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Confinement and scaling in deep inelastic scattering

S. A. Gurvitz
Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

and TRIUMF, Vancouver, B.C., Canada V6T 2AS
(Received 27 February 1995)

We show that parton confinement in the final state generates large 1/Q corrections to Bjorken
scaling, thus leaving less room for the logarithmic corrections. In particular, the x-scaling violations
at large x are entirely described in terms of power corrections. For treatment of these nonpertur-
bative effects we derive a new expansion in powers of 1/q for the structure function that is free of
infrared singularities and which reduces corrections to the leading term. The leading term represents
scattering from an ofF-mass-shell parton, which keeps the same virtual mass in the final state. It is
found that this quasifree term is a function of a new variable x, which coincides with the Bjorken
variable x for q ~ oo. The two variables are very different, however, at finite Q . In particular,
the variable x depends on the invariant mass of the spectator particles. Analysis of the data at large
x shows excellent scaling in the variable z and determines the value of the diquark mass to be close
to zero. x scaling allows us to extract the structure function near the elastic threshold. It is found
to behave as E2 (1 —2:) ' . Predictions for the structure functions based on X scaling are made.

PACS number(s): 13.60.Hb, 12.38.Lg

I. INTRODUCTION

Consider the inclusive scattering of a high energy elec-
tron, e + N ~ e'+ X, &om a nucleon of mass M. The
spacelike four-momentum transferred to the target is q =
(v, q). For an unpolarized target the double-differential
cross section is determined by two structure functions
~1(Q ) &) and ~2(Q & &) (or +1 M~1& +2 i ~2) 1

where Q2 = q2 —v2. These structure functions are given
by the imaginary part of the forward Compton ampli-
tude of the virtual photon with four-momentum q (Fig.
1), where the nucleon vertex I' is shown in Fig. 2. The
erst diagram in Fig. 1 corresponds to the impulse ap-
proximation (IA), and the second diagram describes the
final state interaction (FSI) of a struck quark with spec-
tator quarks and gluons (these are shown explicitly in
Fig. 2). The IA term is expected to become dominant
in the structure function for Q2 & 10 (GeV/c) . As a
result Eq and E2 turn out to be functions of the Bjorken
variable x = Q~/2Mv, i.e. , I', (x, Q2) +I', (x), wh-ere

E,(x) is directly related to the parton distribution q(x)
(the Bjorken scaling) as, for instance,

iments shown in Fig. 3. (The solid lines correspond to a
15-parameter fit [3].) Usually the scaling deviation of the
structure functions is attributed. mainly to the logarith-
mic corrections &om gluon radiation, which is contained
in the first diagram in Fig. 1 [4]. Corrections 1/Q
arising from the second diagram in Fig. 1 (higher-twist
terms) are usually considered as playing a minor role in
scaling violation, even at moderate Q2.

This common disregard of the FSI terms for Q2 & 10
(GeV/c) is very surprising, especially in view of partoil
confinement. At Grst sight, the confining interaction of
partons in the 6nal state should inHuence the structure
function strongly. Consider for instance the exainple of
two nonrelativistic "quarks" of mass m interacting via a
harmonic oscillator potential [5]. These quarks are never
&ee and therefore the system in the final state possesses
a discrete spectrum. As a result the structure function
F(q, v) as a function of v is given by a sum of b functions.
Obviously, it looks very di8'erent &om the structure func-
tion obtained. in the IA, which consid. ers the struck parton
as a &ee particle in the final state. This paradox can be
resolved by introducing a scaling variable y [6]:

vWz(Q, v) = Il2(x, Q ) +) e,'xq, (x)- fq[ mv+ )2 fq/
(1 2)

The existing data in fact show considerable Q2 depen-
dence of the structure functions, as for the proton struc-
ture function from the BCDMS [1] and SLAC [2] exper-

where (m —y)/M is a nonrelativistic analogue of the
Bjorken variable x. Then, expanding the structure func-
tion X(q, y) = I" (q, v) in powers of 1/q, one finds in the

p I r P

P-p+q

P-p P-p

P-p+q P-p +q

FIG. 1. Nucleon structure function given
by the imaginary part of the forward Comp-
ton amplitude. The first diagram is the
impulse approximation, and the second one
describes the final state interaction. The
shaded area includes spectator particles
(quarks and gluons).

0556-2821/95/52(3)/1433(12)/$06. 00 52 1433 1995 The American Physical Society



1434 S. A. GURVITZ 52

FIG. 2. Nucleon vertex function, which
describes quark and gluon emission. Quarks
are shown by solid lines and gluons by wavy
lines.

limit q ~ oo and y =const that it becomes a smooth
curve, X(q, y) -+ Xo(y), which coincides with a &ee par-
ton response [5,7]. Although this result appears to con-
firm the parton model picture, it does not imply that the
interaction in the final state is not important. The latter
has been merely incorporated in Xo(y) by an appropri-
ate choice of the scaling variable y, which diminishes the
contribution &om higher-order ( 1/q) correction terms.
For instance, a different choice of the scaling variable
could result in very large or even singular corrections to
the structure function.

It is practically impossible to calculate the structure
function including FSI's, except for a few simple nonrel-
ativistic models [5,7]. Therefore it is very important to
find an optimal expansion of the structure function of
confined systems; which reduces higher-order corrections
(~ 1/q) to the zero order (quasi&ee) term. For a non-
relativistic case such an expansion, which leads to the
scaling variable y, Eq. (1.2), was proposed by Gersch,
Rodriguez, and Smith [8]. (This expansion was designed
for weakly bound systems, but appears in fact to be ap-
plicable to confined systeins as well [7].) Unfortunately,
the situation in the relativistic case looks very different,
and no simple extrapolation of the nonrelativistic results
seems to be possible.

In this paper we attempt an optimal expansion for
the relativistic structure function, which can be applied
to confined systems; i.e. , it is &ee of infrared singular-
ites and diminishes the contribution Rom FSI's. Then
the zero-order (quasifree) term efFectively incorporates
effects of confining FSI, and thus can be considered a
good approximation for the structure function, valid also
for nonasymptotic Q2. Such a quasi&ee approximation
leads to scaling of the structure function in a new scal-
ing variable. Finally, we perform the analysis of data
in terms of this scaling variable and compare the results
with a standard approach.

II. RELATIVISTIC STRUCTURE FUNCTION

Consider the nucleon structure function R' given by
the imaginary part of the forward Compton amplitude,
Fig. 1. For the sake of simplicity we take all the con-
stituents and the virtual photon as scalar particles. Here
P = (M, 0) is the four-momentum of a target (in the lab-
oratory frame), P —p is the four-momentum of the struck
parton, and p = (po, p) is the total four-momentum of all
other constituents (quarks and gluons) to which we refer
as the "spectator. " The vertex I is a sum of all possi-
ble diagrams describing the virtual nucleon disintegration
into quarks and gluons, Fig. 2.

The scattering amplitude (the square block in Fig. 1)
satisfies a Bethe-Salpeter equation, shown schematically
in Fig. 4:

T = V+ VGOT,

where the Green's function Go can be written as

(» l&o(&)lp') = ig. (p)go(& p)~(p p'). -—
(2 1)

(2.2)

Here g, (p) is the spectator Green's function, and go('P—
p) is a Green's function for a struck quark:

The plan is as follows. A relativistic expansion of the
structure function in powers of I/Q is derived in Sec.
II. It is shown that in&ared singularities generated by
confining FSI are eliminated. The leading, quasi&ee term
is discussed in Sec. III. We demonstrate there that the
structure function is a function of a new scaling variable.
The evaluation of the first correction term for the linear-
rising potential is presented in Sec. IV. An analysis of
data and predictions for new experiments are given in
Sec. V. The last section is summary.

1
goP' —p) =

(P —p) ' —'m' + to ' (2.3)
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where P is the total four-momentum of the system (P
P + q for the kinematics in Fig. 1) and m is the struck
parton mass. The driving (interaction) terin V in Eq.
(2.1) is a sum of all irreducible diagrains which do not
include the struck quark and the spectator in an inter-
mediate state. Since quarks are confined at large dis-
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FIG. 3. Proton structure function from BCDMS [1] and
SLAC-MIT [2] experiments. The solid curves correspond to
a 15-parameter 6t to these data, taken from [3].

FIG. 4. Bethe-Salpeter equation for the operator T de-
scribing interactions between the struck parton and the spec-
tator partons in the 6nal state.
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P-p. where

4(P, p) =
P 2

'
2

= go(P —p)r(P —p, p) (2.8)
I'(P —p, p)

FIG. 5. Bethe-Salpeter equation for the vertex I' describing
the relativistic bound state.

T(P, p, p') +
r(P —p, p)r(P—

(2.4)

one finds the equation

tances, this term is singular for (p —p') ~ 0 [for in-
stance, (pl V p') (p —p') in the case of linear-rising
confinement .

The corresponding Bethe-Salpeter equation for the
vertex function I' is obtained from Eq. (2.1) by tak-
jng the ljmjt 'p ~ P = M . Sjnce the ampljtude T
factorjzes near the nucleon pole,

is the relativistic bound state wave function.
The IA of the structure function R' corresponds to

G M Gp in Eq. (2.7). This approximation can be ap-
plied if the contribution from the interaction V is small.
However, this may not be the case, in particular because
of the in&ared singularity in V. The singularity can gen-
erate large corrections &om the higher-order terms of the
expansion (2.6). Yet it does not imply that the correc-
tion terms would remain large in any other expansions
of the Green's function G. Indeed, the bound state wave
function is generated by the same driving term V, Eq.
(2.5), so that the singular part of V can be compensated
by some part of the mass and kinetic energy terms in the
full Green's function G = [Go —V], when the latter
is substituted into Eq. (2.7). In fact, one finds from Eqs.
(2.5), (2.8) the relation

r = vG, (p)r, (2.5) [V —G. '(P)]g" I@) = o (2 9)

1
G = Go + GoVGo +

Go —V
(2.6)

we can represent the structure function W(Q2, v) as

W(Q~, v) = —Im f 4(P p)(p G(P + q) p')4(Pp')

d4pd4p'

(2ll.)
s (2.7)

which is shown schematically in Fig. 5.
By introducing the interacting (full) Green's function

G = G+ GhG+ GhGhG+- (2.10)

where G i = G i(P, P) = G i('P) —G i(P). It can be
rewritten explicitly as

which in nonrelativistic limit corresponds to cancellations
between the binding potential and the kinetic and bind-
ing energy terms in the Schrodinger equation.

Equation (2.9) suggests to expand the total Green's
function in (2.7) in powers of the operator 6 = h(P) =
V —Go (P) instead of the IA expansion (2.6), in powers
of V. Vfe thus obtain

(s IG '(» P) lp') = (plV(P) —V(&) lp') + u. '(p) [(& —J )' —(P p)']~(p —p')— (2.11)

(plG(»P)lp') = i ~.(I)g(& pP p)~(s— p') (2—»)—
where

1
g(P —p, P —p) =

(P —p)' —(P —p)' + ie (2.13)

is a modified, quasi&ee, Green's function of the struck
parton with four-momentum P —p. Unlike the Green's

I

One notes that in general, the driving term V is not
local, and therefore it may depend on the total four-
momentum 'P of the whole system (Fig. 4). However,
for a local interaction, (plV(P) lp') = V(p —p'), so that
the terms containing V in Eq. (2.11) cancel. Then

function go, Eq. (2.3), the modified Green's function g,
as well as G, depends on the target four-momentum P,
which is related to the entire interacting system. The
appearance of such an additional parameter is not sur-
prising, since g has been designed to approximate the
interacting Green's function. Note that the pole in g
does not appear at the quark mass ('P —p) = m as
in the &ee Green's function go, but at an off-shell point,
(P p) =(P p) .

Substituting Eqs. (2.10), (2.12) into Eq. (2.7) we ob-
tain the structure function R' in an expansion in powers
of G = g, g for 'P = P + q. Consider the limit Q m oo
and x = Q /2mv = const. Then v = Q~/2Mx Q2,
v/lql -+ 1, and

g '(P+q p, P p) = (P s-+q)' -—(P- p)'—+'
= 2(M —pp)v+ 2p q —Q +ie Q (2.14)

Therefore Eq. (2.10) represents in fact an expansion in powers of 1/Q, and
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V 1 y2F = vW = —Im(@lG+ GhG+ . . l4') = &p+ + +
7r Q2 Q4 (2.i5)

Each term of this expansion can be represented by a modified Feynman diagram. Take for instance the first two terms

v . d4p 4'(P, p)g.'(p)
(2')4 (P —p+ q)' —(P —p)'+ie ' (2.i6a)

4 (P, p) g, (p)h(P, p, p') g, (p') 4 (P, p')

Q ir™ ~
(2ir) [(P —p+ q) —(P —p) + ie][(P —p'+ q) —(P —p') + ie]

(2.16b)

One can easily see that these terms correspond to the two diagrams in Fig. 6, where the Feynman propagator
(k2 —m2) i for the struck parton with four-momentum k is replaced by [k2 —(k —q)2] i. We mark it with a tilde.

l,et us consider the first order term, Xi, Eq. (2.16b), which involves the interaction V. One gets from Eqs. (2.9),
(2.i2),

hgg, [4) = [h, g]g. l4) = [v, g]g, l4),
elg. ge = {elg.[g, hl = -&c'lg. [v, g]

(2.17a)
(2.17b)

Therefore Eq. (2.16b) can be rewritten as

X, = —Q' Im i(4lg. [[g, V], g] g. le), (2.is)

where the interaction enters through the double commutator of V and the Green's function g. Using Eqs. (2.13),
(2.14) we can write Eq. (2.18) explicitly as

„2, ,d'pd'p' 4(»p)g. (p) (2q(p —p'))'V(p p')g. (p')4—'(»p')
(2~)s [2(M —pp)v+ 2p. q —Q2 + ie]'[2(M —pp)v+ 2p'. q —Q'+ ie]'

' (2.19)

Here we find the factor [q(p —p')] in front of V, which
removes the infrared singularity, V 1/(p —p'), in Xi.
In fact, this factor reduces the contribution of T1 to the
structure function even for a nonsingular interaction, pro-
vided that the scattering amplitude of a high-momentum
quark peaks in the forward direction. One can show that
the same procedure removes the in&ared singularity also
in higher orders in the expansion (2.15) for F. A di-
rect evaluation of W1 for the case of a heavy spectator is
given in Sec. IV, where we explicitly demonstrate that
this term is small compared to Xp, even at moderate Q .
Now we concentrate on the first term To in the expansion
(2.i5).

proximated by the first term, Xp, Eq. (2.16a), which
corresponds to the first graph in Fig. 6. Actually, this
graph represents an infinite sum of diagrams correspond-
ing to gluon and quark emission, Fig. 7, which results in
logarithmic corrections to Bjorken scaling and has been
studied in great detail [4]. Our treatment of these pro-
cesses is not diferent &om the standard approaches ex-
cept for the modified propagator g, marked by a tilde in
Figs. 6, 7. Let us analyze the consequences of this mod-
ification. As an example we consider the two diagrams
shown in Fig. 7. The first graph corresponds to a pro-
cess with no gluon emission. For simplicity we take the
spectator quarks to be a diquark of mass m, ; thus,

III. LEADINC TEAM

A. New scaling variable

Since our expansion (2.15) minimizes the first-order
correction term, the structure function E can be well ap-

1
g. (p) =

p2 m2 +

Substituting Eq. (3.1) into Eq. (2.16a) one finds

(3.i)

~(Q, v) =—' Im

q qP-p+ q

p r p

P-p+q
q

P-p'+q

p-p
Q p-p '

p r
+ 0 ~ ~

FIG. 6. Diagrammatic representation of
the first two terms of the expansion {2.15).
Modi6ed propagator of the struck parton is
marked by a tilde.
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& =—Im

q
P-p+ q

q
P-p + q

p-

l
q

+ e a ~

FIG. 7. Diagrammatic representation of
the leading terin. Quarks and gluons are
shown by solid and wavy lines, respectively.
The modi6ed propagators are marked by a
tilde.

d4
IO"(» p) I'~(p' —m.')~KP p+—q)' —(P —p)'I

(2vr) ' (3 2)

where biol is a component of the proton wave function, Eq. (2.8), with the vertex I' replaced by I'i l, corresponding
to nucleon disintegration with no gluon emission (Fig. 2). Integrating over po and neglecting the contribution from
negative energy states (pair production) we get from the first h function po ——E~ = (m, + p )i~2. Then using (2.14)
we can rewrite Eq. (3.2) as

OO

&o' = ~ 14"(lpl)l'~ (M —&,)~+ p. q —Q'/2 = I&"'(Ipl)l'
(2~) "

lql )g( (2~)'

d3

(2 ), I&"(I» I)l'~(p. +y) (3.3)

where Pi l (lpl) = 4(P, E„,p)/2E~ . The variable y is the minimal momentum of the struck quark, —p;„=yq/Iql,
obtained &om the equation

2 M — y2+m2 & —2yq — 2 =0. (3.4)

The latter corresponds to energy conservation, given by the b function in Eq. (3.3), when the struck quark is equally off
the mass shell before and after the virtual photon absorption. Solving Eq. (3.4) and using v = Q2/2Mx, q2 = Q2+ v2

we obtain

y(x, Q2)/M = (1 —x)2 —(m, /M) 2

g(1 —x) + 4m x2/Q + g(1 —x) 2 + 4M x (1 —x) /Q
(3.5)

It follows from Eq. (3.3) that (lql/v)X~~ l = f(y) is a function of the scaling variable y only. In the non-elativistic
limit and for zero binding energy, this variable coincides with the West scaling variable y, Eq. (1.2).

Equation (3.2) for Eo can be rewritten in terms of light-cone variables: p = (p+, p, p&), where p~ =

polyp

. Here
the negative z axis has been chosen along the virtual photon direction, so that q~ = v p Iql, and q&

——0. Introducing
the light-cone &actions z = (P+ —p+)/P+ and ( = q+/P+, wher—e P~ = M is the target light-cone momentum, and
integrating over p, one obtains

(0) d pJ « IC"'(pi, z) I'
& fM2 M

m' + p&
2(2vr)s (1 —z)(z —f) ( z —(

m.'+ p2~ l
1 —z )

(3.6)

where Mq = Q2/( and

Zm2+ 2
—2 (P )2 M2 8 PJ

1 —z
(3.7)

The expression (3.6) for Wo clearly corresponds to(o)

I

the erst diagram in Fig. 8, calculated according to the
rules of light-cone perturbation theory, where the struck
quark mass equals m. Similar to the previous calcula-
tions one finds after integration over p& and z in (3.6)
that the structure function depends only on a single (scal-
ing) variable x. The latter is the value of the light-cone

~ =—' Im

—(, 0

1,0

z-(, p

I-z- p

—( 0

1,0

z J

J,O

z-g, p

z-z, p -pJ

1-z',- p'

0

z,pJ

J, O

+ 0 ~ ~

FIG. 8. The same as in Fig.
7, but using light-cone vari-
ables. The negative z axis has
been chosen along q.
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&action z, corresponding to the zero of the b-function
argument in Eq. (3.6) for p~ = 0. One finds

z + Ql + 41VI~z2/Q2 —Q(1 —x) + 4m2x2/Q2

1 + Ql + 4M2x2/Q2

(3.8)

Since x corresponds to the light-cone fraction of the oB-
shell struck quark with four-momentum P —p (Fig. 7),
where p = (gm2 + y2, —yq/IqI), one can easily verify
that x is related to y by

x (&,Q') —Solid line

( (&,Q') —Dashed line

0.74-

0.72

0.68 -I

0. 66

0.64-

x = 0.75

200
Q (GeV/c)

gm2+ y'+ y
M (s.9)

It is interesting to compare x with the Nachtmann [9]
scaling variable (:

2x

1 + Ql + 4M2x2/Q2
(s.io)

M2x2 m, x

( -*)Q (s.ii)

which corresponds to the light-cone fraction of the on-
mass-shell struck parton of zero mass [10]. The denomi-
nator of this expression takes into account the kinemat-
ical target mass corrections to the x scaling. Similar
target mass effects are accounted for in Eq. (3.8) for the
scaling variable x. It is not surprising, since no assump-
tions have been made for the value of the target mass
AII in Eqs. (3.3), (3.6). However, x includes also dynam-
ical corrections to the x scaling, which are not present
in the variable (. These are taken into account by the
last term in the numerator of Eq. (3.8). It can be seen
in a more pronounced way if we consider large Q limit.
Then using Eqs. (3.8), (3.10) one easily Ands that z and

( variables are related by

FIG. 9. Comparison between the scaling variable
z = z(z, Q ) and the Nachtmann variable (:—((z, Q ), Eqs.
(3.8), (3.10) for z = 0.75. The spectator mass equals the
nucleon mass. The dotted line corresponds to x=0.75.

Thus x -+ ( ~ x for Q2 —+ oo. However, the term
m, z /(1 —z)Q makes z and ( be quite difFerent for
finite Q, in particular for high x. As an example we
plot the variables ( and x as functions of Q for x = 0.75
in Fig. 9, for a spectator mass m, = M. One Ands that
x approaches the Bjorken variable x (the dotted line)
much more slowly than the Nachtmann variable (, and
the difFerence between x and ( is appreciable even for
rather large Q~. For small x, however, the variable x
is close to ( or x, unless the spectator mass is not very
large.

B. Gluon radiation

Consider the second diagram in Fig. 7, which describes
gluon emission. Its contribution to the structure function
can be written as

4 4
IC"(» p' p p') I'~(p" —m—.')~(p —p')'~[(& —p+ ~)' —(& —p)']

(2vr)
(s.i2)

where 4~ ~ is the component of the proton wave function corresponding to the vertex I'I ~ in Fig. 2. It is related to
@(0) by

I@(i)(~„I„„I)I2
4~~.1@"(» p') I'

(p —p') ' —m' (s.is)

where n, is the @CD running coupling constant. After integration over the po and p'o we can rewrite Xo in the
form of Eq. (3.3):

I&I ~(i)
0

d
, I&"(p p')I'~[p. +y(m. )] (3.14)

Here y(m, ) is given by Eq. (3.5), where m, is now the invariant mass of the diquark-gluon systein: m2 = p2. In
terms of light-cone variables (see Fig. 8) it can be written as
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where mg is the diquark mass. Notice that 1 & z & z. Using Eq. (3.15) we rewrite Eq. (3.12) in terms of light-cone
variables

d p~dzd p&dz' l4~ l(p~, z, p&, z')l t'
2 m + p& m, + p& l

4(2 )' (1-")("- )( -&) ~
(3.16)

where m2 = (P —p)2, Eq. (3.7).
Equation (3.16) describes the lowest-order gluon emis-

sion contribution to the structure function To. The total
contribution of gluon emission to To corresponds to the
sum of all ladder diagrams. It can be done using the
same procedure as for instance in [11,12]. Our modifi-
cation consists only of replacement of the struck quark
mass m by m, Eq. (3.7). Eventually, it will modify the
evolution equation [13]by the replacement of the Bjorken
scaling variable x by x, Eq. (3.8), for m, given by Eq.
(3.15).

C. Approximation

A considerable simplification can be achieved if we ap-
proximate m, as an effective spectator mass to depend
only on external momenta. Since z ~ x x and z' z,
one gets, from Eq. (3.15),

are emitted and m, increases (x (1 —x). The coefficient
C(x, Q ) in Eq. (3.17) determines the rate of increase
of the spectator mass with Q and x. It can be found
self-consistently &om the evolution equation. However,
when x 1, one can take C(x, Q ) C(1, Q ) const,
because the Q dependence of the spectator mass is less
important than its x dependence near the elastic thresh-
old. I et us roughly estimate the value of C by using
the Weizsacker-Williams or "equivalent photon" approx-
imation, utilized in Ref. [14] for derivation of the evo-
lution equation. One finds from [14] that the light-cone
fraction of the "equivalent" gluon, z —z' (Fig. 8) is of
order n, ln(Q2/Q02) in the region of large x. However,

/%0 is also about the same order of magnitude.(x) (o)

Then, as follows from Eq. (3.15), C ((y'z —pz)z), so
that one could expect to find C on the scale of (GeV)2.

IV. CORRECTION TERM

m,' = m„'+ C(x, Q2) (1 —x) . (3.17)

In this case of the ofF-shell mass m of the struck quark,
Eq. (3.7), becomes independent of z', p'&. This allows us
to integrate over z', p'& in Eq. (3.16), thus reducing it to
the form of Eq. (3.6) [or (3.3)]. Finally one can sum all

the ladder diagrams, Xz' such that l4~ l(p~, z)lz in Eq.
(3.6) is replaced by u(p~, z, Q ), which is a probability to
And a struck quark with momentum p inside the nucleon,
and a spectator with any number of gluons. The latter
gives rise to logarithmic corrections to scaling.

Equation (3.17) for the invariant spectator mass looks
quite appealing apart &om its relation to Eq. (3.15). In-
deed, x = 1 corresponds to elastic scattering, when no
gluons are emitted. Therefore in this case the spectator
is represented by a diquark. When x decreases, gluons

m*v
u ~@= + (4 1)

where m* = M —m„and also the Green's function g,
Eq. (2.14), reads

1

2lql(». + u+ i.) (4.2)

Then the first-order correction term Wi, Eq. (2.19), be-
comes

Consider the ffrst correction Xi/Q2, Eq. (2.15), to the
leading term To. In order to simplify the evaluation of
Xq, Eq. (2.19), we take the large spectator mass limit
m, )) lpl, so that g, m b(po —m, )/2m, . In the same
limit one gets, from Eq. (3.4),

1 d pd p'~(
)

[q (p —p')] V(p —p') ~(,)2' (2~)s (p, + y+ ie)'(p', + y+ ie)2

where q = q/lql, and

~2 Q2 Mx Mx
Ag ——— for Q~ moo.

q2 4m, v 2m, (1+4M2x2/Q2) 2m,
(4.4)

It is convenient to evaluate. the terms X; in (2.15) using coordinate representation. Substituting

dj(p) = f e*+ d(v)d'e, '
V(p —p') = f e'~& & ~'"v(vjd e, (4.5)

into Eqs. (3.3), (4.3), one obtains after some algebra [15]: the following expressions for the two first terms of the
expansion (2.15):
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(5.2)
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FIG. 11. Proton structure function in the asymptotic re-
gion, f+(x) = Fz (x, 250), given by the fit, Eq. (5.1). Three
data points are taken froin [1]. The dashed part of the curve
lies in the region outside the data [1].

that region of Q the scaling variable x is very close to
x, and therefore Ez (x, 250) = Fz (x, 250) (see Fig. 10).
The corresponding "asymptotic" proton structure func-
tion f"(z) = I"z (x, 250), obtained from the fit (5.1), is
shown in Fig. 11, together with three data points for
Q2 = 250 (GeV/c)2. The dotted part corresponds to the
same fit, Eq. (5.1), extended beyond the limit of the data
(x ) 0.75). The scaling of the structure function in the
z variable, F&+(x, Q ) = f"(x), generates the Q2 depen-
dence of the same structure function taken at constant
x:

Then the deviations of Eq. (5.2) from the data would
explicitly show what part of the x-scaling violations is
not incorporated in the variable x.

The results of this analysis are presented in Fig. 12,
with Ff (z, Q2), Eq. (5.2), given by dashed lines. As
in the previous analysis (Fig. 10) the spectator has been
taken to be a diquark, m, = mp ——850 MeV and C = 0 in
Eq. (3.17). One sees that the Q dependence of x = 0.75
is well reproduced. The Q2 dependence of the other data
sets is reproduced. only partially, and the deviations &om
data increase for smaller x. However, the increase of
spectator mass, m„as 1 —x, Eq. (3.17), can well in-
fluence the Q2 dependence even in the region of small
x. The evolution of the spectator mass with x and Q~
is given by the coefficient C in Eq. (3.17). For large z
this coefficient can be taken as a constant. It then may
be extracted Rom data by requiring that Eq. (5.2) re-
produce two large x data sets, for instance, x = 0.75 and
x = 0.65. Since each data set is fitted by adjusting the
spectator mass m„Eq. (3.17) fixes also the parameter
mp, which is the value of diquark mass in the elastic limit
(x = 1). Since in this limit the nucleon is not excited, one
expects mg to be on the order of two constituent quark
masses, i.e., 500—1000 MeV [16—18]. It appears, however,
that the two data sets cannot be fitted with such values
of m~, but only with m~ = 0 and C = 3 (GeV)2. This
corresponds to a spectator built out of very light quarks.

Taking rn& = 0 in Eq. (3.17), we find, for the scaling
variable z, Eq. (3.8),

z + /1 / 4M2z2/q2 —g(1 —z)2 + 4C(1 z)z2/q2
1 + Ql + 4M2x2/Q2

(5.3)

One gets f'rom Eq. (5.3) that z = 1 for x = 1, so that
the two scaling variables vary within the same limits.

The proton structure function given by Eqs. (5.2),
(5.3) for C = 3 is shown in Fig. 13 by dashed lines.

I

Rather good agreement with the data is observed even
for x ( 0.65, although one expects large logarithmic cor-
rections in this region and also the variation of C should
be taken into account when x is far &om 1. It is therefore
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FIG. 12. Q dependence of the structure
function E~ (x, Q ), which corresponds to
scaling in the variable x, Eq. (5.2). The
spectator is taken to be a diquark of mass
m, = mg ——850 MeV.
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FIG. 13. The same as in Fig. 12, but
where the spectator mass is a function of x,
Eq. (3.17), for mq = 0 and C = 3 (GeV)

0.01-
x = 0.75
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of greater interest to make a comparison for x ) 0.75.
We show in Fig. 14(a) the data for the proton struc-
ture function taken from new SLAC measurements in
the threshold region for 7 ( Q2 ( 30 (GeV/c)2 [19],
together with three high-statistics spectra for Q2=5.9,
7.9, and 9.8 (GeV/c) Rom a previous SLAC experiment

0. 01
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0.00005

0.00001 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0 ' 005

(b)
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FIG. 14. The structure function in the region of large x
for 7 ( q ( 30 (GeV/c) [19,20], plotted (a) as a func-
tion of the scaling variable z and (b) as a function of the
scaling variable x, Eq. (5.3). Three high-statistics data
sets [20] for q =5.9, 7.9, and 9.8 (GeV/c) are marked
by +, x, and g, respectively. The solid curve and the
dashed curves correspond to the asymptotic structure func-
tion, shown in Fig. 11. The dot-dashed curve in (b) corre-
sponds to I'~"(z, Q ) = 1.5(1 —z) ' .

[20]. These data do not scale either in the variable x
[Fig. 14(a)] or in the Nachtmann variable ( [19]. In con-
trast, excellent scaling [Fig. 14(b)] is observed when the
data are plotted as a function of z, Eq. (5.3), with C=3.
It is even more remarkable that the structure function
obtained from these data completely coincides with the
asymptotic structure function f&(z) = Pz (z, 250) taken
from BCDMC experiment (Fig. 11) and shown by the
solid line. This con6rms the dominance of the quasifree
term Xo, Eq. (2.15), which is in line with our estimates in
the previous section. Indeed, the lowest correction term
Xi is proportional to y, Eq. (4.8). Since y = 0 for x = 1
and m, = 0, Eq. (3.5), it follows that Xi ~ 0 near the
elastic threshold.

The analysis of the large x data [19,20] [Fig. 14(b)]
allows us to extract the asymptotic structure function
f"(x) = F2 (x, Q ), up to x & 0.95. We find that f"(x)
is clearly below the dashed curve for x & 0.8, which
is the fit (5.1), extended outside the data, Fig. 11. It
means that the fit (5.1) is not applicable in that region.
It was shown by Drell and Yan [21] and West [22] that
the threshold (x ~ 1) behavior of the asymptotic struc-
ture function is correlated with the large Q behavior of
the elastic form factor. Using quark counting arguments
one obtains f"(z) (1 —x) . However, additional QCD
eKects may electively increase the value of the exponent
[23]. This prediction can be checked by a comparison
with the structure function that we extracted from the
data. We find it well described by f"(x) = 1.5(1 —x)s 7

for x + 0.75 [the dot-dashed curve in Fig. 14(b)].
With the asymptotic structure function fr (x), ex-

tracted from the experiment [1,19,20], we can predict
the structure function at large values of x from moder-
ate up to very high values of Q2. The results are shown
in Fig. 15. The dashed lines correspond to Eq. (5.2),
with the asymptotic structure function f"(x) given by
the fit (5.1) for x ( 0.78, Q = 250 (GeV/c), and
f"(x) = 1.5(1 —x) for x & 0.78. We plot also a few
available data points, taken from old SLAC-MIT mea-
surements [24], for x = 0.78, 0.82, and 0.86. Again our
predictions are in full agreement with the data. Still a
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FIG. 15. Predictions far the structure
function I'2 (x, Q ) in the region of large x.
The data points [24] correspond to x =0.78
(+), 0.82 (x), 0.86 (g).
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check of our predictions for higher Q2 would be of greater
interest, since we predict a significant nonlogarithmic Q2
dependence for large x, Fig. 15. In fact, as foDows from
our analysis, none of the large x data (x ) 0.5) exhibit
any substantial deviations &om x scaling. Therefore,
measurements for high Q would be extremely impor-
tant in order to establish the importance of logarithmic
corrections in the large x region.

VI. SUMMAR. V

In this paper we concentrated on efI'ects of confinement
in deep inelastic scattering. Using the framework of the
Bethe-Salpeter equation, we found a new expansion of
the structure function in powers of 1/Q that is free of
in&ared singularities and diminishes corrections to the
zero-order term. The zero-order term describes scatter-
ing oK a &ee oK-mass-sheD parton, which keeps the same
oK-sheD mass in the Anal state. We evaluated correc-
tions &om higher-order terms for the case of a linear-
rising confining potential, and found them small even for
rather low values of Q . It allows us to consider the zero-
order (quasi&ee) term as a good approximation for the
structure function, valid in the entire Q2 region.

By analyzing the quasifree term we found it depends
on the scaling variable x. This variable coincides with
the Bjorken variable x in the limit Q2 -+ oo. However,
at finite Q2 the variables x and z are quite different:
z —z m2/(1 —z)Q2, where m, is the invariant mass of
the spectator particles. It implies that 1/Q2 corrections
to the x scaling would be much larger than those obtained
in perturbative calculations, especially in the region of
large x. These corrections could be very appreciable also
at small x, since the spectator mass increases with (1—
z) due to gluons emission. However, the evaluation of
the spectator mass at small x depends on knowledge of
its Q2 dependence, which can be obtained by using the
evolution equation. In this paper we limited our analysis
to the large x region, where the Q2 dependence of the
spectator mass m, is less important.

Using simple arguments we showed that I,, = m& +

C(l —z) for x & 1. Here mq is the diquark mass, since
there is no gluon emission at the elastic threshold. First
we analyzed the data for the proton structure function by
taking for mg values of 500—1000 MeV, i.e. , on the order
of two constituent quark masses, and taking C = 0. Even
though we found that scaling in x is certainly better than
that in x, the scaling deviations are still considerable, es-
pecially when x approaches the elastic threshold. Next
we included the gluon emission contribution to the spec-
tator mass by taking C g 0. However, instead of taking
for the diquark mass, mp, the values &om constituent
quark models, we considered the nucleon structure func-
tion data as a source of information for the value of mg.
We found that all large z data (x ) 0.5) display perfect
scaling in the x variable for C = 3 and mg = 0, which
corresponds to very light quarks.

Since x -+ x for Q + oo, the perfect scaling in the x
variable allows us to arrive at the Bjorken limit already at
moderate values of Q . Thus our analysis of the proton
structure function near elastic threshold shows that E2
(1—x) ' for x -+ 1. This is different from the theoretical
results based on simple quark counting arguments, which
predict I'2 - (1 —x)s.

Until now the measurements of the structure function
for large values of x (x ) 0.75) have not been extended
beyond Q 25 (GeV/c) . The present large x data
are in full agreement with our predictions based on x
scaling, and thus do not display any noticeable effects
of logarithmic terms. It would be very interesting to
extend the measurements to higher values of Q . x scal-
ing predicts a distinctive Q dependence in the structure
function I"(z, Q ) at large fixed values of the Bjorken
variable x. Hence, the deviations from our predictions
would establish the magnitude of the logarithmic scaling
violations at large x.
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