models sat-
isfy this requirement automatically.

(c) The color configuration of the multiparton system
is composed of color charges of m pairs of qq and those
of n gluons. It belongs to the color space

3q, S3q S . S3q S3q S3& S3g S -. S3~ S3',
(2.17)

where 3& and 3—* (u = 1, . . . , m) are the color space for
the uth quark pair, while 3„and 3„* (v = 1, . . . , n) are the
color and anticolor space for gluon v. The system states

O';0, , 0",'4», . @„""@„&) (2.18)

build the completeness bases for the color space (2.17),
where i„,j„=1, 2, 3, k, / = 1, 2, 3. There exist many
ways to reduce the color space (2.17), while correspond-
ing to each reduction there is one set of orthogonal singlet
spaces whose bases make up a singlet completeness set.
If a color singlet set is denoted by

l f~), k = 1, 2, . . . , then

following conditions: (a) They are SU, (3) invariants or
scalars; (b) they satisfy (f lH, ]0) g 0. According to prop-
erty (c) in Sec. II C, there is a multitude of color singlet
sets which correspond to various reduction ways of the
color space. In the Appendix, we take two systems qqgq
and qqgzg2 as examples to illustrate how the color space
is reduced and how system singlets are built. As one can
see, each system singlet belongs to its own completeness
set which is related to a speciBc method of reduction.
Before we focus on the highly interesting topic of how
the color charges of partons form a color string we shall
recall the meaning of the color string and what the Lund
model does at first. As is well known, the color string
usually means a color-conBning Beld, i.e., a linear con-
Bnement potential, between partons. Gustafson studied
the properties of a conBning force field among partons a
decade ago [6]. He supposed that the confinement effects
should lead to a subdivision of the full system into color
singlet subsystems, and those singlet subsystems should
connect with each other by some orderings. He could
not prove such a picture from PQCD, and so he sug-
gested that the topological properties of QCD which are
not exhibited in perturbative theory play a fundamental
role in specifying the above color string configuration.
To determine it before these properties are clarified, the
Lund model assumes that the attractive force field (color
string) stretches between the color charge carried by one
parton arid its anticolor one by the other [6]. So in the
Lund string model the color structure inspired by neutral
color fiow is only a model [5] and is based on the nonet
gluon picture. The determination of momenta and the
assignment of a color string conBguration for the multi-
parton system are inconsistent, since the former is given
by PQCD while the latter is not.

We know that the color interaction of a quark or gluon
system can be written as [9,11]

lf~)(foal = 1 , (f~lfa ) = 4i, , (2.19)
Vine oc Vo ) Eq(1)Ea(2) = (Vo/2)[C(1+ 2) —C(1)

).1(f~lH. I»l' = «IH. lf~)(f~lH. lo)
—C(2)l (3.1)

= IM(vi, vi, , v-, v, gi, , a-)l'.
(2.20)

This property implies that the total sum of the cross
sections over system singlets in a completeness set equals
the total cross section o'o.'i.e., g& cry = oo. This is the
result of unitarity. Obviously, (2.19) and (2.20) also hold
for another singlet set

l fg ). The two completeness sets
difter by a unitary transformation.

p

C(u) = ) [E,(u)]', u = 1,2 . (3 2)

C(1+2) is the Casimir operator for the composite system
of partons 1 and 2 and is written as

where Vo is a positive constant, E~(u) is the generator
of the SU, (3) multiplet for parton u, P is the number of
generators, and C(u) is the Casimir operator for a parton
u given by

III. COLOR STRING CONFICURATION AND
COMPLETENESS SET OF COLOR SINGLETS C(1+ 2) = ) [E,(1) + E, (2)]', u = 1, 2 . (3.3)

It is necessary to determine the color string con6gura-
tion before one uses &agmentation models to a multipar-
ton system. In Sec. IIC, we have shown that the physi-
cal color states of a multiparton system must satisfy the

In our previous work, we have pointed out that the in-
teraction between a color triplet and an anticolor one is
attractive, i.e., V;„q & 0, only if they combine into a sin-
glet. For two color triplets (two anticolor triplets), an at-
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tractive interaction occurs when they form a multiplet 3*
(3). We can also apply (3.1) to the system of two octets.
A short calculation shows that an attractive force field
exists between them only when their composite system
is a singlet or octet. We call this kind of attractive color
force Geld the color string through which a composite
color system in certain SU, (3) multiplets binds together.

Take e+e —+ qqgq as an example. The color of q and
the anticolor of gi form the singlet lli~), while the color
of gi and the anticolor of q make another one llqi); these
two color-anticolor pairs are both bound to be singlets
by the attractive color force, i.e., color string obviously.
The color-color Rom q-gi and anticolor-anticolor from
q-gi build the color string states l3*i) and l3qi), respec-
tively. They can never exist alone because they carry the
color charge. They have to combine into a singlet to be
free of color [see Fig. 2(a)]. This kind of system singlet is
also formed by a color string. The simplest color string
configuration with local properties is llizlqi), which is
the first system singlet in (A9). Thereafter we call this
kind of system singlet the singlet string for short. In
this completeness set, there is another system singlet
l8iz x 8~i) whose form resembles that of a glueball, which
is also bound by a string, as we have shown above [see
Fig. 2(b)]. In summary, the attractive color force fields
in all the above system singlets can be described as color
strings. They can all exist independently as conGning
states because they are &ee of color. It can be shown
that this statement is also true for a general multiparton
system.

We have seen that for a multiparton system there are
many singlet completeness sets which correspond to var-
ious methods of reduction. The physical choice depends
on the dynamical knowledge of the system. This situa-
tion is similar to that in atomic physics: One needs an
interactive Hamiltonian to select the physical coupling
JJ or I S. But we have no such knowledge to determine
the physical completeness set for a multiparton system.
So the choices are rather arbitrary and vary with differ-
ent models. The system singlets in the set (l8g x 8i)) for
qqgi and set (A24) for qqgig2 are similar to the glueball
discussed in Ref. [11] where it is treated as a hadroniza-
tion unit. This is equivalent to choosing these sets to
be the physical ones. In the Lund model, each string
segment or color dipole corresponds to a color singlet;

then, the whole string or the dipole chain corresponds
to the singlet strings in the completeness sets (A9) and
(A26), while the other system singlets in these sets have
no correspondence. In Ref. [9], we have shown that the
probability of the singlet string [li~lqi) for the qqgi sys-
tem is 90%, which is rather close to the assuinption of
the Lund model. To contrast our consequences with the
Lund string picture in the next section, we shall con-
centrate our attention on those completeness sets which
contain singlet strings.

IV. CROSS SECTION OF COLOR STRING
CONFIGURATIONS FOR MULTIPARTON

SYSTEMS

By means of H„we can calculate the cross sections
and, hence, the probabilities of any singlet string conGg-
urations for the process e+e ~ m(qq) + ng. I et us take
the case m = 1 for example and consider the three lowest
order processes: i.e., n = 1, 2, 3. The probabilities of sin-
glet strings in their completeness sets of the three cases
are given and their dependences on the gluon number n
and the strong coupling constants o., are discussed.

The matrix element square of the process e+e —+ qqgz
is given by

IM(q, q, gi)I' = I, (M; )' = 41DI' (4.1)

where the summation over color indices i, j, ai of q, q, g~
has been done; D is a function of the momenta of three
partons. The cross section is

~0 —= ~„..(e+e- ~ Vga, ) = 4j~a~'Zn, (4.2)

where 0 is phase space. According to (2.13), the color
effective Hamiltonian of this case is given by

H, = (1/~2) Tr(Qt Gti)D . (4.3)

Using H, in (2.13), we can give the matrix elements of
any color singlets for the system qqgi. Here we calcu-
late the cross section or the probability of the singlet
string con6guration in its completeness set. For the sin-
glet string state

l f) = sllqili~) (s is the normalization
factor), we have

(flH. l0) = s(1ei1i.lH. I0) = [8/(3v2)]D (4 4)

The cross section is

~(1-,i1i,) = —,'~p,

so that the probability of the singlet string state is

Pi ——o(1—ili )/o'p = — .

(4 5)

(4 6)

(a)
FIG. 2. (a) System singlet 3~i x 3~i for system qqgi which

is formed by two triplets. (b) System singlet 8i~ x 8~i for
system qqgz which is formed by two octets. Solid circles are
color charges and open circles are anticolor charges. l(flH. lo) I

(4.7)

In this completeness set, there is another system singlet

If) = ( /~~) T (&i,&-,'i) I» = (1/v 8) 18i. x 8ei)

which is orthogonal to the singlet string; then, we have
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The probability is

&6 —= ~(Siq x Sqi)/~6 = l(f IH. I0) I'/IM(q, q, gi)' = —,
' .

(4.s)

(filH-10) = [32/(9~3)]D'"' —[4/(9~3)]D'"

(f2IHaIO) = —[16/(9~6)]D( + [2/(9~6)]D(

Though there always exist neutral color flows in (q, gi)
and (q, gi), the color singlet string is not always formed
and its probability is 9, near but not unity. The other 9
of the probability is allocated to another system singlet
I81q x 8qi), which resembles a glueball in color structure.
I81q x 8qi) is built by four color charges and is regarded as
a collective singlet. If this singlet is neglected, the parton
system qqg~ can be treated as two singlet substrings as
the SFM assumes. So the PQCD analysis for qqgi is
approximately consistent with the model. Note that Pz
and Ps are independent of the strong coupling constant
ns.

The matrix element for the process e+e + qqg~g2 is
given by

May g (Ta~ gag ) D(12) + (gag Tag ) D(21) (4 g)

(q q g g ) I

2 16
I
D (12 )

I

2 + 16
I
D (2 1)

I

2

—-' Re(D(")D(")*) (4.10)

~0 = ~t (~ ~ ~ Rglg2) = jl~(q q gi, a~)l'da,

(4.11)

where a summation over the color indices i, j, aq, a2 has
been done.

Similarly, the color effective Hamiltonian is

H = —Tr(QtGtGt)D( ) + —Tr(Q"GtG )D(

(4.12)

As mentioned above, we choose (A26) as our complete-
ness singlet set whose normalized form is

(If, ), 1 = 1, 2, . . . , 6)

= ((3~3) I12ql12lqi), (2~6) I12q(812 x 8qi)),

( ~) Il»(82. x Sq, )) (2~6) Ilqi(82q x 812)) ~

(4.13)

(—„) Isq, x(812,s„)),4s 18qi x [812, 82q]))

where

»~ 2q)) —I(+(12) '+(2 )1,) 2~1 Tr(&12O2q)) ~

I [81»82q]) =
I (o(12)~+(2 ) Jg (2q) &(12)I, ) .

(4.14)
(4.15)

From (4.12) and (4.13), we derive

The square of the matrix element and the cross section
are given by

(fsIH, IO) = —[16/(9~6)]D(12) + [2/(9~6)]D(
(4.16)

(f4IH, I0) = [2(9~6)]D(")+ [20/(g~g)]D(21)

(fslH Io) = (~»/»)D""+ (10V»/27)D"'

(fs IH. 10) = [I/(3~3)]D"' —[8/(3~3)]D"'

From (4.16), we can verify the unitary relation (2.20):

).I(fI IH. I0)I' = IM(q q gi g2)I'.
I =1

(4.17)

We can neglect the interference term Re(D(12)D(21)') (in
fact it is very small compared to other terms) and obtain
the following probability of the singlet string without car-
rying out the integral:

Pg —— g H, 0 dO O.p = 40 0 . (4.1s)

Note that this probability is also independent of o,„the
same as qqg&, but it is much lower than 9. In the
same way, we derive the probability of the singlet string
for qqgig2gs, which is only 11.9% and much lower than
qqy~g2. We conclude that the probability for the singlet
string configuration decreases drastically as the gluon
number n increases. This effect results from the fact
that the methods of reduction and hence the number of
system singlets grow fast as the gluon number becomes
larger, while, on the other hand, in each completeness
set unitarity requires that the sum of probabilities of all
system singlets must be unity, so that the percentage of
each system singlet becomes lower and lower.

V. CONCLUSIONS AND DISCUSSION

The color string con6guration for the multiparton sys-
tem is the interface between parton states and hadroniza-
tion models in the present treatment for high energy re-
actions and can be thought of as a bridge linking PQCD
and non-PQCD phases. In the popular Lund model, the
momentum configuration is obtained via PQCD, while its
color string structure is assigned by the neutral color flow
model rather than by PQCD analysis. It is worthwhile
to find out in PQCD limits what the color configuration
is like and how it differs from the color string picture
inspired by the neutral color flow model.

With the help of the recursive forms of the amplitudes
for e+e -+ m(qq) + ng, we have developed a systematic
analysis and derived a more general approach to calculate
the probability of a color string configuration for the mul-
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APPENDIX: SYSTEM SINGLETS FOR PARTON
SYSTEM qqg~ AND qqg, g&

For the system qqgq, each color state belongs to the
color space

3, (33—* (33 3~, (A1)

whose singlet subspaces correspond to its various reduc-
tion types. For the reduction type (a),

(3q, 3q ) (3& 3*, ) = (Sg $8g) g (Sg @8g), (A2)

where Sg and 8g are the singlet and octet spaces com-
posed of (color, anticolor) from the quark pair; Sq and 8q
are those composed of (color, anticolor) from the gluon.
Their bases are given by

ISg) = I@'-,@q') 18') = I@;@n) —s~,'IS~)-= IOg, )

(A3)

tiparton system m(qq) +ng. Although for the m = n = 1
case the probability of a singlet string ~1qqlqq) which
physically corresponds to the d.ipole chain in the CDM
is 90%, for the cases m = 1, n = 2 and n = 3, the prob-
abilities of singlet strings ~12qlq2lqq) and ~lsqlg212slqg)
decrease to 40% and 12%, respectively. The other color
configurations in the completeness set are orthogonal to
the singlet string and resemble a glueball in color struc-
ture which is not involved in the Lund. model. There has
been no hadronization model so far to deal with these
two types of system singlets consistently.

It can be seen that the percentage of the singlet string
in its own completeness set has no relevance to o., and
decreases rapidly as the gluon number grows, while those
of other color configurations which are orthogonal to the
singlet string in the same set become larger. This phe-
nomenon seems to indicate the greater importance of col-
lective eKects because these color singlets contain four or
more color charges. We should note that there are many
ways of constructing singlets of the parton system, which
make up various completeness sets. With an increase
of the gluon number, more ways of building system sin-
glets and hence more types of color string configurations
emerge. We do not have enough knowledge to derive a
physical set on the PQCD level so far. In addition to
this, there are many problems to be solved in the fu-
ture, such as how non-PQCD or soft gluon interference
a6'ect the color string configuration and whether these
efFects make the original color structure deviate from the
dipole chain. So the determination of the color string
structure for a multiparton system is still an open ques-
tion. It is notable that in the recent work by Sjostrand
and Khoze [5] part of the above problems in the process
e+e ~ W+TV —+hadrons has been studied &om the
string fragmentation scenario. We are trying to study
similar problems along the line of this work.

Only 8g (38~ can be reduced to the physical singlet space,
and its basis ~8~ x 8q& is written as

i8g x 8g) = iTr(OgGg)) = iO~, G'„& .

Since (SgSq~H, ~O) = 0, SgSq is unphysical according to
property (b) in Sec. II C. Corresponding to this reduction
type is the system singlet set (~8g x 8q)} where there is
only one element. From (2.19) and (2.20), we have

l&s(8V x 8ilII. I0)l' = IM(n, e&, ai)l', (A6)

~Cs~ (8g x 8q~8g x 8q) = 1 .

For the reduction type (b),

(3q 31) (3~ 3q) = (I~q1q~) (8~q 8q~)

other spaces, (A8)

where 1j q and 8~q are the singlet and octet made up of
(anticolor, color) from the gluon and the quark, while lqq
and 8~~ are those from the antiquark and gluon. Their
corresponding singlet completeness set is

([lgqlq~), (8,q x 8q, )} ) (A9)

and we have

(lzq lq] ~8]q x 8qz) 0

I&i l'(Iiq1qi ~1iq1q~) = 1,

(A.10)

(A11)

~&s~ (8iq x 8q&I8&q x 8qg) = 1,
C, l'l(1„1,—,III.I0&l'+ I&.l'1&8 x 8-, III.I0) I

(A12)

= IM(~ ~ »)I' (A»)

here,

I1,)—:I@' @ '), 18' ) =—IK@q.&
——,'~;11~q) —= IOi„)

(A14)
11-.~) —= I@'-,@~'& 18q~) = I@'-,@~~) —s~,'IIq~) =—IO-;i, )

where Cq and Cs are the normalization factors of ~lqqlqq)
and ~8qq x 8qq), respectively.

For the reduction type (c),

(3 3~) (3-*, 3*) = (3,* 30~) (6 ~ 6-,
*

)
other spaces, (A15)

where 6q& and 3*& are symmetric and. antisymmetric
spaces made up of (color, color) Rom the quark and the
gluon, while 6-'z and 3qq are those composed of (anticolor,
anticolor) from the antiquark and gluon. The singlet set
is written as

where Cs is the normalization factor of the state ~8g x 8q),
1.e.-)

ISi) = l@*@i') I8i) = IK@ig) ——,'~;ISi) = IR, ) .

(A4) and we have

3q, x 3,*,), 16„x6,*,)} (A16)
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(3qi x 3*il6qi x 6-*i) = 0,

C, I'(3-„ x 3q, l3q, x 3,*,)

ICsl'(6q, x 6-,'il6q, x 6,*,) =1,
C, I'l(3-„ x 3,', la. lo)l' + IC, I'l(6„ x 6,*,la. lo

(A17)

(A18)

(A19)

The first system singlet is composed of the singlet ISg)
and I8i x 82), which is formed by the subtraction of two
gluon octet tensors. The second and third consists of two
subtracted octets; one is the octet state IOg) of the quark
pair, and the others are the symmetric and antisymmetric
states

I [Gi, G2]) and l(Gi, G2)) of two gluons.
For the reduction type (b),

= IM(~ ~ ~i)l' (A20)

where Cs and Cs are the normalization factors of I3qi x
3'i) and I6qi x 6—'i), respectively, and

I(3-,.)') =—e'", I+',-+".),
I(3,

* )') —= e""I+„+»)
l(6. )I'.)) = I&.'@ '+ @-@')
I(6-,*.)'"') =—I+;-~'+ +';+')

(A21)

I3-„x3,', } = e;,&e' " le',@i)1@A -@» )

;—.) = I+„+»++„+.') l~'-, K+ ~';K) ( )

Si.milarly, we can give system singlet sets for the parton
system qqgqg2 which correspond to four ordinary reduc-
tion types.

For the reduction type (a),

(3, 3 ) (3. 3.*) (3. 3*.)

= (Sg 8g) (S, +8i) (Sp 82) . (A23)

The system singlet set is

(IS~(8i x 82)) IT (O~[Gi G2])) IT (O~(Gi G2)))) .

(A24)

In (A21), e;iA,, and e'~" are defined by e,.~I, = e'~" = 1 if
(ijk) is an even permutation of (123); c;iI, = e'~" = —1
if (ijA:) is an odd permutation; e;~s = e'~" = 0 for other
cases. In the second line of (A21), (ij) is the symmetric
symbol and we have (12) = (21), etc. I3qi x 3*i) and
I6qi x 6-*i) are defined by

(3, S 3;) g (32 S 3;) S (3, S 3,-*)

= (12q 6 82q) S (li2 6 8i2) S (lqi 6 8qi) . (A25)

The system singlet set is

{ll.ql»lq. ), l12q(8» x 8q.)),
Il„(8„x8-„)),Il-„(8„x8„)),

8qi x (8» 82q)) I8q, x [8» 82q])) (A26)

The reduction type (c) is obtained by the interchange of
gluons 1 and 2, i.e. , 1 ~ 2, in (A25) and so does the
singlet coinpleteness set in (A26).

For the reduction type (d),

(3, g 3, S 3&) g (3, g 3; g 3;)

= (lqi2 6 8+ 6 8 6 10qi2) S (lqi2 6 8+ 6 8* EB 10qi~) .

(A27)

The system singlet set is

(II„,I,'„),I8+ x 8+), I8+ x 8'),

I8 x 8+), I8 x 8' ), I10qi2 x 10'i2)), (A28)

where 8+ and 8 are mixed symmetric and mixed anti-
symmetric octets from three color charges and 8+ and 8*
are those &om three anticolor ones; lqq2 and 1-*&2 are an-
tisymmetric singlets &om three color and three anticolor
charges, respectively, while 10qq2 and 10-'z2 are decuplets
which are symmetric states of three color and three an-
ticolor charges, respectively; I10qi2 x 10-'i2) is the singlet
formed by the subtraction of two decuplets.
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