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O(n, ) longitudinal spin polarization in heavy-quark production
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We present the massive one-loop QCD corrections to the production cross sections, of polarized
quarks in the annihilation process e+e ~ qq(g) for bottom, top, and charm quarks. From the full
analytical expressions for the production cross sections, Schvringer-type interpolation formulas for
all parity-parity combinations (VV, VA, AA) are derived. The parity-odd interpolation formula
contains the correct limit for vanishing quark masses taking into account a residual coupling of left-
and right-chiral states in the massless theory. Numerical results for the total cross section and the
longitudinal spin polarization demonstrate the accuracy of the interpolation formulas.

PACS number(s): 12.38.Bx, 11.15.Bt, 13.88.+e

Recent precision measurements on Z decays by the
CERN e+e collider LEP [1] and the SLAG Collabora-
tions [2] permit a thorough investigation of the properties
of electroweak neutral currents and thus provide a strin-
gent test of the standard model. Moreover, the study of
polarized and unpolarized observables of the annihilation
process e+e ~ p, Z + qq to the level of strong radiative
corrections offers an ideal experimental approach to con-
firm the validity of quantum chromodynamics (QCD).

In the present paper, we concentrate on the efFects that
6nite quark masses have on the longitudinal polariza-
tion asymmetry P~ of heavy quarks produced through
e+e collisions [3]. We shall present a detailed numeri-
cal analysis of the O(n, ) corrections to the Born result for
bottom, top, and charm quarks and then compare these
results with approximations stemming &om Schwinger-
type interpolation formulas for the vector (V) and axial-
vector (A) combinations of the production cross sections.
In particular, the interpolation formulas for the parity-
odd contribution o& + have not been given in the litera-
ture before. They provide a valuable tool for expressing
the O(n, ) longitudinal polarization at the one-loop order
of strong interactions in a condensed form.

For heavy-quark production the lowest-order p-Z ex-
change cross-section formulas can be written in terms of
the different parity-parity contributions. The parity-even
property of the total unpolarized rate can directly be seen
from the decomposition [4]

~(e+e —~ ~ ~ ~ q)
i (3 z) vv+ s AA (1)

whereas the total parity-odd contribution relevant to the
longitudinal spin polarization of the Gnal quark q reads

cr(e+e m p, Z -+ q(A~)q) = kv o.s (2)
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Here, the two distinct helicity states of the quark are
given by A~ ——+2. The velocity of the quark in the two-
particle final state is v = i/1 —( with $ = 4m /s, where

and

4vrnAA
(

2 + 2)a2i+ i2
S

(4)

47m
[Q,v.a,«Xz —(v.'+ a.')v&a.

label']

(5)
S

where vt ——2TI —4Qfs~ and af = 2T~ are the elec-
troweak vector- and axial-vector-coupling constants for
fermions (f), respectively, and Q~ denotes the &actional
charge of the quark q. The quantity

yz(s) = g~Mzs(s —M'+ iM r )-'

characterizes the Breit-Wigner form of the Z propagator,
where Mz and I'z are the mass and the total decay width
of the Z boson, and g~ = 4.49 x 10 GeV . Note that
we do not consider polarization of the initial beam, so
that the axial-vector part in o.

& stems &om the spin-
projection operator in the final state, and therefore 8
denotes the linea. r depend. ence on the spin of the final
quark.

For extracting the physics of this process at the Z, it
is necessary to include radiative corrections. Obviously,
QCD corrections occur only in the final state and will
be proportional to a, /vr, i.e. , approximately 4%, whereas
the electromagnetic final-state corrections are only of the
order of 3nQz/4vr ( 0.1'%%uo and can thus safely be ne-
glected. Note that initial-state bremsstrahlung is signifi-
cant and should be taken into account [5).

To obtain the first-order QCD corrections for the indi-
vidual parity-parity contributions to the total annihila-
tion rate, Eqs. (3)—(5), one has to include virtual-gluon

as usual i/s is the center-of-momentum energy in the
e+e system and m~ the mass of the quark q. In Eqs. (1)
and (2) the vector, axial, and interference contributions
are explicitly given by

4' o.2

[Q,
' —2Q, v.vs«Xz + (v.'+ a.')v,'I»l']
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exchange and real-gluon emission. The virtual processes
have the same final state as the Born term and thus sim-
ply amount to a replacement of the O(n, ) massive vertex
functions according to the substitutions

(1+g)p
mq

where A, B, |,and D are the so-called chromomag-
netic form factors [3], and pq and p2 are the momenta
of quark and antiquark, respectively (the superscripts V
and A refer to the parity property of the vertex func-
tion). However, in the one-loop corrections to o&++ all
terms proportional to D will eventually vanish after con-
tracting the corresponding parity-odd hadron tensor with
the usual lepton tensor.

The kinematics of a three-body final state with a po-
larized quark is considerably more complicated than the
simple quark pair final state of the Born and virtual pro-

cesses. The spin-independent phase-space integrals were
first computated by Grunberg, Ng, and Tye for their
study of angular distributions of heavy-quark jets [6]. In
the spin-dependent case, the obstacles to overcome are
twofold: not only is the integral more diKcult to tackle,
but also all symmetry properties of the spin-independent
integrals are lost. With a suitable choice of phase-space
parametrization in combination with sophisticated inte-
gration techniques, we may derive the spin-dependent in-
tegrals in a closed analytical form [3]. However, it is
remarkable that all three-particle final-state phase-space
integrals relevant to the computation of the production
cross sections take a particularly simple form for cer-
tain limiting cases. In Table I, we display their limiting
behavior for vanishing quark masses and as the center-
of-momentum energy approaches the threshold value of
2mq o

A straightforward summation of the corresponding vir-
tual and real contributions yields the full analytical ex-
pressions for the factors which the right-hand sides of
Eqs. (3)—(5) must be multiplied by to correct those cross
sections to O(n, ):

(1+v2 1 —v 1 —v 1 —v 4 (- 4 1+v2-
c = 1+—'C&

~

ln + 2
~

ln (4() + F(v) + v ln — I2 — I3—+- I4+
2vr ( v 1+x ) 3 —v2 1+ v v v v(3 —v~) V

c""= 1 + —' C~
~

ln + 2 ~ln (-,' () + I (v) — ln + —,Ii —-I2 ——Is +n, (1+v' 1 —v 1 —v2 1 —v ( 4

2m ( v 1+v V 1+V V V V

2+(
V

1+v
5 )

a (1+v2 1 —v 1 —v2 1 —v
c "=1+—'C~

~

ln +2
~

»(-,'g) ++(v)—
27K ( v 1+v ) V 1+V

+ ((4 —()S& —(4 —5()S2 —2(4 —3()S4 —((1 —()(Ss —Ss)
2v

+((Ss —S7) —2Ss+ (2 —()Ss+ (6 —$)S]p —2Syy+ 2(1+ v )v Sy2)

TABLE I. The behavior of the spin-independent (I,) and spin-dependent (S;) phase-space integrals for the decay Z, 7 -+ qqg
in the limit of vanishing quark mass (v ~ 1) and in the asymptotic energy range near threshold (v -+ 0). The ( function of
order 2 is g(2) = m /6.

v M 1

v~0

I1
1
2

O(v')

1

O(v')

I2
—lm(+ 21n2 —1

O{v )
S2

2 ln2 —1+
2v

Is
~2(in/ —2 ln2 —2) + 1
4(—3+ 2 ln2+ 2 lnv)v

Ss

~(z in/ —ln2 —1) —1

4(21nv —1+ 4v )

I4
——in/ + ln2 —5

2 4
o(

S4
—(in/ —2 ln2) + q(2)

2v

Is
——(in/ —2 ln2) —4q(2)

4(—3+ 2 ln2+ 2 lnv)v
Ss

g4 ( 1 ln(' —ln2) — 4
2 g1/2
4(2 lnv + 41 v )

4 4
g1/2

2v

Se

Sy
2 4

gl/2
o{v )

S8
1
4

o(v )

S9
—21 in/ + ln2 —1

o(v')

S10 S11 S12

4 (lng —2 ln2 + 2) + g(2) 4 (in/ —2 ln2+ 3) + Q(2) —
4 (in/ —2 ln2) —3g(2)

o(v') O(v ) 81nv —4+ O(v )
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1+v2 4v I 1+v
ln

~

ln
2v 1 —v2) 1 —v

]. +v2 . (v+11 . (v —11
Re Li2 —Li2

v ( 2v ) ( 2v )

E(v) =
i
3v—

where I; and 8; are, respectively, the spin-independent
and spin-dependent integrals defined in Ref. [3]. As these
measures are in&ared safe, we have employed the nota-
tion I; and 8; for the Gnite part of the integrals I; and
S;, i.e. , in Eqs. (7)—(9) the soft divergences of the virtual
and real contributions have exactly canceled. The term
E(v) stems &om the virtual process and is given by

We can connect the two boundary-value functions for
vanishing quark mass and for the center-of-momentum
energy squared approaching 8 = 4m by simple interpo-
lation formulas which are polynomials of degree n:

f(v) = ) ai, v" ) ai, ,
A:=0 k=O

(14)

where ao, . . . , a„are suitable fitting constants. Our low-
order approximations for the VV and AA one-loop QCD
corrections are in agreement with the results which have
been presented in the literature before [12,13]:

+v2+—
2 v

(10) VV 7r
c = 1+C'Eas

2v

3+v (vr 31
4 g2 47r)

(15)

and as usual Cp ——
3 is the Casimir operator of the color

group SU(3). It is easy to recognize that c+v = cv+
follows &om the symmetry properties of the fermionic
trace structure.

In the high- (v ~ 1) and low- (v + 0) energy limits,
the O(n, ) factors of Eqs. (7)—(9) greatly simplify. With
the explicit results provided in Table I, we can straight-
forwardly 6nd the generic form

c = 1 + Cy"0!8AA

2v

19 —44v + 35v (n 3 5

10 q 2 4'�)
(16)

The corresponding new formula that interpolates the
parity-odd contribution Eq. (9) between the exact so-
lution for v = 1 and in the asymptotic energy range near
threshold is

(7r p'' lc'~ = 1+Cyn, ——f'~(v)
~

——
2v i2 4')

with f'~(1) = 1, (ll)

VA 7r
c = 1+C'Eo.s

2v

64 —70v+ 103v2 (n 1 i
97 i2 4m)

(17)

where the functions f'~ (v) and the constants p'~ depend
on the specific parity-parity combination i, j = V, A. The
constants p'~ are derived as

p=p=3andp=1 (12)

which directly implies that the parity-even and parity-
odd one-loop corrections to the total correlation cross
sections do not equal in the fermionic zero-mass limit.
In fact, the one-loop factor c receives a 6nite contri-
bution &om a residual coupling of left- and right-handed
helicity states of the polarized quark even in the limit
m~ ~ 0. The physical origin of this O(n, ) effect is that
transitions between both helicity states are still allowed
in the massless limit through the emission of a real gluon.

The 6nite difference p —p between the results
of the limiting case mq —+ 0 and the results where the
fermion mass is at the outset zero, is nothing more than
a manifestation of the distinct nature of the underlying
chiral symmetries in strictly massless and massive theo-
ries. Explicitly, we have

In Fig. 1 we have plotted c++(v) for a constant coupling
n, = 0.1 with the correct limit cv+(1) = 1 + Cpn, /4vr.
The solid line gives the analytic result of Eq. (9), whereas
the dashed line refers to the interpolation formula Eq.
(17). Up to v = 0.7, Eq. (17) provides an excellent
approximation for the O(n, ) correction that multiplies
with o.vA

For higher precision, we give in Table II polynomial
approximations of all possible parity-parity combinations
(ij) up to fifth order. The coefficients a&~ and p'~ com-

I I I I

[
I I I I

J

I I I I

J

I I I I

J

I I I I

[
I I I I

J

I I ! I

[
I I l~

1.8

1.6

1.4

p —p = lim(S = 4vr R,
$—+0

where R = 1/2m 2 is the absorptive part of the axial
anomaly in the limit m~ + 0 (the "anomaly pole" [7,8]).
In the fermionic zero-mass lixnit, the violation of chiral
invariance in triangle graphs with one axial-vector source
is directly related to the breaking of chiral invariance for
transitions between fermions of di8erent helicity states
[9—11].

FIG. 1. The O(n, ) correction factor c
= mrs /o. s (Born) given as a function of v = gl —4m~2/s.
The solid line represents the correct numerical values whereas
the dashed line corresponds to the low-order Schwinger-type
interpolation formula Eq. (17).
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TABLE II. One-loop +CD corrections for the individual
parity-parity combinations in the process e e —+ p, Z + qq.
The functions f ~(v) give the nontrivial ingredient in the in-

terpolation formulas for the total correlation cross sections.

f*'(v) ao

95
95
95
60
67
6

43
49
5

—82
—85
—104
—17
—148
—1
—30
—127
—7

a2

173
185
313
—14
538
—35
15

426
3

—85
—104
—430

71
—735
150
71

—536
49

9
363

379
—201

288
—82

a5

—137

91

2 VA VA~s (19)

pletely determine the structure of c'~ in Eq. (11).
To demonstrate the accuracy of the entirely new

Schwinger-type interpolation formulas for the one-loop
correction c, we have plotted only the corresponding
nontrivial terms f +(v) as a function of v. Figure 2 dis-
plays the numerical results for the exact analytical form
Eq. (9) (solid line), for the low-order approximation Eq.
(17) (long-dashed line), and for the various polynomial
interpolations presented in Table II. We have drawn the
polynomials of third order (short-dashed line), fourth or-
der (dot-dashed line), and fifth order (dotted line).

In Table III, we present the O(n, ) numerical estimates
for the total unpolarized rate ot t

——o(e+e ~ p, Z ~
cc(g)) and for the longitudinal spin polarization (Pi) de-
fined by

o.(A+) —o(A )
L )

Otot

where the following shorthand notation has been used:

o(A~) = o(e+e m p, Z + q(A~)q(g))

FIG. 2. The v dependence of the nontrivial term f (v) in
the one-loop @CD vector axial-vector correction factor c as
defined in Eq. (11). Shown are the exact result Eq. (9) (solid
line), the low-order interpolation Eq. (17) (long-dashed line),
and the polynomial approximations of third (short-dashed
line), fourth (dot-dashed line), and fifth (dotted line) order
given in Table II.

In the calculation we have incorporated the running of
the quark mass and the q evolution of the strong cou-
pling according to Ref. [14] with n, (M&~) = 0.12 and

AMs ——0.238 GeV, where MS denotes the modified min-
imal subtraction scheme. Column I corresponds to the
exact analytical expressions using Eqs. (7)—(9), whereas
columns II and III employ the low-order approximation
Eqs. (15)—(17) and the third-order interpolation formu-
las c'~ with the coefficients a&~ of Table II. We find that
already the low-order approximation provides a very ac-
curate interpolation to the exact analytical results and
even for ~s ( 100 GeV the higher-order approximations
give only little improvement. In Tables IV and V, the
exact results (I) are compared with the low-order (II)

TABLE III. O(n, ) production cross section and longitudinal polarization asymmetry for the
process e e ~ p, Z ~ cc as a function of the c.m.s. energy. Column I gives the exact numerical
results, whereas columns II and III use the low-order approximation, Eqs. (15)—(17), and the
third-order interpolation formulas of Table II, respectively.

~s
(GeV)

85
90
91

91.173
92
95
100
200
300
500
800
1000

I
284.184

3 873.822
7 302.698
7 475.076
5 278.417

767.018
176.078

5.429
2.206
0.769 7
0.296 81
1.18934

Otot

(pb)
II

284.145
3 873.387
7 301.787
7 474.148
5 277.777

766.934
176.062

5.429
2.206
0.769 7
0.296 81
0.18934

III
284.142

3 873.342
7 301.705
7 474.064
5 277.719

766.926
176.060

5.429
2.206
0.769 7
0.296 81
0.18934

I
—59.584
—66.355
—66.989
—67.077
—67.410
—67.578
—65.341
—30.795
—26.631
—24.712
—24.153
—24.032

III
—59.538
—66.310
—66.944
—67.032
—67.366
—67.537
—65.305
—30.791
—26.630
—24.712
—24.153
—24.032

(P )
cr(A+) —a(A )

(Fo)
II

—59.536
—66.308
—66.943
—67.031
—67.365
—67.536
—65.304
—30.791
—26.630
—24.712
—24.153
—24.032
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TABLE IV. O(n, ) production cross section and longitudinal polarization for the process
e+e —+ p, Z —+ bb; column I, exact results; column II, low-order approximation; column III,
fifth-order interpolation.

~s
(GeV)

85
90
91

91.173
92
95

100
200
300
500
800
1000

I
348.187

4 975.763
9 387.988
9 608.702
6 775.832

969.131
211.230

3.375
1.239
0.411 5
0.156 27
0.099 338

tot
(pb)

II
347.831

4 971.125
9 379.413
9 599.957
6 769.770

968.317
211.071

3.375
1.239
0.4115
0.156 26
0.099 337

III
347.858

4 971.473
9 380.050
9 600.606
6 770.217

968.375
211.082

3.375
1.239
0.411 5
0.156 26
0.099 337

I
—90.208
—91.884
—92.012
—92.029
—92.085
—92.019
—91.223
—70.855
—66.127
—63.794
—63.043
—62.883

III
—89.805
—91.492
—91.622
—91.638
—91.696
—91.638
—90.858
—70.752
—66.086
—63.630
—62.898
—62.745

(P )
cr(AP )—a (A )

(%%uo)

II
—89.740
—91.433
—91.564
—91.582
—91.641
—91.587
—90.813
—70.745
—66.083
—63.629
—62.897
—62.744

and fifth-order (III) approximations for bottom- and top-
quark production, respectively.

In the standard model the longitudinal spin polariza-
tion on the Z peak is fairly large yielding for the strictly
massless Dirac theory a Born value of (Pi),—p
—68.5% (up-type quarks) and (PL,),=0 = —93.9%
(down-type quarks). As pointed out before, at the one-
loop order of quantum corrections a correct theory for
vanishing quark masses should always be regarded as the
limit of a massive theory, thus including the anomalous
contribution of Eq. (13). With R g 0 one obtains, in
this limit,

1+C .(p —4 'R)/4
L Tllq&o 1 + ~ v'v/4 Ir YBq 0

(20)

which gives a sizable effect of the order of 3%. We antic-
ipate that future experimental analyses of (PI.) via the
decay products of the final quark pair will be able to de-
tect this efFect. The angular distributions of the charged
leptons from semileptonic decays of the charmed A [15)
would serve as spin analyzers for the heavy quark, since

in the heavy-quark limit the polarization information of
the quark q is completely transferred to the correspond-
ing lambda baryon A~ [16].

To summarize, we have presented the analytical ex-
pressions for the total unpolarized and polarized produc-
tion cross sections for the process e+e -+ p, Z ~ qq
up to one-loop order of strong interactions. The numer-
ical results for the total rate and. longitudinal spin po-
larization are compared with estimates Schwinger-type
interpolation formulas give. The simple second-order ap-
proximation for the parity-odd correlation cross section
already yield. s very accurate results. Use of this compact
formula may be expected to provide accurate numerical
estimates in an uncomplicated way.

In this context, we have also pointed out that finite
contributions &om the axial anomaly are relevant in the
limit of vanishing quark mass. The breaking of chiral
invariance for transitions between fermions of difI'erent

helicity states fundamentally alters the high-energy be-
havior of parity-odd observables, such as the longitudinal
polarization asymmetry. For heavy-quark production,
these chirality-violating mass efFects reduce the longitu-
dinal polarization by approximately 3% and thus should
be observable at future TeV e+e colliders by analyzing

TABLE V. O(n, ) production cross section and longitudinal polarization for the process
e+e —+ p, Z + tt with m~ ——174 GeV; column I, exact results; column II, low-order approxi-
mation; column III, fifth-order interpolation.

~s
(GeV)

350
400
500
800
1000

I
0.929 4
0.932 9
0.685 7
0.288 07
0.186 16

&tot

(pb)
II
0.927 7
0.930 8
0.686 5
0.288 37
0.186 23

III
0.929 7
0.933 2
0.685 8
0.287 99
0.186 07

III
—8.518

—14.114
—18.655
—21.316
—22.950

I
—8.504

—14.149
—18.644
—22.341
—23.037

(P )
~(A+ )—cr(A )

(%)
II

—8.523
—14.187
—18.496
—21.997
—22.701
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the charged lepton spectrum of the semileptonic decay
mode.
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