
PHYSICAL REVIEW D VOLUME 52, NUMBER 3 1 AUGUST 1995
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We propose a representation of four-fermion processes at one loop, at variable c.m. energy,
in which the theoretical input contains certain quantities measured on top of the Z resonance at
CERN LEP 1 and SLC, rather than the more familiar input parameter G„. This choice allows
the calculation of the "residual" one-loop expressions in a way that exhibits interesting properties
for cases of new physics, as shown with two speci6c examples of models of technicolor-type and of
models with anomalous triple gauge couplings.

PACS number(s): 12.60.—i, 13.10.+q, 14.70.Hp

I. INTRODUCTION

Whenever a search of virtual effects (characteristic of
some theoretical model to be tested at a certain level)
is performed in a high-precision measurement, two the-
oretical assumptions are normally implicitly considered
as trivial necessary conditions in order that the program
may become successful. The first one is that the values
of those parameters to be considered as an input in the
theoretical formulas must be known with a "suitable" ac-
curacy, which means in practice that the possible error
that affects them can be considered as negligibly small
with respect to the experimental one of the high-precision
test which is proposed. The second request is that the
theoretical calculation of the virtual effect for a certain
model may be actually performed in a clean reasonable
way, without introducing too many extra ad hot" assump-
tions that would induce an unpleasant loss of generality,
or of reliability, of the calculation.

A priori, it would appear natural to consider these two
assumptions as totally unrelated and not mutually inter-
acting. In this sense, choosing the "best" input param-
eters would simply mean selecting those that are known
with the maximum accuracy. Once this selection is made,
the calculation of the relevant virtual effects proceeds,
meeting or avoiding computational difEculties that are,
in a sense, intrinsic to the specific model.

To produce an illustrative example of this (vague)
statement, consider the case of the calculation of pos-
sible technicolor efFects on electroweak observables sub-
ject to very accurate measurements. Choosing as con-
venient qualities the Altarelli-Barbieri eq, c3 parameters
[1], one normally proceeds by first writing a theoret-
ical expression for Z leptonic observables which con-
tains as input quantities the "canonical" best set, i.e. ,
n = aclED(0), G„, derived &om the muon lifetime, and
Mz. Then the calculation of technicolor effects proceeds
in the way first illustrated by Peskin and Takeuchi [2]. In
particular, one sees that the effect on e3, or on the origi-
nal Peskin-Takeuchi parameter 8, can be calculated in a

"clean" and reasonable way by resorting to unsubtracted
dispersion relations, without great loss of generality of
the considered model. On the contrary, the calculation
for ei (or T) is much more delicate and model depen-
dent in this case, involving the quantity where custodial
symmetry is broken from fermion masses. Here the (still
ambiguous) fine details of the model become doxninant,
and. in conclusion it appears difBcult to derive &om the
measured value of this parameter suKciently general in-
dications on technicolor [2].

In the considered example, certain quantities measured
on the Z peak were involved. In particular, the lep-
tonic width of the Z, I'i, and the effective angle s2tr(M&~)
measured at the Z-peak mass [3] were the two relevant
observables whose theoretical expression was written in
terms of xx.', G„, Mz (the "input" set) and ex, es (the
"test" parameters). With this choice, the results of mea-
surement of I i, s2tx(M&~) provide values of sx s, and thus
allow test of a number of models "beyond" the mini-
mal standard model (MSM) froxn the analysis of their
possible virtual effects on four-fermion processes at total
center-of-mass energy ~q2 = Mz.

Four-fermion process at ~q2 ) Mz will be measured
either in the very near future at the CERN e+e collider
I EP 2, or long term at a more powerful new linear col-
lider (NLC). Although the main aim of these machines
will undoubtedly be that of direct production of as-yet
undiscovered particles, the calculation of virtual effects
will still be a very important activity either to investigate
the fine details of possible new models, or to try again,
in the less exciting case of no direct discovery, to iden-
tify small deviations kom the MSM predictions for suit-
ably chosen "test" parameters. In this case, one might
imagine generalizing the previous parameterization al-
ready used on top of the Z resonance, and in principle the
choice of o., G„, Mz as input parameters would appear
a priori the most convenient. In fact, one might imagine
trading some of these parameters with other, new quan-
tities measured, e.g. , on Z resonance, typically, say, I'~.
But at first sight this would seem not very convenient
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since, for example, the relative error on G„( 2 x 10 4)
is still suKciently smaller than that on I'~( 2 x 10 ),
and therefore one would feel that G„ is, in any case, a
better parameter than I'~ for a theoretical description of
such four-fermion processes at ~q2 ) Mz.

The main goal of this paper is that of showing that the
previous feeling is not always correct. To be more pre-
cise, we shall demonstrate that, if a calculation of virtual
efI'ects of popular existing models "beyond" the MSM
has to be performed, the replacement of G„by I'~ [and,
also, the introduction of s,z(MZ) as an input param-
eter] would be extremely useful for computational pur-
poses. This is due to the fact that, as we shall explicitly
show, the choice of the input parameters and the theo-
retical features of the related "test" parameters are now
strictly correlated. In particular, a proper choice of the
input set (the one that we propose in this paper) allows
the "reabsorption" of' quantities that would systemati-
cally introduce, in the test parameters, the most heavily
model-dependent features of the models to be tested.

Technically, this paper is organized as follows. Section
II contains a brief description of the method, for the par-
ticularly simple case of final leptonic states. Section III
is devoted to the two particularly illustrative examples of
"technicolor-type" models and of models with anomalous
triple gauge boson couplings. Section IV contains a final
discussion and our conclusions.

(2)

'
(~21~~ '(0)l~i)

8p Cp

with J„'( defined in the conventional way: i.e. ,

(4)

(z) w 1= ) .20 ['Y gv;O'Y 'Y59A, O]0'.

(g~; 0 = Isl, ,; and gv. ; o ——Isl, ; —2Q, so.)
The decomposition of A( ) given here is "along" the

three possible independent I orentz structures that may
arise at one loop for massless final leptons, that might be
indicated as (pp), (zz), and pz), respectively. Since A( )

is automatically gauge independent, the same property
must obviously be true for the multiplicative coefFicients
of the three independent structures. These are made by
certain combinations of transverse self-energies, general-
ized vertices (i.e. , with external ferrnion self-energies al-
ready included), and boxes (tadpoles are already included
in the calculation). Denoting the transverse self-energies
as

II. THE METH(3I3

A. The unsubtracted representation

We consider the process of electron-positron annihila-
tion into a charged fermion-antifermion couple at c.m.
energy ~q2 ) Mz. Although this is by no means es-
sential, we shall first consider the case where the final
fermions are massless leptons (not electrons). The gener-
alizations to final, possible massive, quarks are straight-
forward but only slightly more involved, and will be given
in a difI'erent paper.

The starting point of our analysis is the theoretical
expression of the invariant scattering amplitude at one
loop (the realistic limit of perturbation expansions for
the considered electroweak processes). Ae this level, we
shall find it rather convenient to use the decomposition

A(', )(q, g) = v~~)v(~)" 1 —F—~(q, o)

i (z)„(z)„AZ(q2 0)
2 M2 P 2 M2oz & oz

A, (q ) = A;(0) + q F, (q )

(i = p, z, pz), with A~(0) = A~, (0) = 0 (which can al-
ways be achieved by properly reabsorbing a vertex term
[4]), one finds that the three independent coefficients as-
sume the form

F~(q, g) = F~(q ) —2(I ~~), v~~ ) —A, ( (q, g), (7)

z(q & ) z(q ) 2(p(z) (z)i A(i}(&)( 2 Oi

(q2 0) F z(q2) (I (z) v(~))

—M2oz (I (p) „(z))
g

2 s

—(q —Moz)A„Z (q, g).

The meaning of the parentheses (I'~, v„) is the following.
We have defined the "generalized" weak vertex contribu-
tion, e.g. , of Fig. 1, as

', v(»v(z» F (q' 0)

A(~)(»' &) ~ (P) I (P)P
el 2 P (10)

A(1) (@ED)
el

A few words of comment on Eq. (1) are now appropri-
ate. We have introduced the following "generalized" bare
vertices:

where v„ is defined by Eq. (2).
The one-loop generalized weak vertex initiated by a

final p will always be decomposable onto the two "or-
thogonal" directions v„,v~ with certain c-number co-
efficients, and in this sense we shall write
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A„(q 0) = v—~ l v ~~l" 1 —F~ (q, 0)

FIG. 1. Schematization of a one-loop eKect with final pho-
ton "generalized" vertex, following the approach of [4].

+ V{1)(Z)V(1)(Z)p,

q —MOZ

+ "QEIY'
I

Az(q', 0)
q —M

(12)

1(~l (1(~) v(~l)v(~)+ (I (&) v(zlvz
s u ~ v u

where the definition of v~ is formally identical to that
of the corresponding bare quantity v& [Eqs. (3) and (5)]
but with the formal replacement

Analogous decompositions will be obtainable for the
other (initial p, initial, and final Z) weak vertices. Thus,
one sees that the diagram of Fig. 1 contributes at one
loop both to the (pp) and the (pZ) Lorentz structures,
and similar properties are valid for the other vertices.
This is a known feature of the vertex component of the
one-loop amplitude that has already been stressed, e.g. ,
in a previous paper by Degrassi and Sirlin [4], to whose
philosophy we shall stick to here. In fact, not to generate
unnecessary confusion, we have tried to retain the same
definitions as in [4] so that our vertices I ~~l, I'~~ l are ex-
actly the quantities I'~, I'z defined by Eqs. (24) and
(25) of that paper, in which a full discussion of the vari-
ous contributions, including their gauge-dependent parts,
was also given.

In a perfectly analogous way, one can decompose the
fraction of A~ l coming from "genuine weak" (i.e. , WW
and ZZ) boxes—:A~il~ l onto the three independent
Lorentz structures of this process [5]. This decomposi-
tion is known and available in the literature [6], and we
shall not give explicit expressions here.

Note that in Eq. (1) we still have bare masses and cou-
plings everywhere. Note also that we have left out and
explicitly denoted as A( )( ) the part of A( ) that is
not "genuinely" weak. This consists of "classical" QED
"radiation" diagrams, plus QED vertices and pp and
pZ boxes, that are already gauge invariant and must
be treated separately and considered, at any q value,
a "known" contribution to the various structures to be
evaluated numerically by some appropriate numerical,
apparatus-dependent program [6].

To verify the gauge independence of the three combina-
tions defined by Eqs. (7)—(9) is straightforward and par-
ticularly easy if one follows the Degrassi-Sirlin approach
[4], as we did in this paper. This is an important check,
particularly when calculations of extra efFects will have
to be performed in models of new physics that will in-
troduce an extra explicit gauge dependence (for instance,
models with anomalous triple gauge couplings).

Having illustrated (we hope in a clear and self-
consistent way) our starting equation (1), we can now
proceed with the derivation of our method. The next
and immediate step is that of realizing that, at the pure
one-loop level (i.e. , throwing away systematically terms
that are formally of a higher order in the perturbative
expansion), Eq. (1) can be rewritten in a remarkably
simple way, i.e. , as

9vt, o ~ 9vt = 9vt o+ 2siciF~z(q, 9)(1) 2

(no change on the contrary for the axial coupling
9~~,0), where

KCI
sici=, si = 1 —ci 0.212.

2G„Mz2
(14)

Equation (12) concludes the first part of this section. It
can be viewed as a "normal" representation for the scat-
tering amplitude at one loop that contains bare quantities
and certain "coefI1cients" E~, Az, E~z. From a technical
point of view, it has the nice feature that the "genuine"
electroweak component has, formally, the same Lorentz
structure as at the tree level, with a number of precisely
given replacements. This allows us to write immediately
the one-loop expressions of the "electroweak" component
of all independent observables of e+e ~ 1+I process,
once the corresponding tree-level formulas are given. But
when doing that, one must also replace all the bare quan-
tities with corresponding physical ones, making sure that
all infinities cancel separately in the various structures.
It is at this stage that the choice of a specific input set
becomes relevant. This will be discussed in detail in the
second part of this section.

B. The Z-peak subtracted representation

(15)

where F~(q2) is obtained by integrating over the c.m.
angle 0 in the difFerential cross section the combination
of self-energy, vertices, and boxes that belonged to the

To illustrate with a particularly simple example the
philosophy of our approach, we consider the case of the
pure photonic contribution at one loop to the electron-
muon cross section o„(q ). To obtain this term is trivial
(&om our previous discussion), once the corresponding
tree-level expression is known. In fact, the expressions
of the various observables at tree level have already been
explicitly given in a previous paper [7], where a prelimi-
nary presentation of our method (that did not take into
account the complete set of one-loop virtual effects) was
given, and we shall not rewrite them here. The term that
we want to consider thus becomes
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(pp) structure in Eq. (12). In fact, Eq. (15) is usually
written in a much more convenient form by resorting to
the familiar definition of physical charge as the residue
of the photon pole:

n—:n(0)—:np(1 —P~(p) )—:np —An (16)

(where the bare quantity np is e2p/4~), which enables us
to write

o.&'&&~~&(q ) =
(

—vrq'
) (

—,
[

[1+2Ao.(q )), (17)
(4,) 6n&

) ~q')

where

A (q') —= «[F (o) —F.(q')).

Thus, replacing the bare charge with the photon "pole
residue" leaves us with a "photon pole-subtracted" pa-
rameter to be calculated in the theoretical expression. As
is well known, this (trivial) fact already has a great im-
portance at a rather elementary level, since, for instance,
its self-energy hadronic contribution can always be calcu-
lated via an unsubtracted dispersion relation, i.e., with-
out introducing extra model-dependent assumptions [8].

We want to show that a remarkably analogous picture
can be obtained for the remaining contributions to the
various observables of the process, the "photon pole" be-
ing naturally replaced by the "Z peak. " With this aim,
we first consider the pure Z contribution to the muon
cross section. At one loop, this reads

'(q') =
I

— q'
I

g' .(1+ [1 —4 '(q'))')(4
gs (3 ) 4 A./, p

q Mz+iMz&z(q ) ~
Gw Mz )

ii'(q~, 8)—:s', (1+ E~'(q', 8))

with

Ar. '(q, 8) = 'E~z(q, 8)—
Sy

c', (A+ 2

AMz2 )
(21)

and Iz(q ) is the result of the analogous operation on the
quantity

2

Iz (q, ~) =
2 «[Fz (q ~ 0) —Fz (Mz ~ ~)] (22)

while I z is the conventionally defined q -dependent Z
width that will disappear in practice for the relevant val-
ues q )) M

Here s& (q ) is the result of the cose integration in the
differential cross section of the combination

q2-dependent combinations defined by Eqs. (20)—(22).
One can use it and calculate the "test parameters" both
in the MSM and in models of physics beyond it. An al-
ternative possibility is provided by the observation that,
at the Z-peak squared energy q = Mz, the following
properties are exactly verified:

SG„ReAz (0)
G M2

P z
(24)

where sq is the original Altarelli-Barbieri parameter [1],
and

sl (Mz) —s ff(Mz)

where s,ff(Mz) is the quantity measured on the peak of
the Z resonance in the conventional definition adopted
by the various LEP1 groups [3].

If one now remembers the exact definition of the lep-
tonic Z width [9],

Az
z z= ~ ~

1+ReAz
(23)

Equation (19) provides a representation of the pure-Z
contribution to 0„ that contains the input parameters o.
(implicitly in the one-loop terms), Mz and G~, plus the

I

[1+ )&',o(1+ [1 —4 .'(M')1') (26)
6vr 2

one easily realizes that, by simply properly "subtracting"
in Eq. (19) the combinations Iz(Mz2) and s&~(Mz2) calcu-
lated at the Z peak, one can rewrite the same one-loop
expression in the form

1 16(l —4s2) cps, V(q2)

3 M [(q2 —M2)2+ M I' ] (1+ [1 —4s (M )] )
(27)

where in the combinations

R(q ) = Iz(q ) —Iz(Mz),
V(q ) = Re[Fez(q ) —Fpz(Mz)])

(28)

(29)

I

a "subtraction" at the Z peak has been performed.
By comparing the two perfectly equivalent represen-

tations Eqs. (19) and (27), one sees that in the second
one G„has been "traded" for I'~. The consequence of
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this operation is that the related "test" parameters have
become the subtracted quantities B(q ), V(q ). The es-
sential feature of this exchange is that B,V no longer
contain the q -independent quantities that enter into the
parentheses of Eqs. (18) and (21). This will be the main
point when calculations for models of new physics will
have to be performed.

The operation that we have described can be repeated
in other observables. In practice, only one new situation
is met in the calculation of the final w polarization at one
loop (or, alternatively, of the longitudinal polarization
asymmetry for leptons). Here the relevant expressions at
one loop would also be proportional to the quantity

v, (q') —= 1 —4s,'(q').

This can be written at one loop as

v((q ) = v((Mz) 1 — V(q )
v) Mz2

i.e. , again in terms of the subtracted parameter V(q2) and
of a quantity measured on top of the Z resonance, more
precisely a certain linear function of s2&(Mz2). No other
independent input on "test" parameters are required to
describe the set of leptonic processes.

It can be useful at this point to give an approximate
expression, where only the relevant terms have been re-
tained, for the three independent leptonic observables:
i.e. , the muon cross section, the forward-backward muon
asymmetry, and the final 7 polarization asymmetry. In
the "Z-peak subtracted" representation they read

- 2

(q ) =
~

—sq I
[1+2K (q )]

1 16(1 —4s, )cj sgV(q')+
[( ~ —M,') + M,'r', ] M

' q [1+ -,'(M,')] (32)

FB,~(q ) 4 (1) 2 q2 M (q2 M2)2 + M2P2 1 + v2(M2) [
30'p, q W

4 q' l 3r A(M') q ™z(3
(q2 —M,')2+ M2r2 q2 qM y A(Mz)

where

2v)(Mz)
A(Mz) =

2( 2).

Equations (32)—(34) are the main result of our paper.
They provide the "Z-peak-subtracted" representation of
four lepton processes that, we believe, turns out to be
particularly convenient if one wants to calculate the ef-
fects of models of new physics. They contain n, Mz, and
two more quantities directly measured at the Z peak: i.e.,
I'~ and v~(Mz2) [or A(M)2z)]. The latter can be consid-
ered, in the zero-width approximation, as the "residues"
of the Z propagator and of the p-Z self-energy. In strict
analogy with the photon case, the "residual" coefFicients
are differences of functions, "subtracted" at the Z peak.
We still have to show that these coefFicients are particu-
larly convenient for an evaluation in models beyond the
MSM. This will be done in Sec. III for two specific and
particularly illustrative cases.

III. APPLICATIONS

A. Models of "technicolor type"

The example of models of "technicolor type, " i.e. , with
some vector resonance strongly coupled to the known

gauge bosons, has already been discussed in great detail
in [7]. This is particularly illustrative of the advantages
of our representation. In fact, had one used a conven-
tional parametrization of the type shown in Eq. (19),
the contribution of such models, that by definition can-
not be treated perturbatively, would be hard to estimate.
In particular, the q -independent terms in the various
brackets would contain the custodial-symmetry-violating
self-energy component called Ap(0) and other transverse
self-energies not obeying any unsubtracted dispersion re-
lation. By reabsorbing all such terms in the Z-peak ob-
servables, one is left with differences of quantities, whose
self-energy components (the only ones that this model af-
fects) do satisfy an unsubtracted dispersion relation (one
may say that the relative subtraction constant is pro-
vided by Z-peak measurements) and may therefore be
estimated in a "reasonable" way, i.e, one that is indepen-
dent of several of the "fine" details of such models.

A full discussion of this case has already been given
in [7]. In order to make this paper as self-contained as
possible, we sketch here very briefly the main points and
technical features of the relevant calculation.

We shall assume that a couple of vector and axial-
vector resonances, to be generically called V and A, with
unknown (but larger than ~q~) masses and unknown
but "reasonable" widths, exist and that these particles
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are strongly coupled to the conventionally defined vector
and axial components of the transverse self-energies, ex-
actly like a p and an Aq in the corresponding QCD case,
with strengths E~ and F~ of typical strong interaction
size. We shall also assume that there are no apprecia-

I

hie eKects kom u-like resonances coupled to the "hyper-
charge" component. With standard isospin decomposi-
tion of the resonant contribution to the imaginary parts
of our An(q ), R(q ), V(q ) quantities, one is then led
to the "effective" representations

An(q') = P' ds Rvv(s)
(s —q2)s ' (36)

n(q' —Mz) (1 —2s~)' sds t' R~~(s)
3' 4s2c2 o (s —q )(s —Mz2) ( (1 —2s2, )2) ' (37)

&(q') =—a'(q2 Mz2) 1 2

37t 28y C]

ds Rv v(s)
(s —q2) (s —Mz2)

To Bx the normalization of our search, we remind the
reader that the quantity originally called 9 in [2] was
given by the expression

d8—[Rvv (s) —R~~(s)].

ds [Rv v (s) —R~~ (s)] = 127r F (41)

[only the positivity of Eq. (41) has been exploited, since
the value of F is strongly model dependent],

dss[RI I (s) —R~~(s)] = 0, (42)
In order to show the main features of our approach,

we shall proceed to an illustration using the following
oversimplified representation of the two resonances:

and we made use of the experimental constraint [10] on
the parameter S:

R, = 127r Ii, h(s —m, ). (40) —1 & 8 & 0 5(2o). (43)

Our investigation now proceeds in two steps. First, we
assume as we did in [7] the validity of the two Weinberg
sum rules [ll] (but only fully exploited the consequences
of the second one),

600 '

550-

Figures 2 and 3 show the discovery limits for the masses
of a couple of vector and axial resonances for ~q2 = 190
and 500 GeV, respectively, using realistic experimental
accuracies as fully discussed in [7,11]. For a more com-
plete discussion we refer to previous references [8,12].
One sees that discovery limits ("almost" suitable at 500
GeV) would be rather poor at LEP2, unless for some rea-
son a techniresonance of much smaller mass than in the
canonical schemes [13] did exist [14].

500-

U 450-

400-

350-

300-

V q2 = 190 GeV

2000
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1600)
1400
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Mv (GeV}

1200

1000-
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FIG. 2. Discovery limits in the (M&, Mz) plane for a cou-
ple of vector and axial-vector strong resonances assuming the
validity of the two steinberg suxn rules and using the experi-
mental constraint on S, for ~q2 = 190 GeV. The line corre-
sponds to the indicative QCD value M~ = 1.6Mv, analogous
to the Aq and p case.

800—
I

800
I I I I

1000 1200 1400 1600
Mv (GeV)

FIG. 3. Same as Fig. 1 for ~q2=500 GeV.



52 Z-PEAK SUBTRACTED REPRESENTATION OF FOUR-FERMION. . . 1375

B. Models with anomalous triple gauge couplings

As a second, and also a particularly illustrative, ex-
ample we choose that of models with anomalous triple
gauge boson couplings [15]. In such models, contribu-
tions generally arise both to self-energies and to vertices,
and the knowledge of the proper gauge-invariant combi-
nations that make up L, B, and V is therefore essential.
Here we shall choose the case of a general, dimension-
six, fully SU(2)1, xU(1)y. symmetric effective Lagrangian
that conserves both C and CP, and is realized in a lin-
ear way, i.e., with the standard Higgs doublet, recently
illustrated by Hagiwara, Ishihara, Szalapski, and Zep-
penfeld [16], whose notations we shall keep. In such a
model, four of the independent operators contribute at
tree level and five difFerent ("blind" ) ones contribute at
one loop the various vertices and boxes, making a total
of nine arbitrary parameters (plus the unknown Higgs
boson mass and the scale A, usually assumed to be
1 TeV). To derive bounds or information on this model
from a small number of experiments clearly represents a
nontrivial task [17].

To visualize the (positive) infiuence of our representa-
tion in this case, we consider erst the contribution of this
model to the pure photonic contribution A (q ). This is
in fact already computed in [16], and reads [we denote
by (A) the anomalous contributions to the various com-
binations]

where f&w & are the renormalized expressions of the tree-
7

level q -independent parameters fDw~ that appear in
the effective Lagrangian. We see therefore that one be-
gins with two parameters in the single observable pure
photon combination.

When we move to the pure Z combination, we may try
to use the "unsubtracted" representation of Eq. (19). We
find in this case the following result for the term in the
large parentheses:

(ac„Az(0)
z )G M

one finds a q -independent contribution that contains a
certain combination of f& i and of the fourth renormal-
ized parameter of the model f&w, and another different
combination of fDw z.

G
Sl ('q ) f (fp, l ) fHW) + ~

2 g(fDW, B)1

2 2 CV~"l(q') = 8«q, ' f" ———' f" . (48)
A 8y Cy

From Eqs. (37), (40), and (41), one can easily calculate
the anomalous effect on the various leptonic observables.
To give a more quantitative estimate, we have written
here the approximate effects, only considering leading
terms in each case. These are precisely (relative effects
are shown)bo-„q(A) 2

=- —16«~, [faw + fDa]
CTp

(49)

8am fDw I

1—
FB,p ",)

(5o)

where f, g are two linear functions of fy i, f&w, and
f&w&, whose explicit expression can be easily calcu-
lated. The result of this approach is that, retaining the
unsubtracted representation, four different renormalized
parameters of the model would enter into the theoretical
expression of the three available observables. Note that
adding extra realistic hadronic observables would intro-
duce other parameters, e.g. , related to the Zbb vertex.

This situation changes drastically if we use the
subtracted representation. In this case all the q-
independent parameters (that are, incidentally, the most
heavily model-dependent, as shown in [16]) are automat-
ically reabsorbed in the definition of Ii and s2&(M&~),
and one is left with two independent parameters entering
(three) difFerent combinations. More precisely, one has
now the following expressions of B,V:

2 2 c2 2

&'"'(q') =8, —', fL w+ —'f
1

,~, f+, 1 I

—8«~, I

—2fDw+ 2fDB I—
(45)

One sees that the "unsubtracted" coefBcient contains a
third renormalized and q -independent parameter, com-
ing kom the term

f~o„~z(0)&

~G„+
and a (different) combination of the same two parame-
ters that enter the expression of A, Eq. (37). A similar
result is obtained if one calculates the efFect on s& (q2):

bA~(A) z c, „2 2 2

A
—120«2 z f~w —fr—'i~ . (51)A2 82

We assume A 1 TeV. From the (qualitative) bounds
given in [16], one sees that both fDw and f~& are still
allowed to be of order (1). Then, for qz = 4M&z (close to
the realistic LEP2 energy), we see that the relative effects
could be of a few percent both in o ~ and in A~B „,and of
a few "ten percent" in A, which would lead in all cases
to potentially visible effects (or clean bounds).

The conclusion of this second example is, we believe,
positive. We have shown that by using our Z-peak-
subtracted representation four-fermion processes can be-
come an interesting way of studying, in a clean way, al-
ready at LEP2 energies, the effects of anomalous gauge
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couplings. Note that the couplings that are involved
are quite different from the (blind) ones that would en-
ter WW production, of which the four-fermion process
would therefore represent a possibly interesting comple-
mentary alternative (a much more detailed discussion on
this point will in fact be given in a separate paper).

An essential feature to be discussed at this point is that
of whether the use of this representation, that practically
corresponds to the replacement of G„by I't [and xi(mz)],
does not introduce dangerous "theoretical" uncertainties
coming &om the experimental error on 1 ~, 8. This will
be discussed in Sec. IV.

IV. "UNCERTAINTIES" IN THE
REPRESENTATION

To quantify the practical consequences of the "trading"
of G~ with I' t, xi(M&) in the theoretical expressions, the
simplest thing to consider the expressions Eqs. (32)—(34)
that represent the bulk of our paper. From the latest ex-
perimental analyses [18], we know that the experimental
preclslon on I i, v ls

(52)

hi (M~)
y(Mz2)

These relative precisions are certainly worse than that
on G„( 2 x 10 4). However, they have to parametrize
observables whose relative experimental precision will be

of the percent (and not per mille) level. In particular,
the error on I't [Eq. (45)] does not affect o„(largely
dominated by the photon term) and introduces a few per
mille error in A~xx „(i.e., roughly ten times smaller than
the, optimistic, anticipated experimental error [19]).The
error on 8, Eq. (46) [in fact, on the equivalent quantity
A, Eq. (35)] is also, qualitatively, much smaller than
that which one could expect (10%%uo or more) in a (possi-
ble) measurement of A, that we consider here only as a
potentially interesting observable (a rigorous experimen-
tal discussion on this subject is at the moxnent missing).
Thus, in any case, the new input does not generate sizable
"theoretical" uncertainties [note that the relative errors
Eqs. (45) and (46) will certaixily decrease in the course of
the final LEPl, and SLAC Linear Collider (SLC), runs].

We are now in a position to draw some conclusions. We
believe to have shown that the use of a Z-peak-subtracted
representation of four-fermion processes allows the study
of the efFects of some models of new physics on realistic
observables in a remarkably simple and clean way, with-
out introducing dangerous theoretical uncertainties. We
feel therefore that it might be worth generalizing our ap-
proach, both to the study of efFects of other types of mod-
els [typically supersymmetric (SUSY) models or models
with one extra Z] and to the study of other processes
(e.g. , final hadronic states or charged currents). Work in
these directions is by now in progress.
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